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A model is presented of the X transition in superfluid helium in which fluctuations near the transition are
approximated by distinct regions of normal fluid and superfluid. The macroscopic viscosity of such a medium

is computed. The ion mobility is also computed, taking into account a region of normal fluid around the ion

induced by electrostriction. The results are, for the viscosity, q), —g —t and for the mobility p, —p,„—t
both in excellent agreement with recent experiments. The model suggests that the X transition itself is the point
at which superfluid regions become macroscopically connected.

(n~ n)/n~ = &—~", (2)

where x'=0.65+0.03. Both quantities p and q re-
main finite at the transition, but pass through it
with infinite slope.

In the general vicinity of 7.'z, p and g may be re-
lated to each other by way of Stokes law for the
drag on a sphere in a viscous medium. Thus, the
tmo measurements cited above may be taken to
mean that in the asymptotic region the effective
viscosity one measures depends on the size of the
measuring probe. Moreover, the large-scale vis-

The A. transition in liquid helium has been the
subject of intense scrutiny in recent years because
the very precise measurements possible in that
medium have made it an important test case for
predictions based on the scaling hypothesis. Scal-
ing and related arguments have been successfully
applied principally to static properties such as the
heat capacity and the superfluid fraction p, /p. ' In
this paper, an argument is presented which ac-
counts for recently reported singular behavior in
the shear viscosity and in the mobility of ions.

The observed ion mobilities p, on the superfluid
side of the transition have been reported' to ap-
proach their values at the transition pz according
to the lam

(& —9 x)/P x =« t =l(~x —~)/Tx I

with p'=0. 94+ 0.02. The coefficient a = 12 at sat-
urated vapor pressure (SVP) and increases with
pressure along the ~ line. The viscosity p has
been measured independently by two groups, one
using an oscillating cylinder technique, ' the other
a vibrating wire. ' &he two groups report some-
what different values of the critical exponent, but
a careful comparison of the published data show
they are in excellent agreement where they over-
lap. The oscillating cylinder results extend closer
to the transition, and so probably give the more
correct asymptotic behavior. The results are re-
ported3 in the form

cosity [Eg. (2)] evidently has a singular part which
is proportional to the superfluid fraction P,/P
since p, /p goes to zero with an exponent approxi-
mately equal to 3.' These observations taken to-
gether suggest a novel interpretation of the behav-
ior of helium at the A, transition.

Many years ago, Einstein showed that a fluid
containing a suspension of hard spheres mould

have an effective viscosity that depended on the
volume fraction occupied by the spheres. His re-
sult may be generalized to show' that for small con-
centrations the viscosity of one Quid suspended in
another will be close to the volume average of the
two viscosities. Thus, the results in Eg (2) s.ug-
gest, crudely speaking, that the helium in the
asymptotic region divides into separate superfluid
and normal fluid parts. The difference between the
viscosity and the mobility measurements may be
accounted for if the division takes place on a scale
that is small compared to the size of the viscosity
measuring apparatus, but large compared to the
ion. In this paper we would like to show that such
a model does indeed lead to the observed results,
not only qualitatively, but quantitatively as well. '

Critical phenomena, of which the X transition is
an example, are generally considered to be gov-
erned by local fluctuations which may be corre-
lated over increasingly large distances as the
transition is approached. In fact $, the correla-
tion length diverges at the transition, depending
on t according to

0
where, for helium, $, = I A and v = —,. It is impor-
tant to remember, however, that $ is the largest
distance over which fluctuations are correlated at
any t. Fluctuations also occur on all scales smal-
ler than g, down to atomic dimensions.

