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Textures in superfluid He-A: Hydrodynamic and magnetic effects in a cylindrical pore*
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Transformation of the Ginzburg-Landau free energy for superfluid 'He to cylindrical polar coordinates yields
the field equations and specular boundary conditions for a cylindrical geometry. Similar transformations give
the particle and spin current densities. Application to He-A near T, in a long pore of radius R predicts
various stable configurations. For R & 6 Ism, 0 and I flare upward near the center, inducing an extra free

energy per unit length that is independent of R, and an angular momentum per particle - 0.782 p, /p. For
Rg6 p,m, 0 is uniform and l is radial, with a depaired region of radius, -t'(T) near the center; the
corresponding extra free energy per unit length is proportional to ln[R/t'(T)), with no current or angular
momentum. In a large cylinder (R p6 p,m), an applied axial field deforms 1 and I, increasing the angular
momentum up to a critical magnetic field ( 20-30 G), when 8 and f abruptly undergo a textural transition
and become radial. In contrast, an applied axial superflow in a large cylinder decreases the angular
momentum.

I. INTRODUCTION

The new low-temperature properties of 'He be-
low 2.7 mK have been widely interpreted as sig-
naling the appearance of condensed triplet P -wave
Cooper pairs. ' ' As in the more familiar metallic
superconductors, the central object of study is
the gap function, which must now be generalized
to a symmetric 2 &&2 matrix 4 8 in a spin space.
This property is conveniently incorporated with
the representation' b, s =t'b, „(g„&r,) s, where o„
denotes a Pauli matrix and repeated indices are
summed from 1 to 3. The three parameters 4„
transform like a vector under rotation of the spin
coordinate axes. Furthermore, the assumption of
p-wave symmetry implies that b,„ is a linear func-
tion of the unit vector A that characteri. zes direc-
tions on the Fermi surface, giving the representa-
tion 6„=A,„,k, The complex 3 x 3 tensor A„,.
serves as the order parameter for superfluid 'He,
with the first index referring to spin quantities
and the second to spatial ones.

Further progress depends on more specific as-
sumptions, and we here consider only the vicinity
neap T, , where the free-energy density may be
expanded in a Ginzburg-Landau form in powers of

A„,- . The dominant bulk terms are given by'

+c———a.As, As, + PiAp i Ap i Avi Avg

+ PQ„*,A„, A, *„A )+ PsA„*; A„*iA„)A„.

with n and {p,.] determined either phenomenologi-
cally or from a microscopic analysis. ' ' In the
weak-coupling limit, a straightforward calcula-
tion' gives n = —,'N(0)(1 —T/T, ) and -2P, = P, = P,
= p4=-p, =7)(3)(120tt') 'N(0)(kaT, ), with N(0)
=m*k~/2ti'k' the density of states of one spin popu-

lation at the Fermi surface. More general theo-
ries yield modified values, but the frequently en-
countered combinations P, + P,

—= P» and P, + P, + P,
=—P,«apparently remain positive. The terms in
Eq. (1) are distinguished in that the first and sec-
ond indices are contracted separately, so that I',
is invariant under separate rotations of spin or
orbital coordinate axes. To choose among the re-
sulting manifold of degenerate orientational states,
it becomes necessary to include several much
smaller contributions to the free-energy density;
for these latter terms, it is sufficient to retain
only the leading (second-order) expressions in the
order parameter.

One important such contribution is the nuclear
dipole interaction, ""which introduces a "spin-
orbit" coupling. In the present formalism, this
effect appears as contractions between the first
and second indices of A. , leading to the form

+n Zn(Aii Ax i' +Aii xAxii s Aii xAii x) (2)

where gn =(,—c tr) [N(0)ykln(1. 13k&co/kaT, )]', ~y ~

= 2.04x10' (G sec) ' and 8&c,/kn is a cutoff temper-
ature of order =0.7 K. Note that I'~ remains in-
variant under simultaneous rotations of the spin
and orbital coordinate axes.

An external magnetic field provides another con-
tribution~' to the free-energy density. Since the
(paramagnetic) magnetic-susceptibility tensor de-
creases on entering the condensed phase, the cor-
responding free-energy shift is positive

(3)Fz —gzH~A. ~ &
A.& g H&

where gx = [ Ig(3)/24m'])(„(kn T,) '(1+-,'Zc) ' and )(„is
the normal-state susceptibility, including Fermi-
liquid corrections. Equation (3) shows that an ex-
ternal field couples to the spin indices and thus
eliminates the corresponding rotational degeneracy
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except about H.
In principle, the finite electric polarizability of

the 'He atoms also implies an orientational effect
for an applied electric field. " Such behavior has
been sought unsuccessfully, " suggesting that the
coupling constant may in fact be considerably
smaller than initial estimates. " This question re-
mains unresolved, and electric fields will not be
considered here.

The final contribution to the free-energy density,
and one of great importance, arises from the pos-
sibility of slow spatial variations in the order pa-
rameter. These terms represent kinetic and elas-
tic energy. Retaining only terms quadratic in the
gradients of A„,, we have""

(4)
In the weak-coupling, limit, K„K„and K, are
equal" to —,

' N(0)t '„where g, = [7 &(3)/48m']'~'
x (km~/k~T, ) = 120 A is the coherence length that
characterizes the size of a Cooper pair. More
generally, however, the three coefficients may
differ, and we shall follow I eggett' in retaining the
general form. As seen below, the field equations
depend on the two combinations K, and K, + K3,
whereas the (specular) boundary conditions involve
only the ratio K,/K, ; thus, in principle, each of
the three coefficients could be determined experi-
mentally.

These various perturbations will compete, elimi-
nating much or all of the degeneracy. The pre-
dominant effect depends on the specific situation,
whose scale will be fixed by the relative magnitude
of the particular coefficients. We note that
gD=10" (erg cm') ', go=10" erg ', and that K,.
=4x10" (erg cm) ', these parameters define a
characteristic field strength H* —= (gD/g~)'~' = 25 G
and a characteristic length L*—= (K,/gD)'~'= 6 pm.
If IIS H*, then the dipole energy dominates the
magnetic energy, and if the order parameter
varies rapidly over distances smaller than L*,
then the kinetic energy dominates the dipole en-
ergy. Finally, we define the temperature-depen-
dent coherence length (K,/n)'~'= $(T) = (—',)' '—
x),(1 —T/T, ) '~', which is the smallest length over
which to expect appreciable changes in the order
parameter. Although our ( is equal to $r of Ref.
14, we shall not use their notation because the
curved boundaries complicate the decomposition
into transverse and longitudinal components. In-
stead, $(T) here serves as a characteristic scale
of length, with the anisotropy appearing in the
various numerical coefficients.

The presence of spatial derivatives in the free
energy implies the possibility of particle currents
with density"

(5)

Correspondingly, the medium supports an angular
momentum density rn, r x J, whose volume integral
represents the total angular momentum L. Also,
the existence of two spin populations suggests the
'possibility of pure spin transport without net mass
transport. The flux of spin component A. in the di-
rection i is given by'"

+K+„")s)A„)). (6)

The equilibrium configuration for A„,. minimizes
the total integrated free energy, subject to spe-
cific boundary conditions. In general, this pro-
cedure leads to coupled, second-order, nonlinear,
partial differential equations for the nine complex
elements A„,. Even in a bulk uniform medium, the
exact problem becomes very complicated, and the
presence of (generally curved) boundaries renders
an exact treatment impracticable. In this case, it
becomes essential to choose a coordinate system
that reflects the geometry of the problem. Indeed,
the various possible textures turn out to have free
energies that differ by only small amounts, so that
consistent application of the correct boundary con-
ditions is crucial. Moreover, the characteristics
imposed by the boundaries affect the global con-
figuration far beyond a local boundary layer of
thickness=)'(T). Thus states with nearly equal
free energy can have very different currents or
total angular momenta.

