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Exactly soluble model for crystal with spatial dispersion
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We consider a discrete, semi-infinite, one-dimensional crystal exhibiting "spatial dispersion, " with the
interaction between crystal sites falling off exponentially with distance; a model which has also been treated by
Sipe and Van Kranendonk. The problem of the interaction of such a crystal with the electromagnetic field is

exactly soluble. Results for physical properties are compared with those obtained using the "dielectric
approximation, " in which the polariton Green's function for full translational invariance is used to
approximate the true one; and also with those obtained from the "near-neighbor approximation, " in which the
interaction is cut off after N nearest neighbors. In both cases, it is shown that the approximate results do not
agree with the exact ones in all respects, even in the limit N~co for the near-neighbor approximation.
Arguments are given to support the conclusion that these pessimistic results probably are general, and not
merely artifacts of the particular model considered. The possibility of using this model, or generalizations of it,
in practical calculations is briefly discussed.

I. INTRODUCTION AND SUMMARY

The phenomenon of "spatial dispersion, " caused
by nonlocal interactions between the electric po-
larization at different locations in a crystal, was
first described theoretically by Pekar' in 1958.
When these nonlocal interactions are taken into
account, the electric susceptibility becomes for-
mally a function of wave number as well as fre-
quency, with the result that the wave number which
actually propagates in the crystal becomes a many-
valued function of frequency, even for isotropic
media.

In the years following Pekar's discovery, a
number of investigations of the phenomenon were
carried out, of which the experimental and theo-
retical work of Hopfield and Thomas' perhaps de-
serves special mention. The work through about
1965 is well summarized in the book by Agranovich
and Ginzburg. '

In the early work, the question of the so-called
additional boundary conditions (ABC' s) was a
source of difficulty and ambiguity. Owing to the
multiple valuedness of the wave number as func-
tion of frequency, monochromatic light incident
on the surface of a spatially dispersive medium
normally gives rise to several transmitted waves
with different wave numbers, each with a trans-
mission coefficient which must be calculated. The
known boundary conditions of electromagnetic
theory suffice only if there is only one transmitted
wave, so additional conditions are needed in the
spatially dispersive case. Without making some-
what arbitrary assumptions about the behavior of
polarization waves near the surface, there seemed
to be no unambiguous way of determining these;
still it was felt that, in a complete theory, they
should be consequences of the basic equations, just

as the known conditions are consequences of the
Maxwell equations. It was also pointed out4 that
the methods usually used could lead to conflict
with the analyticity properties imposed by causal-
ity.

These questions were clarified somewhat in a
1965 paper by Deutsche and the present author. '
We considered a one-dimensional model of a semi-
infinite crystal in which oscillators were located
at the points x=1,2, 3, . . . . We also required that
the "bare" polariton functions (polarization waves
in the absence of coupling to the electromagnetic
field) be sinusoidal in nature, i.e. , that, for every
It', in a Brillouin zone, there exist a solution of the
uncoupled equations of the form

P„(t)= [a(K) sinzn+ b(z) cosign]e '"',
with real &u, where P„(t) is the polarization of the
nth oscillator at time t,. If the interaction between
oscillators reaches beyond the nearest neighbors,
the enforcement of (1) usually (but not always)
requires a distortion of the interaction near the
surface. ' For this model, it was shown that one
can set up the problem so as to automatically
satisfy causality, and that one obtains just the
right number of ABC's without additional assump-
tions.

However, it was subsequently pointed out by
Mahan and Obermair' that the requirement (1) is
unduly restrictive. Not only is it usually untrue,
but, more to the point, it is not —as we had sup-
posed —an essential approximation if the solution
obtained is to be expressible in terms of a finite
number of refractive indices. It could be replaced
by a superposition of a finite number of sinusoidal
waves without impairing this property. Mahan and
Obermair introduced another model, also basicaQy
one dimensional, in which the interaction between
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oscillators depends only on the distance between
them (and hence is not distorted near the surface),
and vanishes beyond the N nearest neighbors. We
call this the near-neighbor approximation (NA).
Mahan and Obermair showed how to solve this
model, for arbitrary but finite N, without addi-
tional approximations. There are N+ 1 transmit-
ted waves at each frequency, and one automati-
cally finds the correct number of ABC's. A num-
ber of model calculations have been carried out by
Philpott using the NA (restricted for simplicity
to N= 0, or 1), both for semi-infinite crystals, '
and crystals of finite thickness. ' In this work, it
is also shown how to treat arbitrary angles of in-
cidence while still basically using the one-dimen-
sional model.