We would like to suggest that in the case of heli-
um the fluctuating quantities are the local values
of the superQuid and normal fluid densities. In
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particular, we imagine that for T &Tq, but close
to the transition, the excitations which form the
normal fluid component tend to agglomerate to-

, gether into something like droplets, leaving behind
regions rich in superQuid. Within each agglom-
eration there is no quantum phase coherence; the
fluid is simply normal. The largest agglomerates
will have dimension -g. The existence of smaller
fluctuations means not only that there are smaller
patches of normal fluid, but also that within the
normal regions there will be smaller inclusions of
superfluid. within those still smaller inclusions of
normal, and so on, down to the dimensions of in-
dividual rotons. Viewed from T &Tq, the situation
is reversed; in a background of normal Quid,
there are inclusions of superfluid on scales up to

Notice that in this picture the A, transition ap-
proached from below is the point at which the
superfluid regions lose their macroscopic connec-
tivity It i.s at that point that information about the
quantum phase is no longer transmitted over large
distances, and large scale superf low can therefore
no longer take place. On the other hand, below

Tz, any experiment where the characteristic di-
mension is large compared to $ will not detect the
agglomerations of normal fluid, and hence will
obey the conventional two fluid model in which the
fluids are homogeneously mixed.

The explanations we wish to present for the be-
havior of g and p rest upon detailed hydrodynamic
calculations, i.e., solutions of the Navier-Stokes
equations. These equations would be intractable
for the complex inhomogeneous Quid we have de-
scribed above. As we shall see, however, the
leading order contributions to the singular parts
of g and p may be attributed to the influence of the
largest-scale fluctations, those whose dimensions
are of order $. This allows us to simplify the
problem by presenting a heuristic model simple
enough that calculations may be performed. Like
many. such models, we can expect it to become in-
valid sufficiently close to the:transition, and we
shall comment below on its range of validity.

The model is that, below T&, we have normal
regions of dimension g embedded in a background
of connected superfluid. Above Tz, the situation
is reversed, superfluid regions of dimension g

embedded in a background of normal Quid. Each
type of region is taken to be internally homogene-
ous, and to have a viscosity. which is finite at the
A. transition. The superfluid part has nonzero vis-
cosity since it includes the average effects of
smaller normal inclusions. If the two types of re-
gions have viscosities g& and occupy volume frac-
tions x;, the macroscopic viscosity of the medium
will. be given, aside from coefficients unimportant
for our purposes, by

(n~ - n)/ng = n[(ng n.)/ng]p, /p-~ (6)

Any missing coefficient in Eq. (4) may be absorbed
into n. Equation (6) gives an excellent account of
the experimental observations discussed above.
Specifically IEq. (2)j the experimental result may
be written in the form

(8„-0 )/'Ii„= 0.53 p, /p .
Above the transition the viscosity is proportion-

al to f-fq, the variation of the volume fraction of

~i~i ' (4)

Specific calculations that give essentially this form
are discussed in Appendix A.

As the transition is approached from below, the
normal regions grow, cutting off and isolating re-
gions of superfluid, thus driving the volume frac-
tion of connected superfluid to zero. The largest
isolated inclusions of superfluid are, of course,
always smaller than the normal regions of dimen-
sions $ within which they are included, and are
therefore counted as part of the volume fraction
occupied by the normal fluid. The remaining con-
nected superQuid background, . whose volume frac-
tion we call x„ is just the part of the medium that
participates in large-scale superQow, and will
thus be proportional to the measurable quantity p, .

Passing through the transition, the correlation
length having gone to ir..finity and retreated again,
we find that those superQuid inclusions which were
previously counted as part of the normal fraction
are now the largest fluctuations, with dimensions
of order $. We will call the volume fraction of
isolated superfluid regions above the transition f.
These superQuid fluctuations are included in
the normal regions below T, , but they are not
part of the normal fluid background above T„.
For this reason, the viscosity attributed to
the normal regions must be expected to have dif-
ferent values above and below the transition.
Taking all of these considerations into account,
~ve can rewrite Eq. (4) in a way that insures that
the macroscopic viscosity p will be continuous at
the transition:

q=q„—x, (q~ -q, ), T(Ti,
8=8~+(f~ —f)(R„-R,), T &T„,

Here q, is the viscosity of the super regions, . g„
the viscosity of the normal regions above the
transition (i.e., at T &T&,), q~ is the value of q at
the transition and also its value in the normal
regions belows the transition, and f„ the value of
f at the transition. Taking x, = np, /p, where n
may depend on T, but is neither zero nor infinite
at the transition, we have below the transition,
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superfluid fluctuations, a quantity which does not
seem to be measurable in any other way. The re-
ported behavior" follows Eq. (2) with an expon-
ent of 0.8.