For these reasons, we have found it convenient
to use a general tensor formalism in studying the
textures of superfluid 'He." This approach has
several advantages. First, it enables us to ex-
press interesting physical quantities, like the free
energy and currents, in any particular coordinate
system. Although such a transformation can be
carried out directly, standard tensor analysis
makes the process straightforward and purely
mechanical. Second, the variational basis permits
us to avoid the lengthy transformation of the field
equations. Instead, the scalar character of the
free energy automatically provides the correct
second-order differential equations for the tensor
order parameter. Third, the specular boundary
conditions for the "transverse" components can be
interpreted as "natural" ones" that ensure the van-
ishing of the relevant surface terms in any coordi-
nates; this property readily leads to explicit ex-
pressions for the surface conditions. Finally, the
tensor formalism clearly distinguishes between
general properties and those valid in particular
coordinates.
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As a concrete example, we here investigate the
textures of 'He-A in an infinite cylinder of radius
A. Section II introduces the cylindrical basis,
which serves to transform the free energy and
transport cure ents. The equilibrium textures are
considered in Sec. III, and Sec. IV includes the ef-
fect of an axial magnetic field or axial superf low.
Throughout this paper, all quantities are given ex-'

plicitly in cylindrical coordinates, and the general
tensor formalism is relegated to the Appendix.

II. INTRODUCTION OF CYLINDRICAL BASIS

The first step in transforming to curvilinear co-
ordinates is the definition of the (familiar) unit co-
ordinate' vectors

8, ={r,Q, z) ={xcosp+y sing, —xsinQ+y"cosQ, z]

where the last form relates 8, to the Cartesian
basis. As in other common examples of vector or
tensor fields (for example, electrodynamics" or
hydrodynamics" ), we consider only the usual
physical components of the tensor A, defined by

A„,. =- C„Ae, , where first and second indices con-
tinue to represent the spin and orbital quantities,
and p. and i denote the set {r,P, z]. To be very ex-

plicit, we have

A.„„=A„„cos'P+ (A„,+A,„)cosP sing+A» sin'P

or, alternatively,

A„„=A„„cos'P—(A„&+A&„)cosP sing+A&& sin'P .
Note that all elements of A„, have the dimensions
of energy; in general, they differ from the more
abstract but less familiar covariant and contra-
variant components common in tensor analy-

~ 18,20-22sls.
In thi. s orthogonal basis, contributions to the

free-energy density that have no derivatives are
unchanged, with A&,-A„,, for example, represent-
ing the sum of nine terms lA„„l'+ lA„&l'+
Terms containing derivatives are affected, how-
ever, as seen by transforming B„A.„„to cylindrical
coordinates. We shall use a comma to denote dif-
ferentiation, including an additional factor r ' in
the azimuthal direction '.

A„;,. =—
A.~, 1 A~, Aq ]
sr ' r sy

'
&z

A lengthy calculation starting from Eg. (4) (see
Appendix) eventually yields the kinetic energy den-
sity

K & if i ik 0 Pig, k i&, k Aif, kAik, j
+2r 'Re[K, (A,*+~, , —A$zA„, , +A,*„A,, ~) +K,(A„",Az@, Ai~, A„—&, +.A,*„A,& z —A;zA, z „)

+K,(A„*,A~i ~-A$.,.A„i ~+A,*„A;~ ~ A,*gA,„-@)]

+r '{@'+K)[IA,~I'+ IA~~I'+A,*,A;, +2Re(A,*~A~, —A,*,A++)]

(8)

where repeated dummy indices are summed over
{r,P, z]. A combination of Eqs. (1)-(3), and (8)
provides the total free-energy density, whose in-
tegral must be stationary under general variations
of A„,. The corresponding Euler-Lagrange equa-
tions serve only a few purposes and will be omit-
ted here. The Appendix [Eq. (AV)] expresses them
in a covariant tensor notation, which displays the
dependence on the two combinations K, and (K,

+ K,). For convenience, we abbreviate this last
quantity as follows, Kg+ K3= 2yK„and recall that

y =1 in the weak-coupling limit. The presence of
r ' centrifugal barriers in Eq. (8) identifies the
polar axis as a singular line, and almost all solu-
tions will reflect this character.

Transformation of the particle and spin currents
proceeds analogously from Eqs. (5) and (6), and
we find

J, = 4A '1m{ (K,A„*,A„~ ~ K+A„*3A„i' +A„*iA„~ )

+ r '[K(A„*,A„„+A~&,A„z —A„*,Azz)+ K(A$zA„, —A„*zAz, —5,„AfzA„z+ 5, &A) zA„„)

+K,2 ~6(A@qA„ (A+*~A „)]) . (9)

+ r '[K, (Af, A,„—5„„A&,A&& + 5,A„*, A„&) +K,(-5„„A&&A&; + 5„+„*&A„;—6i„A„*~A,~+ 5,~A„*~A,„)

(10)
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As expected from physical considerations, the par-
ticle current may be proved solenoidal for any or-
der parameter that satisfies the field equations;
a general discussion may be found in the Appendix.
On the other hand, the spin transport current need
not be solenoidal owing to the internal Josephson
effect."

Ambegaokar, de Gennes, and Rainer" have dis-
cussed the boundary conditions for a plane surface
in great detail. If z is the unit vector normal to
the plane, they conclude that A„, should vanish
quite generally, but that the behavior of A„„and
A„, depends on the particular model considered.
Specular boundary conditions provide the simplest
case, when 8,A„,=8,A„,=0 at the boundary. From
a variational view point, these conditions are "na-
tural"" in that they ensure the vanishing of the
transverse surface terms, independent of the vari-
ations 6A„„and 6A„, . As shown in the Appendix,
this latter prescription is readily generalized to
curved boundaries whose radius of curvature ex-
ceeds the temperature-dependent coherence
length, allowing a locally flat description. When
applied to a cylindrical boundary, the generalized
specular conditions at r= 8 require

8 8 1

More physically, these generalized specular
boundary conditions ensure that the normal com-
ponent of the particle current vanishes at the
walls. We may note that Eg. (11) differs from the
specular conditions used by Barton and Moore, "
who rep1aced the last relation by "curl A„@"
-=r 'a„(rA„z)=0. The two expressions are equiva-
lent only for the (probably unphysical) choice
E3= -K2.