We now turn to the ion mobility measurements,
considering first the case 7.' &Tz. The mobilities
of ions in the model result from the drag on a
sphere in a viscous medium, but we must be care-
ful to distinguish which of the viscosities we have
introduced come into play. The ion in helium is
an unshielded charge which has long-range elec-
trostrictive effects, setting its own characteristic
scales. In particular, as the charge is approached
from far away, the local pressure Po rises above
the applied pressure P according to

P, -P= c,/~', (7)

where x is the distance from the ion and co de-
pends on the polarizability of helium. At some
distance R„P,becomes sufficiently large (in the
case of positive ions) to cause the helium to
freeze, so that the positive ion is basically a solid
sphere (Ro= 6 A). Below Tq, there is another
length

R, = [c,/(P„- P)]" ' = ct ", (8)

where P„(T) is the A, pressure at the bath temper-
ature, and c relates Pz —P to Tz —T by way of
the slope of the A. line. At distances smaller than

Rz, the local pressure and temperature in the
fluid always correspond to bulk helium above the
A, transition. Although Rz diverges as the transi-
tion is approachedit , is always smaller than $.
Using Eqs. (3) and (8), we have (R~/$) - to'". At
t = 10-', (R~/() = 3 x 10-'.'

When the ion is in an already normal region, the
effect of electrostriction is to suppress whatever
superQuid inclusions might be present. Thus an
ion in a normal region, even below Tz, will sense
an effective viscosity g„, and the mobility is given
by the formula for Stokes drag,

p, „=e/6m'„, R. (9)

If, instead, the ion is in apart of the connected
superfluid background, we have a rather more
complicated hydrodynamic problem to solve. A
hard sphere of radius Ro is surrounded out to rad-
ius R), by fluid of viscosity g„, and beyond Rz by
fluid of the viscosity q, the macroscopic average
value. The Navier-Stokes equations can be solved
analytically for this situation, using no slip bound-
ary conditions at R, and requiring continuity of
velocity and stress at Rz. Details of the calcula-
tion are given in Appendix B. The result is a drag
coefficient given by

where

-4 R+q —1
A

3 R
10 (R —1)'(1—q)
3 R'(3q+2)+2(q —1) '

with q ='q„/q and R = R„/Ro. Noting that R„diver-
ges at the transition we find near Tz

g = 6wq„[1 —q R,/R„+ O((RJR„)')],
where

y =-,'(q -1)(2q+3)/(3q+2) .
Then

p, =e/rR, = p,„(1+yR,/R~),

(12)

(13)

(14)

where p, is the mobility of an ion in the connected
superfluid background.

The measured mobility of ions depends on the
time v required by an ion to traverse a path of
length L (the size of the experimental cell) through
the helium. When L» $, the ion will encounter a
large number of normal regions randomly placed
along its path. Since all paths through the fluid
must on the average be equivalent, the probability
that any given line segment is to be found in a nor-
mal region must be proportional to 1 —x,. Thus a
portion of the path (1 —x,)t will be spent in nor-
mal regions corresponding to a time (1 —x,)L,/v„,
where v„' is the mean velocity of the ion in a nor-
mal region. Applying the same argument to the
super-regions as well, we thus have

1/v = T/L = (1 —x,)/v„+x, /v, .

In the limit of small electric field E, the mobility
is given by v = pE. Defining separate mobilities
for the two regions by p, , =v, /E, where i = s, n, we
have

1/p. = (1 —x,)/p, „+x,/p. , (16)

(Ref. 8), or, to leading order in x„
p = p.[1+x.(p, —p.)/&. ]. (17)

Defining p. ~ to be the value of p at the transition,
taking once again x, = o,p, /p, substituting Eqs. (9)
and (14) into (17), we have to leading order in sing-
ular terms

p'= ~+~ —- 0.92,

(18)

The singular factors on the right-hand side are
p, /p - t'~' (approximately) and RP - t' '. Thus the
predicted exponent in Eq. (1) is

g =8m'„A, (10) in excellent agreement with the observed value of
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0.94+0.02. The parameters in this model, +, g~,
q„, and q, can be chosen within reasonable limits
to give the observed coefficients in Eqs. (I) and
(2). This result for p' and Eq. (6) are the yrinci-
pal results of the model.

As pointed out earlier, this model is expected to
break down sufficiently close to the transition, at
least insofar as its application to ion mobilities is
concerned. The reason is that we have had to make
a distinction between the behavior of the ions in
isolated superfluid regions and the behavior in
connected superfluid regions. That distinction
must become invalid when $ becomes sufficiently
large. We have assumed that electrostriction en-
tirely suppresses isolated superfluid patches be-
low 7.'„, where their size is necessarily small com-
pared to g, whereas in the connected superfluid
background the effect of electrostriction is to in-
duce a normal region limited to radius 8&. When

g becomes very large, it will be possible to have
inclusions of superfluid which, still smaller than

g, are nevertheless large compared to 8„. Then
in the isolated super patches, the mobility will be
larger than p, „owing to the presence of unsup-
pressed superfluid far -from the ion (farther than

Rz, but less thari the size of the inclusion, which
in turn is small compared to $). The same will
be true qualitatively of the ions just above the
transition, although no characteristic scale Az
then exists in terms of which the effect can be
discussed.

The magnitude of the effect that this phenomenon
has on p is difficult to determine, since fluctua-
tions smaller than 5 have no other characteristic
scale. However, it is possible to make a rough
estimate of the temperature at which p should de-
part from the yrediction, Eq. (18). It is necessary
to have a substantial probability of superfluid in-
clusions of dimension d, which satisfies R), «d

Thus we might expect the prediction to start
to break down when Rz is, say, roughly two or-
ders of magnitude smaller than $. As we have
seen earlier, that requires t smaller than 10 '.
The result reported in Eq. (I) is based on data
for t~ 10 4, where the present model should be
valid.

To conclude then: recent measurements have
indicated that the asymptotic behavior of Qow dis-
sipation near the superfluid phase transition de-
pends on whether the measuring probe is micro-
scopic or macroscopic. We have shown that the
observed results could be accounted for by means
of a model in which attention is directed to long
ranged Quctuations in the normal and superfluid
densities. The success of the model suggests that
the thermodynamic A. transition is a transition in
the connectivity of the superfluid regions.
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APPENDIX A

We wish to find the effective large-scale viscos-
ity of a Quid which is in fact inhomogeneous, hav-
ing a background viscosity q„but including a
small volume fraction x, of regions where the vis-
cosity is q, . The equations of motion for steady
flow anywhere in the fiuid (assumed uniform dens-
ity and incompressible) are'

Q'v=0
~

-VP+V (qE) =0,
(Al)

(A2)

where q is the viscosity, v is the velocity field, P
the pressure, and E is a second-rank tensor whose
components are

B5j Bvy+
Bxp Bxj

(A3)

where the xj are Cartesian coordinates and the
ej are corresponding components of the velocity.
For the case we are interested in, the fluid is in-
homogeneous (i.e., q is not uniform) on a small
scale, but on a larger scale we expect to recover
Eqs. (A2) and (A3) with P, q, and E,» replaced by
their volume averages, e.g.,

1
Ejk y Bjk Vp (A4)

the volume V being large compared to the scale of
the inhomogeneities. In particular, the stress
tensor is

g jp = -P6 jp+gE j (A6)

B&ja p
Bxy

(AV)

(the summation convention for repeated indices is
observed throughout).

Clearly, (Yj& may be written

1
(7(»i= -P5)»+qoE)»+ — (o,» —q E,»0+PS)») dV .