III. EQUILIBRIUM TEXTURES OF He-A

The preceding analysis applies to all triplet P-
wave phases. In general, the equilibrium order
parameter must be determined by integrating the
exact nonlinear field equations and then comparing
the free energy of the various solutions. Such a
procedure is formidable, and we instead special-
ize to the A phase, choosing physically motivated
trial forms for A.„, Although the resulting states
no longer satisfy the exact field equations, their
variational basis ensures that the error in the free
energy is only of second order. To guide the choice
of trial states for 'He-A in a cylinder, we expect
physical quantities like the energy gap and the
transport currents to be axisymmetric and trans-
lationally invariant along z. Thus A„,. should con-
tain P and z only as exponential phase factors, al-
though we shall see [Eg. (21)] that certain excep-

tional cases occur. Also, the intricate boundary
conditions and the presence of centrifugal barriers
suggest that A„,. will typically depend on x, and in-
deed, most solutions contain a central hole of ra-
dius =$(T) where A„,. falls to zero.

In a uniform infinite medium, the order param-
~ eter for 'He-A has the form"'" A„,.
= hod „(n,+ in, ), , where n, n, = 0 and 6,= (» o.!P2», )'~'.

Here l is an axis along which the spin of the
Cooper pair has zero component, and /=—n, &&n, de-
notes the axis of the pair's orbital angular mo-
mentum. Inclusion of the dipole coupling renders
the full field equations intractable, but a first-or-
der variational calculation shows that d

~ ~
l mini-

mizes the integral of E,+I'~. To incorporate the
effect of cylindrical boundaries, we assume a gen-
eralized form

A„,. = exp [iS(r)]l„(r)[A,(r)n, (r) + iA, (r)n, (r)], , (12)

where S is real, and 6, and 6, depend only on ~.
In most cases, we shall show that n, n, vanishes
to a good approximation, but that ~, cannot equal
6, everywhere, especially near the axis of sym-
metry or at the boundary. Also, the various per-
turbations typically force I and l to assume dif-
ferent directions.

In principle, substitution of Eq. (12) into the total
free-energy density [Eqs. (1)-(3), and (8)] could
yield the various coupled Euler-Lagrange equa-
tions for the several functions. Even this re-
stricted program is prohibitive, however, and we
shall first consider only the equilibrium texture in
a cylinder of radius R, with no applied magnetic
field or hydrodynamic flow. Hence we shall try
various physically reasonable forms for d, n„n„
and $, compar ing the corresponding total free ener-
gies. A number of observations guides this selection.
(a) The bulk gap a, =(n/4p~»5)+' implies a free-
energy density I,= n'/ p4„-which is by far the
largest contribution for a nonuniform configution
except in a narrow temperature interval very close
close to T, when 8 S $(T). This latter region,
treated by Barton and Moore, "is not considered
in the present paper. As a result, changes in the
magnitude of 4, or 6, have the largest effect on
the free energy, representing loss of condensation
energy. We may estimate the spatial dependence
of 4 in two cases. '" Suppose a hole of radius z,
forms near the center; the bulk energy per unit
length increases by =mr,'o. '/4p2»„and the centri-
fugal terms in the kinetic energy contribute an
amount =2mK, f, rdrb, '(r)r ' Clearly, . A(r) must
vanish at the origin to ensure convergence; a sim-
ple estimate yields a kinetic energy 2+K,b, ',In(R/r, ).
Minimizing the sum with respect to r, yields x,
= (K,/n)'~'=t (T), as expected. The situation near
the outer walls is more complicated, for the
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boundary conditions there may be satisfied in a
variety of ways. One possibility is to have b,(R)
=0, which ensures that A„„=O identically. An anal-

.ogous estimate shows that this reduced condensa-
tion again occurs in a surface thickness of order
$(T), and that the corresponding change in the free
energy is of order RK, LO/$. A second possibility
is to have l radial at the walls with A(R) =b,„in-
troducing a surface layer of unfavorable dipole and
bending energy. A simple estimate yields a char-
acteristic surface thickness =J* with an energy
RK,A,'/L". Evidently, this second choice is pre-
ferable for L*a $ (namely o. a g~), which holds ex-
cept for T, —T~3x].0 'K.
(b) lf 8 and l vary with position, the associated
kinetic energy is minimized by making their joint
characteristic scale length of order R, again in-
dicating the global effect of the walls, even for
R~ $(T). Thus states in a confined geometry need
not be simple generalizations of bulk uniform
ones.
(c) Even if b(R) e 0, the boundary conditions still
typically imply that b,,(R) o b,,(R). As seen from
Eq. (Ai3), this restriction introduces terms in the
free-energy density of order P»(b, ,' —b, ',)' and
small contributions to E~. A variety of trial cal-
culations has shown that the resulting surface
layer for R«L*'/$(T) has a thickness of order
g(T), and that lb, ', -62lz=((T)R 'bo with a shift in
the total free energy of order $'R 'F„much
smaller than other contributions. Thus the cor-
rect orientation of d and f near the walls turns out
to be more important than small changes in b, ,
with l being purely radial at x=R to ensure that
A „(R)=0. In most cases, moreover, l(r) prob-
ably remains coplanar with the symmetry axis,
which eliminates any extra curvature associated
with a "swirling" configuration.

The precise form of the energetically favorable
state will depend on whether E~ or ED is larger.
For R«J*, the curvature energy predominates,
and we expect d and l to be as uniform as pos-
sible, consistent with the boundary conditions and
the centrifugal barrier. For R» L,*, on the other
hand, the dipole energy becomes most important,
for it is a volume term proportional to R'. Thus
we expect d ill almost everywhere in a large cy-
linder. Finally, we may note that an axial mag-
netic field tends to align d in the xy plane, and
that an axial superf low tends to align ll ~z. The
final texture represents a compromise between
all these competing effects. Since the kinetic en-
ergy involves g(T) and R, .the system should ex-
hibit a variety of temperature and size-dependent
effects as well as magnetic and hydrodynamic al-
terations. Indeed, these latter perturbations may
even induce transitions between topologically dis-

tinct textures (Sec. IV).
We have identified three distinct configurations

as plausible candidates for the equilibrium texture
of 'He-A in a cylinder. In a large cylinder
(R»L*), the dipole energy predominates, align-
ing 1 and l almost everywhere. The equilibrium
structure has 8 and l bend continuously from ra-
dial at the walls to axial at the center, with the
explicit form"'"

A„,= Ae'~(z cos8+ r sin8)„

x[f(r)P +i(zsin8-rcos8))&, (13)

where d z = l z = cos 8(r) and b, is a constant. In
addition, we have introduced a narrow surface re-
gion r, &r&R, with f(r&r, ) =1 and f(r& r,)
= (r/r, ) 3~ 2 to satisfy the boundary condition (11)
on A„& and with 8(r & r,) = ,'n to s—atisfy the bound-
ary conditions (ll) on A„„and A, . As discussed
previously, this region turns out to have a thick-
ness =$(T) and produces negligible corrections to
the total free energy. Hence we may take r0= R,
and the resulting free energy per unit length (A13)
becomes

~l
d'rF = zR'(-2n. d'+ 4P„,A')

+ 2@K,4 I[8]+ 2n'K~A' (14a)

cot(—'8) = ,'[CR/r+ -(A. —1)r/CR] (15)

where A. '=(3K, +K, +K)/K, =3+2y, and C=1
+ (2 —X)'~'. Figure 1 shows this function for y =1;
it differs from a purely linear approximation 8(r)

2vr/R by at most 6%%u-o. Substitution of Eq. (15) in
Eq. (14) yields the total free energy, and a
straightforward minimization with respect to 4'
leads to the final expression

where we assume e»g~, thereby neglecting the
region T, —T& 10 ' K. The functional I[8J is given
by

R

I[8]= rdr(8 "(3+2y)
0

+ r '[sin'8+ 4(1+y)(l —cos8)] J (14b)

with y =—(K, +K,)/2K, and 8' denoting d8/dr The.
centrifugal barrier requires 8(r= 0) = 0, confirm-
ing that l z as x-0. In this region, the overall
phase factor e'~ in Eq. (13) plays an essential role,
for A„& there reduces to a uniform configuration
~2~(y-i x), , eliminating the curvature energy near
the axis and allowing the magnitude 6 to remain
finite.