(A8)

Then when averaged over a sufficiently large vol-
ume, we should find

g jy — P5 jy+ Jeff E j

where g,«, the quantity we seek, is a constant de-
fined by (A6), and the large-scale equations of
motion replacing (A2) may be written
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The integrand is zero in the background region, so
the last term in Eq. (A8) gives the contribution of
that small fraction of the fluid whose local viscos-
ity is g, .

We now consider a velocity field

~l &l&+& (A9)

where +» is a constant, symmetric tensor. Sub-
stitution in Eq. (Al) gives n«=0, and in (A2) gives
the corresponding pressure Pp= const in any re-
gion of uniform viscosity. We will take this to be
the unperturbed flow field. If we imagine the flow
field remains unperturbed by the presence of re-
gions of viscosity g„we find immediately on sub-
stitution into (A8)

0 0 +~ 0+ l +~'0 P ~'0+20 ff+fA

with

7i.rr n. + (n, n.)x,—,

(A10)

(A11)

where x, = V,/V and V, is the volume occupied by
regions of viscosity q, . Equation (All) is equiva-
lent to Eq. (4) of the text. We wish, however, to
investigate whether the perturbation of the flow
owing to the inhomogeneities changes the essential
result, that g,«-gp is proportional to g,.

Since x, is small, we can find the leading-order
effect by assuming that each region of viscosity
p, acts independently, later multiplying by the con-
centration of such regions. Assume an "inner"
region, about the origin, of viscosity g„sur-
rounded to lnflnlty by a fluid of vlscoslty 'gp. We
can take the inner region to be spherical for con-
venience, arguing that we are interested in the
time-average behavior of an ensemble of randomly
shaped fluctuations, but that is not essential to the
argument. The vej.ocity field in the inner region
will be

ur =v, +us (inner region),

and in the outer region

u, = v, +u„(outer region) .

(A12)

(A13)

u„= (3a/r' —15b/r') n„n,n„n, + 6(b/r') e.» n»

P =P, +q, (6a/r')(y;l, n, n» (outer region) . (A15)

Here up, must vanish at infinity, u» must remain
finite at the origin, and both must obey Eqs. (A1)-
(A3) in their own regions, each depending para-
metrically on the tensor n;&. It is easy to verify
by direct substitution that the required solutions
are

u» = 48 dr'n; I, n; n„n, —(24cr + 120dr') n» n&,

P=E'O-q, 504dr'~»n;n~ (inner region) (A14)

Here r is the distance from the origin, n& is the
ith component of a unit vector directed along r,
and a, b, c, and d are constants to be evaluated by
means of the boundary conditions at the interface
between the two regions.

If the inner region has an irregular shape, the
interface may not be stationary in time, the inner
region conserving only its volume. However, we
can see that the shape of the region is not import-
ant for our problem by the following argument.
Using the equation of motion, so „/sx, =0 and the
consequent identity a&& =s(a„x„)/sx„ the integral
in Eq. (A8) may beeonvertedto a surface integral
to be evaluated at very large r (compared to the
dimension of the inner region). Performing the
integral, only the term proportional to a/r' from
u« in Eq. (A15) will survive Th. e result is that
the correction to o;„ in Eq. (A8) is proportional to
a/V. The constant a has the dimensions of a vol-
ume, and must therefore be of order of the only
volume in the problem, the volume of the inner
region. It follows then that the correction g,ff Qp
will be proportional to x, = V,/V.

To illustrate the point, let us complete the prob-
lem explicitly for the case where the inner region
is a sphere of radius B. The boundary conditions
at r =R are that u, and n&o, „be continuous (condi-
tions which allow flow across the boundary). The
resulting constants are

a =-[5(q —1)/3(3+2q)]R',
b = -[(q -1)/3(3+2q)]R',
c = [(q -1)/12(3+2q)], d =0,

(A16)

where we have written q =g,/rl, . Performing the
integral in Eq. (A8) using these results, we find,
in accordance with Eq (A10), .

g jQ PP5fg+ 2g ffQjg P

where

ri„, =ri, + [5/(3+2q)](ri, -q,)x, {A1V)

(we have multiplied the correction term by the
concentration of 7i, regions). As promised, this
result differs from the equation used in the text
only in the coefficient of x,. Notice that if we let
ri,-~ (so that q -~) we recover Einstein's result
for the effective viscosity of a suspension of hard
spheres q,« = qo(1+-', x,).

APPENDIX B

In this case, we wish to compute the drag on a
solid sphere of radius Ap moving with velocity v
in a fluid whose viscosity is g = g, for Bp &r &B&
aIld 'Q Qp for A z &x, flow being allowed across the
boundary at Rz. For steady incompressible flow
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v = a„cos8e,(r) + ae sin8v, (r),
P=P(x) cos8,

(»)
(82)

the equations of motion are once again Eqs. (Al)-
(A3). We consider a frame whose origin lies at
the center of the sphere, and take the velocity at
infinity to be U in the z direction. %e look for sol-
utions of the form

v, = (I'-2A/r +2B/r'+ Cr')U,

v, = (-I'+ A/r+ B/r' —2Cr')U, Ro&r &R„,
which yields

p = ( 2q-,A/r'+ leg, Cr)U,

S,= (4A/ra - 12B/r4+ 4Cr)U,

S,= ( 6B-/r' —3C~)U, R, &r &R„.

(810)

(811)

where r and 8 are spherical polar coordinates and

a„and ae the respective unit vectors. The prob-
lem is symmetric with respect to the azimuthal
angle y. For the components of E&& we find'

E„„=S,(r) cos8, Eee = E~~ = -& E„„,
E„e=S,(r) sin8, I" =8magoU . (812)

We have in Eqs. (88)-(811) six unknowns to be
determined by the boundary conditions at r =B,
and at r =A&. Since there are no unbalanced forces
in the fluid, the force on the sphere can be written
in terms of the constants in Eq. (88) alone":

where

Br BY'

Equation (Al) reduces to

(84)

(813)

The problem thus reduces to choosing boundary
conditions and eliminating the other constants in
favor of a.

The boundary conditions at r =A& are
AV, =O, AV, =O,

Bvg + (Vs+ Vb)Br
(86)

From the radial component of Eq. (A2) we have

sp s(qS,) 3 2
+ ~ + —gS, + —gS2=0,

BY r r (86)

and from the 8 component,

r Br r ' 2r

The general solutions of Eqs. (7)-(10) are of the

form

~(-P+qs, )=0, ~(qS,)=0, r=R, .
Of these, the first two conserve mass, while the
last two assure, respectively, that the radial and
tangential components of the force (i.e., the rx and
r8 components of the stress tensor) are continu-
ous. At r =B„assuming the sphere to be solid,
we apply no-slip conditions

u, = 0, v, = 0, r =R„no-slip condition. (814)

Equations (813) and (814) suffice to determine all
of the constants. Writing R=R,/Rq and q =q,/t4,
we find, after tedious but straightforward algebra,

1 w3 2
V~ = Q~+ Q2r + a3r + a4r a = qARO (816)

Vq=-u, -2n r +2m r -3 2

where the z's are constants. Since for r &A& the
solutions must have the property that v, =U and

v& = -U at r =~, we have"

with A as given in Eq. (11) of the text.
In the case of the negative ion in liquid helium,

which is thought to be an electron bubble, one
might wish to apply pure slip boundary conditions
atx=R, instead of Eqs. (814). In this case we have

v, = U(1 2/ra+ 2b-/r'),

U( 1+a/r+-b/r -),
(BS)

v, = 0, S,= 0, r =R„pure- slip condition. (816)

The result that replaces Eq. (11) of the text is

In the same region this yields 2(q —1)[(2q + 3)R' —2(q —1)/R]
(3q+2)R'-3(q -1) (817)

p = -2q, (a/r')U, S,= U(4a/v' —12b/r'),

S,= -(6b/r')U, r &R„.
For the inner solutions we have

(89)
If this result is to be applied to the model in the
text, the factors 6w in Eqs. (9) and (12) are re-
placed by 4m and the factor —', in Eq. (13) is re-
placed by 1. The argument is otherwise unchanged.
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