Remarkably, the Euler-Lagrange equation for
Eq. (14b) has an exact solution"
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7T/2

77/4

a free energy per unit length zR'E, + 24.8zh,'K„
where E, and 4, are the values for bulk 'He-A.

It is not difficult to show from Eq. (A14) that the
trial state (13) has only an azimuthal particle cur-
rent

J&=46,A '[r '(2K, +K, +K,)(1 —cos8)

—K,d(c os &)/dr], (16)

0 0.5
r/R

FIG. 1. Bending angle 8(r) for / and 4, taken from
Eq. (15) with y=l.

where

I= 4( 3+y2)' ' (3+2@)' '--,'(5+4y)' '

2~/2+ (6+4 )&/2
+ 2(1+r)»

Taking y = 1 for definiteness, we find" I= 11.4 and

Lz = d'rmrJq

I,vA'p,'t 5/m (19a)

where p~~ =16K,(b gn, /h)' is the component of the
A-phase superfluid density tensor for uniform
flow parallel to l [identified from Eq. (4) or (5)],
and I, is a numerical constant

which produces an angular momentum equivalent
to that obtained by Mermin and Ho." We note that
xJ& is not even approximately constant owing to the
spatial dependence of 8(r), and that J& vanishes
smoothly at r= 0 with the radius Pi acting as the
characteristic seal'e of length. The total angular
momentum per unit length can be evaluated anal-
ytically with Eq. (15) to give

I+A. (A. —1)'+ (1 -A. ' ')'C' (1+A' ')'
2x' '

(X —1)'+ (1+A.' ')'C' (1 —A.
' ')' (19b)

For simplicity, we take K, =K, =R, andy=1, to
give"

I., = O. V62~It'p ~~n-/m,

or equivalently,

II

zÃ '=0.7825 ~
p

(20a)

(2ob)

per particle, quantifying a qualitative conclusion
of Mermin and Ho." Detailed calculation shows
that the state (13) also has nonzero spin currents
with components J„@,J&„, J&, , J, &, in particular,
the existence of finite J&„and J&, illustrates the
possibility of spin transport without associated
mass transport. In concluding this discussion, we
note that the spatial derivatives of d contribute
substantially to the kinetic energy (14), although
they do not appear explicitly in the current J. Thus
any approximation that ignores spatial variations
in d cannot reach numerically accurate conclu-

sionss.

The other simple limit occurs for t (T) «A «L*,

when the dipole energy is negligible relative to E~.
In this case, d becomes uncoupled from l and as-
sumes a uniform configuration (d I I@, say) to elim-
inate its contribution to the curvature energy.
The / vector is purely radial to satisfy the bound-
ary condition on A„„, and we have an orbital
disgyration'4 "of the general form (12)

X„,=x„[~,(r)j+II,(r)z],

= (rcosp —&f&sing)~[a, (r)/+i', (r)z]&. (21)

Substitution of the last form into Eq. (8) shows
that 6, must vanish at the origin but that 4, need
not do so. Nevertheless, we take b,,(r) = b,,(r)
=—A(r) everywhere, for this state does give a lower
free energy than that with constant 6,. This ap-
proximation again ignores the thin surface region
of thickness $ (T) at the outer walls, which has
negligible effect on the free energy. The function
b.(r) obeys a nonlinear ordinary differential equa-
tion that does not scale with the single parameter
r/A; instead h(r) falls to zero at the origin in a
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characteristic length =$ (T). To incorporate this
behavior, we have approximated A(r) by the form
~(&/R) [(R'+ a')/(2'+ a)']'/' treating the constants
6 and a as variational parameters. Minimizing
the total integrated free energy obtained from
Ep +Fg +Eg) shows that + +p apart from correc-
tions of order (a/R)' In(R/a), and that a = (K2/n)' '
= $ (T), as expected. The corresponding equilib-
rium free energy per unit length is" gR'I',
+2vb, ,'K21n[R/$(T)]+11R'g~h, ', where the log-
arithmic factor arises from the centrifugal bar-
rier cut off by the depairing at the origin, and the
last term is the unfavorable dipole energy in-
herent in the different orientations of d and l.
Comparison with the previous calculation verifies
that (21) has a lower free energy than (13) for
(R/L*)'+ 21n(R/g) ~ 24.8; in addition, the texture
(21) has neither spin nor. particle currents. We

may note that this state is special in that its d
vector is strictly uniform, justifying an interpre-
tation of A„,. as a recto~ field with an extra
Cartesian index p, .""For the other cases con-
sidered here, however, the curvature of 8 compli-
cates such a treatment, as discussed in Sec. II.

A third possible state is a disgyration in both d

(22)

where 4, (2') and 62(r) both vanish at r= 0 but with
different power-law dependences. As in (21), how-
ever, it is convenient to ignore this difference,
leaving a single variational function A(r). The pre-
sent trial state has no important dipole energy be-
cause 1f and l are both radial. Using the same
trial function for A(r) as in Eq. (21), we find
a= [(3+2y)K2/c1]'~'= ~$(T) for y = 1, and the free
energy per unit length

=v R2F, + 2nd,'K2((3 + 2y) ln[R/(3 + 2y)' 'g ( T)] + 1+y)

= p R'F, + 10va',K,[ln(R/() —0.405]

for y =1. Evidently, the state (21) has lower free
energy than (22) for R' ~ 8L*'In(0.6R/$) so that Eq.
(22) is never competitive in the relevant domain
R«L . Nevertheless, (22) will turn out to become
important in the presence of an axial magnetic
field, which accounts for its inclusion here. Like
Eq. (21), this latter state has neither spin nor par-
ticle currents.

For intermediate radii (R= L*), the dipole en-
ergy is comparable with the kinetic energy incur-
red at the boundary and at the center. Thus the
previous approximations are less compelling, for
l and d will generally be coupled [unlike (21)]but
unequal [unlike (13) or (22)]. Other configurations

also may occur, but variational techniques may be
insufficient to reveal the precise sequence of
states.

To conclude this section, we shall briefly con-
sider possible corrections to the various varia-
tional trial functions. One assumption was the or-
thogonality of the two unit vectors A, and n, in Eq.
(12). It is easy to see that relaxing this constraint
introduces only two new terms in the free energy

P13 1 2(n1 n2)

+ 2K, (8,S) [a,n„a,(b,2n2, )

where the kinetic contributions are written in
Cartesian basis for simplicity. In all the cases
studied so far in this work, hn depends only on r
whereas S depends only on P, so that the gradients
are orthogonal. The same conclusion also follows
more tediously by direct substitution of Eq. (12)
with S = P into Eq. (8). The remaining contribution
is then proportional to (n, .n2)', which is clearly
minimized for n, n, = cos8y2 0 Thus, for the
simple highly symmetric states considered here,
the choice of orthogonal unit vectors is varia-
tionally correct.

The presence of axial flow changes the situa-
tion, however, for the phase factor S then acquires
a dependence on r to preserve solenoidal flow (see
Sec. IVB for a detailed discussion). In this case,
the behavior resembles that for b,,'x A'2 (see Sec.
III), when the free-energy density acquires an ex-
tra term proportional to p»(b, ,' —a'2)'. The large
value of P» forces 6', —4,'to vanish except in a thin
boundary layer of thickness g, where ~4,' —b2~ is
of order ($/R) 6,', contributing a negligible amount
=(g/R)'R'F, to the total free energy. Similarly,
for n, ' n, e 0 in the presence of axial flow, the Euler-
I agrange equation for e»=are cos(n, n, ) contains
dimensionless derivative terms with coefficients
of order unity and a single undifferentiated term.
(R/$)'sin28». Since R/) is large in all cases con-
sidered here, 8» remains close to —,'z except pos-
sibly in thin boundary layers near the center or
near the wall.

In studying the equilibrium configuration in a.
large cylinder, we introduced the additional ap-
proximation [Eq. (13)] that Z and l were parallel.
To check this step, we may define separate angles
for d and l, still keeping them coplanar with the
symmetry axis. Thus we write d z=cosg, I z
= cos6I, and then compute the additional contribu-
tions to the total free energy per unit length from
Eq. (A13). The same approximations used to ob-
tain Eq. (14) yield the angle-dependent terms
2mK26'I[8, g] where
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1

I[8, g] = rdy{2$ "(1+ycos'8) + 8 "(1+2ysin'8)
0

+ x '[4(1 +y) (1 —cos 8) + 2(1+y) (sin'P —sin'8) + sin'8] + (2gDR'/K2) sin'(8 —g)), (23)

x [2(1+y)'(1 —cos8,)

—8y(1+y) cos8, (1 —cos8,)
—y sin'80(2+2y+3cos8, )] . (24)

Figure 2 sketches this behavior, showing that
6( —58 is negative near the center but becomes
positive near the walls. The corresponding total
free energy is altered by a term of order (L*/R)'.

IV. EFFECT OF EXTERNAL PERTURBATIONS

One of the most dramatic features of superfluid
He-A is its sensitivity to various external per-

turbations; for example, a magnetic field H acts
to orient d&H and a hydrodynamic flow v acts to
orient l

~ j v. Thus such perturbations will tend to
distort the already nonuniform textures studied in
Sec. III. For simplicity, we treat only the behavior
for large cylinders (R» I.*), which is the case of

0

-6
0 0.5

r/R

FIQ. 2. The quantity (B/L*)2 [6$(r) —68(r)], taken
from Eq. (24) with @=1.

and the integration variable is now dimensionless,
measured in units of R. Note that I[8, g] reduces
to that in Eq. (14b) if 8 = g. The important new
term is the last one, proportional to g~R'/K,
—= (R/L*)'»1, which ensures that ~g —8~ &&1. To
confirm this assertion, we allow g and 8 to deviate
from their common value 8,(r) [given in Eq. (15)]
by corrections 5( and 68 of order (L*/R)', with
6g = 5 8 = 0 at r = 0, and 68 = 0 at r = 1 to satisfy the
boundary condition on l. To first order in (L*/R)',
the Euler-Lagrange equations for 6P and 68 yield
explicit formulas for 5g —58; these are readily
proved consistent because of the explicit form of
8„and a little manipulation eventually gives the
final expression

sin j9 L*
'& "= (3.2y')r

I

most practical interest, and we expect that the
principal' changes in the order parameter (13) will
represent distortions in d and l, rather than
changes in the magnitude of A. This assumption
need not be correct for sufficiently large pertur-
bations, however, which can cause a discrete
transition to a topologically different texture. Un-

fortunately, inclusion of the various perturbations
renders the Euler-Lagrange equations intractable,
in large part because the presence of new dimen-
sionless variables eliminates the simple scaled
dependence on r/R Co. nsequently, we have re-
sorted either to perturbation expansions or to sim-
ple sectionally smooth trial functions that may
have discontinuous (but finite) first derivatives.
In the latter case, the resulting total free energy
the+contains a variety of parameters to be deter-
mined variationally.

A. Axial magnetic field

The perturbation of major interest is a uniform
axial magnetic field Hz, which will tend to force
pinto the xy plane. The dipole energy, on the
other hand, acts to keep cf

~ ~ f, opposing the mag-
netic flattening. Moreover, for states like (13),
the absence of a depaired core at r= 0 requires
that 8 remain axial (~) z) at the origin, implying
extra bending energy in a finite magnetic field.
To describe this situation, we generalize the es-
sential features of (13), allowing 8 and l to vary
independently,

4» = e' &(z cosf+ rein/)„[/+i (g sin8 —rcos8)]&,
(25)

but again omitting the narrow boundary layer.
This form is just that used in obtaining Eq. (23),
and the finite magnetic field merely augments
I[8, $] by the term (2g~R'H'/K, ) cos'g
= 2h'(R/L*)' cos'g where h' =- (H/H*) ' with H*
=(g~/gz)'I'=25G. Within the class of trial states
(25), it is clear that the magnetic field cannot al-
ter the boundary condition g(r=0) =0, which arises
from the term r 'sin'g in I. Thus we must seek
other forms of the order parameter in the high-
field limit [like (22)] when 8 is expected to be
everywhere in the xy plane. Furthermore, we
note that the total free energy for Eq. (25) depends
on H only through the combination B'H', or equiv-
alently, the dimensionless ratio h'(R/L*)'.

For low fields (hR!I*«1), it is natural to use
a perturbation expansion about the approximate
ground state g = 8 given in (15). Thus, we retain
8~ ~

l and take g(r) = 8(r) = 8,(x) + 58(r) where 58 is a
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small correction of order (hR/L*)'. The exact
Euler-Lagrange equation obtained from I[8, 8] may
be expanded to first order in the small parameter,
and the explicit solution for Op ultimately leads to
a first integral for 6I9 of the form

10

cg 0 d8p d d~p

dx dx Ch dr

, d
dt t ' —cos28, (t) (28)

5xl0

where the right-hand side is a known function of x.
This first-order ordinary differential equation for
58(r) is easily solved with an integrating factor
(rd8, /dr) ', giving the function shown in Fig. 3.
As expected physically, 58 is positive and vanishes
at each end. The first-order field dependence of
the total free energy and angular momentum (com-
pare the treatment in Sec. III) is given by

0
0 05

t'/R

FIG. 3. First-order correction (58(y) (L*/hR)2, ob-
tained from Eq. (26) with y=l. The dimensionless field
h =II/H* is assumed small enough that d and I remain
parallel.

l 1

d'&F(h') = sR'0, + 264 K(12:'4+,2(hR/L )' rdssss'6) = sR'0„+261 'df [22.4+ 0 227(hR/L )'], (274)
p

1I,(h')=sR 0" (2/f.s,') (0.782+ sdssfss, ss)=sR'6,"(2/f6/[0. 782+2.27xl0 '(hR/L )']
p

(27b)

d 'r F = w R'F, + 2nd', KB[5.55+ 9 ln(h R/ L*)],
(28a)

L, = vR'p, k/mB[1 —7(I*/hR)'] (28b)

provide an approximate fit to the numerical re-
sults for 0.3ah~ 1.5, Aa 10L,* and y=1; more

These expressions hold even for hR/L, * of order 1,
because the perturbation function 50 in Fig. 3 it-
self is of order 10 '(hR/L*)'. It is notable that
L„ increases with increasing axial magnetic field;
Eq. (27b) shows that this behavior reflects the
condition 58(r) & 0.

The intermediate-field regime is more difficult,
because the splitting of d and l becomes signifi-
cant for h. =1. A variety of sectionally smooth
variational trial states has led to the following
conclusions for moderately large values of R/I. *:
The free energy starts to increase quadratically
in It, as in (27a), but this dependence changes to
logarithmic at It = 0.3 and R/L*~ 12, when Sand l
start to separate appreciably. Numerical studies
for h = 0.3 and 8= 20K* show that the equilibrium
value of ~8 —

g~ never exceeds 0.018, but this dif-
ference rises to =0.088 for Pg = 1 and grows rapidly
thereafter. The corresponding angular momentum
rises more smoothly for h~ 0.3 and then turns out
to approach a field-independent value vR2p)(h/rn, .
More precisely, the expressions

2.5ln(0. 45R'/$ ') & 5.55+ 91n(IIR/II* L*); (29)

at T/T, =0.99, and R=20I.*, for example, we find
the critical field H= 1.2H*= 30 G, considerably
larger than the estimate in Ref. 3 owing to their
omission of logarithmic factors. Figure 6 shows
the approximate textural phase diagram in the h T
plane for B=20I.*; similarly, Fig. 7 shows the

sophisticated trial states change these values by
only a few percent. Figures 4 and 5 show the
various approximations for the free energy and
total angular momentum per unit length for the
particular value 8= 20I.*=120 p. m. The different
regions join smoothly, and interpolation is not
difficult.

As A. increases beyond =1, it eventually reaches
a critical value that depends sensitively on R and
temperature through g(T). At this point, the de-
formed configuration (25) becomes unstable with
respect to the "disgyration" texture"'" described
in (22), with d and cboth purely radial; the corre-
sponding free energy is independent of H, because
(It z =0. As noted previously, this state (22) is
topologically distinct from (25) and cannot be ob-
tained from it through any continuous deformation.
Furthermore, the absence of currents for (22) im-
plies that I., drops abruptly to zero above the crit-
ical field. The approximate expression (28a)
shows that the transition to the state (22) occurs
when
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FIG. 4. Field dependence of the dimensionless free
energy (2rK2b, 20) '[fd rE(h2) —mB2EO] for the state (25)
with R=20 L* and y=1.

textural phase diagram in the hR plane at T/T,
=0.963. As is evident from Eq. (29), the disgyra-
tion structure is favored for large R and near T, .
Unfortunately, the small slope of the free energy
in Fig. 4 means that small errors in the numerical
values can shift the critical field considerably.
Nevertheless, we hope that Eq. (29) may provide
a useful scaling rule. In any case, the abrupt
quenching of L„by an axial magnetic field may be
experimentally detectable, for example through
the angular motion of a long suspended cylinder. "

In principle, the transition to the high-field limit
for large R could occur through the formation of
other, more complicated textures, still keeping d
and l in the xy plane. One such possibility is the
analog for 'He-A. of that considered by Brinkman
etsl. "for 'He-B in a cylinder (Fig. 16b of Ref. 3
and Fig. 1-II of Ref. 27), with d and l everywhere
parallel to eliminate the dipole energy. A detailed
description of this texture involves both x and P,
greatly complicating the analysis. We may note
that its free energy is at least comparable with
that of the disgyration (22), because of the two
singular lines parallel to the z axis. Like (22),

I

095 1.0
T/Tc

FIG. 6. Approximate textural phase diagram in the
T-h plane for R=20L*. The deformed state (25) is
favored below the phase boundary (at low fields) and the
purely radial one (22) is favored above (at high fields).

this state has neither azimuthal currents nor angu-
lar momentum. Thus its macroscopic properties
would not differ qualitatively from those of the
disgyration, and we have not investigated it in de-
tail.

To conclude this subsection, we remark that the
clamping of d' by the boundary at small fields
(It «1) implies a corresponding anisotropy in the
magnetic susceptibility. More precisely, any
state of the form (12) has a. weak-field suscepti-
bility" y „=y„6„,—2gz8„d „(6',+ A,'). Experi-
mental studies of this effect should be feasible,
and the measured quantities would represent suit-
able averages over the cylinder owing to the spa-
tial variation of d.

B. Axial flow

The second major perturbation of interest in a
cylinder is axial flow, which is easily generated

40

10—
3.0

2.0
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1.0—

0.8 0.0
I 10 15 20. 25

050
h

FIG. 5. Field dependence of the dimensionless angular
momentum Lg [~R p,'(I/m3)]" for the state (25) with R
=20L +, @=1.

R/L."
FIG. 7. Approximate textural phase diagram in the

R-h plane for T/T~= 0.963. The deformed state (25) is
favored below the phase boundary (at low fields) and the
purely radial one (22) is favored above (at high fields).
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by' differences in temperature or pressure. For
simplicity, only the superfluid flow is considered,
which would occur, for example, in a superleak
that clamps the normal fluid. ' In a bulk sample,
the superfluid velocity v acts to orient L along the
direction of flow, and a similar behavior is ex-
pected for axial flow in a cylinder. Thus l should
tip toward 2, reducing its polar angle 8. Our
principal approximation is to assume that

~
A~ re-

mains unchanged, allowing only local variations
in d, ny and n, . Moreover, the small critical
velocity'" in 'He-A. (v, =0.05 cm sec ') ensures
that the flow is a weak perturbation for As 0.2

dt„,. = e'"e' "~e'~~d„(r)[Z,(r) + iZ, (r)], (30)

The free energy (A13) and particle current (A14)
acquire the following extra terms:

mm. Thus, a first-order expansion is sufficient.
In the presence of uniform axial flow, the order

parameter acquires a phase, factor" exp[iqz
+iS(r)], where the term S(r) arises from a
Galilean transformation on the pairing amplitude,
or more directly, to guarantee current conserva-
tion. Thus the imposition of axial flow modifies
the unperturbed State of the form (A12) to

5& =(K +K)((h,„S'+h,q) +(4 „S'+A~) +2S'[(&,„&,'„-&,„&,'„)+(p/r)(&, &&,„+&2~&2,)1)
+ 2K,q[(a„A;„—A~A', „)+ (p/r)(28„&»+ &2, &,) + (1/r)(b2„&„—&,„&„)]
+ 2K@[(Z, S,', —n,„S'R)+ (p/r) (r»a2R+ a»ERR)]+ K,[(&', + &2') (q'+ S")+ 2S'(&,&~2~ —&2; &2()1,

5J) = (4K,/k)Oq5;R+S'5;„)(248,'+ 6',}+2y[S'(h,qA, „+42, 42„)+q(&2)&&R+&28~RR)B 1

(»)
(32)

S'(r) =qy sin8 cos8(1+y cos'8) ' . (34)

This relation is precisely that needed to eliminate
the radial current density, yielding a final con-
served flow, with 8e given in (18) and

J, = 8K26', qh '(1+y cos'8) '

=p,']m, 'v(1+y cos'8) ' (35)

where S' —= dS/dr.
The low critical velocity in bulk 'He-A. has the

further important effect that d remains very near-
ly parallel to l, and we. therefore assume (13) for
the state generated by axial flow in a wide cylinder
of radius 8» L*, augmented by the additional
phase factor discussed above. Substitution of Eq.
(13) into Eq. (31) yields the corrections to the total
free energy per unit length; we again obtain an ex-
pression of the form (14a}but with 1[8] now re-
placed by

1

i[8, S]= r dr[8 "(3+2y)
.0

+ r '[sin'8+ 4(1+y)(1 —cos8)]

+2R'[q'+S" +y(q sin8 —S'cos8)']] .
(33}

Here the integration variable is dimensionless,
measured in units of R. Since S appears only as
S', its Euler-Lagrange equation is trivially solved
to give

where kq =2m, v and p(] follows as in Eq. (19a).
The stationary properties of the free energy al-

low us to substitute Eq. (34) into Eq. (33), using
the resulting functional to derive an Euler-La-
grange equation for 8

(3+2y)—(r'8") = —[4(1+y)(1—cos8)+sin'8]dr dr

, d / 1+y
dr ~(1+ross'8)

(36)

Although this equation cannot be integrated, we

may attempt a perturbation expansion for small
(qR)', just as in obtaining Eq. (26), we assume
8= 80+58 and find

d58 d80
8

d d80
dz & d~ dr

(qR)' ", d 1+y
(2+2y)r, dt 1+ycos*q, ) '

The same integrating factor (rd8, /dr) ' then pro-
vides an explicit expression for 68(r), which, as
expected, is negative and vanishes at x=0 and
r=1. Numerical analysis shows that ~58[S 10 '
x (qR)', verifying our previous assertion that this
first-order description holds for Rs 5k/2mRv,
= 0.2 mm. The function 58(r) is displayed in Fig.
8. The corresponding total free energy and angu-
lar momentum per unit length are

J
j.

d'rR(q )=sR'R +2rtqc (12 4 2(qR)' rdr(1+y)(1+ycos 4 ) ')=cR'R +2rdd'((2 4+1.808(qR)'] (28s).
0
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FIG. 8. First-order correction 68(r)/2q g taken from
Eq. (37) with p= l. The Qow is assumed sufficiently
weak that cf and l remain parallel.

V. DISCUSSION

The present paper has analyzed the equilibrium
texture of 'He-A, in a long circular cylinder of
radius R. In the most interesting limit of large
R» L* and R»g(T), the vectors d and l are ra-
dial at the walls and turn smoothly to become axial
at the center. Several authors'" have analyzed
such a texture, but our treatment is the first to
provide quantitative values for the free energy
and angular momentum that include the bending of
Zas well as l. Moreover, it is straightforward to
incorporate the effect of external perturbations,
and we have obtained explicit expressions for the
changes in free energy and angular momentum as-
sociated with applied axial fields or flows. In-
deed, a sufficiently large field can induce a trans-
ition to a new topologically distinct texture, with
a and l purely radial and no angular momentum. '
It mould be most interesting to test the prediction
that an axial magnetic field increases L„whereas
an axial superf low decreases L,, One simple pos-
sibility is to study the angular motion of a sus-
pended cylinder, but other configurations may be

,L(q') = wR'p (him, )(0.782 —8.7x10 'q'R2),

(38b)
f

where (38b) differs from (27b) only in the explicit
form of 58. The negative sign of 58 causes the
total angular momentum to decrease with increas-
ing axial flow, in marked contrast to the situation
for an applied axial magnetic field considered in
Sec. IVA. In addition, the deperidence of Eqs. (38a)
and (38b) on q'R' illustrates the. global nature of
the unperturbed state and shows that the behavior
is independent of the sense of f lorn. Finally, the
form of the corrections in (38) indicates that the
texture of 'He-A in a large cylinder geforms con-
tinuously in the presence of an axial flow, which
differs from the predicted threshold for deforma-
tion in a channel. "'"

preferable. Conceivably, the sample might form
metastable domains with l alternating up and domn;
in that case, the effect would be greatly reduced.

Our fundamental approach may be compared with

that of Mermin and Ho,"who assume constant 6
and ignore variations in Z. To account for the
spatial variation in the unit vectors n, and n„ they
introduce a rotation matrix that relates these or-
thogonal vectors at neighboring points r and r+ dr.
This matrix then appears explicitly in the free en-
ergy and the currents. In contrast, we start by
transforming to the relevant (cylindrical) coordi-
nate system, characterizing the order parameter
at every point in space by its appropriate cylindri-
cal components. For example, the simple require-
ment than n, be azimuthal uniquely fixes its con-
figuration everywhere. Substitution of A„, into
Eqs. (8)-(10) automatically generates all contribu-
tions to the free energy and currents. In addition,
our technique is sufficiently flexible to allow spa-
tial variation of the gap function, which can be es-
sential near the symmetry axis in certain textures
like (21) and (22). As seen in Sec. IVA, omission
of such effects would preclude the predicted tex-
tural transition in an axial magnetic field. Final-
ly, the tensor formalism of the Appendix is readily
extended to spherical (or other more complicated)
geometries, where the topology can become even
more intricate. '" These matters are particularly
interesting in connection with the behavior of ions
in superfluid 'He.

An experimental study of the NMR in cylindrical
geometries would be valuable, for the nonuniform
textures should yield distinctive absorption spec-
tra. Unfortunately, the usual form of Leggett's
theory" seems inadequate to discuss the behavior,
when inhomogeneous textures of d and l arise from
additional torques exerted by the boundaries. In
this situation, the equilibrium state minimizes the
total free energy, including the crucial contribu-
tion I'~; consequently, no approximation that
treats the texture as uniform (and hence omits Pz)
can correctly describe the first-order effect of a
weak oscillatory magnetic field. The techniques
introduced here should permit a generalization of
Leggett's phenomenological Hamiltonian to in-
corporate the kinetic energy, appropriately ex-
pressed in the relevant coordinates. This question
will be considered in a subsequent paper.

Another interesting extension of the present work
is the consideration of vortex states, obtained
from those in Secs. III and IV by adding an extra
phase factor e'~~, mhere p is an integer. Such
states have additional azimuthal currents around
a central region of radius =$(T) where the energy
gap falls to zero, and additional angular momen-
tum. If the container rotate's about its symmetry
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axis with angular velocity 0, the equilibrium con-
figuration will minimize fd r(F -m, QrZ&). The
complicated internal structure in 'He-A permits
a variety of states with increasing 0, and the se-
quence of textures should be far more diverse than
in superfluid 'He, where the only freedom is the
location of one or more singly quantized vortices.
These theoretical questions are currently under
investigation, and improved experimental capa-
bilities should soon permit comparison with ob-
servations on rotating 'He.
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APPENDIX

the particle and spin current becomes

J,: = 4i 'Im(K, A". *A~ .)+KQ"~*A„~ )+.Kg" ~ *A„;.~)

2-Re@ ~~„(K~A&*A"~ )+. KQ&~*A~.(+ K3A&~*A) i).t t t

which transform like a vector and a second-rank
tensor, respectively, under change of basis.

The variational principle for the free energy may
be directly transcribed to the form

dVE=0,

where E =F,+E~+F~+F~. In performing the vari-
ation with respect to A" ~*, for example, the fol-
lowing generalization of Gauss's theorem is help-
ful

F~g =-I'gg =r (A2)

and the covariant derivatives of the tensor A are
computed with the usual rules of tensor calculus.
Moreover, the metric tensor reduces to the unit
tensor 5,&, so that the position of upper and lower
indices is relevant only in terms that involve de-
rivatives. The corresponding covariant form of

In this Appendix, we introduce the general tensor
formalism and apply it to the particular case of a
cylindrical geometry. None of this material is
required in understanding the body of the paper,
although a direct derivation of the central expres-
sions (8)-(10) would be extremely lengthy.

The principal power of tensor analysis is its
ability to rewrite differential quantities in a form
that holds in any coordinate system. " Thus an ap-
propriate definition of the covariant derivative (de-
noted by a semicolon) immediately generalizes Eg.
(4) to

+~=K,Aq' ,A" q.+K,A.q) )A" '+.KQq .,A"'.
g

(AI)
I.

where A"~"=g'~A" ~.„. This expression transforms
-like a scalar under change of coordinates and re-
duces to Eg. (4) in a Cartesian basis. In dealing
with the physical components, ""discussed at
the beginning of Sec. II, it is convenient to depart
from the most familiar description that uses co-
variant and contravariant components in a coordi-
nate basis, rather introducing an orthonormal non-
coordinate basis, denoted by the addition of carets
in Misner, Thorne, and Wheeler. " In this basis,
which automatically generates the physical compo-
nents of the tensor order parameter, cylindrical
coordinates involve only two nonzero connection
coefficients"

dV B'.] = dS, B' (A6)

It holds for any vector field B', where dS, is an
outward surface element; in cylindrical polar co-
ordinates, for example, dS& = re dz, dSg =dry,
and dS; =rdrdP. Use of Eq. (A6) and the product
rule for covariant derivatives immediately yieMs
the nine coupled Ginzburg-Landau field equations

+ 2P+„~A"~A„*,. + 2P@„~A'~*A„)+2PQ„*Q'~A„,

+gg(~„(A"p +A)g)+ gzHpKpA", —(K, + Ks)A~p. y. )

—K2A )'~.
q

——0, (AV)

which are just the Euler-Lagrange equations for
the total free-energy density. As noted previously,
Eg. (AV) depends on the kinetic coefficients only
through the two combinations (K, +Kg and K„be-
cause the order of second covariant derivatives is
irrelevant in flat space. " In addition, the integra-
tion by parts produces surface terms that also
must vanish

dS; (K,A„.~5)+K+'„., + KQ„) ")5A"~* = 0 .

(A8)

Now the basic result of Ambegaokar, de Gennes,
and Rainer" is that

s A"'=0 (A9)

at a boundary, independent of the choice of surface
conditions (specular or diffuse), where s denotes
the unit vector normal to the surface. This result
implies s, 6A~'* = 0, ensuring that the K, term in
(AS) vanishes identically, as well as the normal
components of the remaining terms. Introducing
a transverse projection operator, we find the equa-
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tion

In a mathematical sense, "natural boundary con-
ditions" are those that satisfy Eq. (A10) for arbi-
trary variations, "which here implies the single
condition

(5» —s's„)(KQ„; q+ K.Q„,.,)s' =0 . (A11)

In Cartesian coordinates, Eqs. (A9) and (A11) pre-
cisely reproduce the specular conditions discussed
above Eq. (11)." Thus they may be taken as an
appropriate covariant generalization to arbitrary
coordinates; in cylindrical coordinates, an ex-
plicit calculation using (A2) readily yields Eq. (11).
As expected physically, Eqs. (A9) and (All) also
ensure that the normal component J's; vanishes at
the surface. It must be emphasized that these con-
ditions are not necessarily equivalent to those of a
microscopic calculation for specular reflection at
a curved boundary. This more fundamental de-
scription has not yet been formulated, however,
and we here restrict ourselves to the most tract-
able model (A9) and (All), which we call "gen-
erali. zed specular" boundary conditions.

The power of the tensor formalism lies in its
ability to handle general situations. One interest-

ing example is the ease in proving the conservation
of current for any state that satisfies the exact
field equations (A7). Application of the covariant
divergence to Eq. (A3) and use of the Euler-La-
grange equations (A7)

aA»*, , eA»*

for Eq. (A5) readily yields J'., =0. As mentioned
in Sec. IVB, this physical requirement is the basis
for inserting the phase factor S(r) into Eq. (30).

In principle, it is sufficient to use the expres-
sions in Eqs. (8)-(10) for the kinetic energy and
currents in cylindrical polar coordinates. These
have the advantage of applying to all phases of 'He,
but their general nature disguises certain special
features of 'He-A. For this reason, it is valuable
to evaluate explicitly a few frequently occurring
quantities for a state of the form

A ~
= e'~~d „(r)[Z,(r) +iZ, (r)]~

'e~ de„(r) [A, (r)n, (r) + ib,,(r)n, (r)]& (A12)

with n, n, =0; this includes most of those treated
in this work [compare, however, Eq. (21)]. Let-
ting primes denote d(Ch and using the abbreviations
PJ3 Py + p3 and P24, = P, + P, + P„we eventually ob-
tain the total free-energy density

y =-(o +-',g )(z,'+ a,')+ p„,(z,'+ a,')'+ P„(a,' —a', )'+2@~[(d Z,)'+(d Z,)']+g, (d' H)'(S,'+ a', )

+(K +K)Jd„'d„'(a „+a„)+(a'„+a'„)+2pr (a „a'& —&,&& „)+(plr) (& &+& &)

+2r '[(d,d& —d~d„')(L,„&»+&,„&,q)+Pr '(&»&„—&,„&,~)]

+ r '[(d„'+ d q) (&',
@

+ &,'g) + (&~,+ &2,)]j
+K/d„'d„'(&'„+&',) +&,';&(;+&2;&2;+(p/&) (&i+ &2)

+ 4pr (6»62„—A,„A2&) + x [(d'„+d &)(6', + b,) + (a,'„+ &',&)+ (&2, + &:~)H

+ K,[2pr '(4»a, „—&,~&,„)'+r-'(&',„+a,'„)']—K,r '(&', ~+ &,'~)' . (A13)

onsideration of specific cases shows that 6, and 6, typically have different centrifugal barriers near the
origin, implying different power-law behaviors for r &c $ and confirming the necessity for considering two

distinct functions. In a similar way, the three components of the particle current become

z = 48' '((K, +K,)[i,„a2„—s,„A,'„+p~ '(s,„s»+a,„a,q)]+ K,(b,„a,'~ —a„.a,',.)]
J~ =4h (K2x [p(b,, + b2)+2(b, ,@6,„—h2~h~„)]+K|(6|gh,„—h, ~b,„)'

+ (K, + K3)[p& '(&»+ ~2g)+ & (&iy&2, —&2y&i,)+ i, ~y
—

2

Z, = 4@ '((K, + K )[p~ '(~,-~~„+~„~„)-+(~,„~,', —~,„~,'.)]+Kr '[r(~„~,-„~„~,„)]-']

which were used in obtaining Eq. (18).

(A14a)

(A14b)

(A14c)
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