At about the same time, a completely different
approach was developed independently by a number
of authors. The method consists in calculating
the frequency- and wave-number-dependent sus-
ceptibility for an infinite medium, Fourier trans-
forming it to a space-time- or space-frequency-
dependent susceptibility, and then assuming that
this same susceptibility function determines the
polarization also for the semi-infinite or finite
medium. Mathematically (for a continuous medi-
um, the only case for which this method has been
used), this assumption takes the form

where P(r, f) and E(r, t) are polarization and elec-
tric field, respectively, x(lr I, f) is the suscepti-
bility mentioned above, and the volume integra-
tion goes over that portion of space occupied by
the medium. The susceptibility function is that
calculated for the infinite medium, which has com-
plete translational invariance, and therefore de-
pends only on the absolute value of the distance.
Special eases of (2) were first studied by Sein and
Birman, "and the theory was later developed in
greater generality by Agarwal, Pattanayak, and
Wolf, first in a series of short, preliminary pub-
lications, ""and later in a longer article, in
which the theory was given definitive form and
some model calculations were made. " Maradudin
and Mills" developed independently an essentially
equivalent theory. Further development and appli-
cations are to be found in the articles by Agar-
wal, ""Agarwal, Pattanayak, and Wolf, "and
Foley and Devaney. " These last authors have
named (2) the dielectric approximation (DA).
With the approximation (2), the problem can be
solved without further assumptions, and the ABC' s
are automatically determined. " Attempts to test
calculations using the DA experimentally have been

inconclusive. "
The theories of Refs. 5, 6, and 16 possess one

trait in common: all claim a greater degree of
rigor and generality than they actually possess.
The restrictive nature of Eti. (1) has already been
discussed. The NA, however, is equally restric-
tive, depending as it does on the assumption that
the interaction extends only to N nearest neigh-
bors, and leading to the curious result that the
predicted number of polariton modes at each fre-
quency is a function of the cutoff. It is to be em-
phasized that the cutoff after N nearest neighbors
is not merely a computationally convenient ap-
proximation in the approach of Mahan and Ober-
mair, but is essential to their method of obtaining
boundary conditions. As for the DA, it should be
clear that the assumption (2) is just as arbitrary
as the original boundary condition of Pekar, ' as
Eg. (1), or as the NA. The work so far published
using the DA also suffers from the restriction to
a continuous medium, although this restriction is
not required by the DA and could be removed.
This is essentially a long-wavelength assumption,
and it has been shown" that this is never satis-
fied by all the transmitted waves over the fre-
quency range of interest.

In the present paper, we consider again the one-
dimensional, semi-infinite crystal, and assume
that the interaction between different oscillators
falls off exponentially with distance, and retains
its form near the surface. This model has been
treated by Sipe and Van Kranendonk, 24 who showed
that it is exactly soluble without further assump-
tions, and also without much difficulty. There
are two reasons why we feel that the discussion
of such a model is worthwhile: first, the one-
dimensional model does in fact describe the case
of a semi-infinite slab of material with light inci-
dent normally, and it is known""=" that for such
a slab the interactions do fall off approximately
exponentially. Hence, it is at least possible that
such a model may be useful in practical calcula-
tions. The second reason is that a soluble model
is always useful as a "guinea pig" for testing vari-
ous approximate theories.

In the present article, we confine ourselves to
the "guinea pig" aspects of the soluble model,
leaving the prospect of practical calculations to a
later publication. In Sec. II, the model is set up
and solved for refractive indices, reflection, and
transmission coefficients for all frequencies. It
turns out that there are theo transmitted wave
numbers for each frequency. The solution is
given both for continuous and discrete cases. In
Sec. III, the DA is considered, first from a gen-
eral point of view and then by application to our
model, comparing the DA results to the exact
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ones. It is first shown quite generally, by putting
the equations in Hamiltonian form, that the DA
violates conservation of energy. A simple phys-
ical explanation of this is given. Then, the reflec-
tion and transmission coefficients calculated with
the DA are compared with the exact ones, and
shown not to be good approximations. In Sec. IV,
we consider the NA, particularly for large N. It
is shown that the NA for the reflection coefficient
converges to the correct value for large N, but
that there are other mell-defined physical proper-
ties for which it converges to the wrong value, or
does not converge at all. The reasons for this
are discussed, and it is concluded that it is prob-
ably not an artifact of the particular model used,
but is to be expected for any interaction that falls
off no faster than exponentially. In Sec. V, there
is some further discussion of the advantages and
disadvantages of the NA and DA; and of the pros-
pect of using this model, or generalizations of it,
in practical calculations.

II. SOLUBLE MODEL

The model which we consider has already been
treated by Sipe and Van Kranendonk. '4 Neverthe-
less, we present the solution in this section, part-
ly to make the present article self-contained and
partly to emphasize those aspects of it which are
important for our purposes.

A, Formulation; bare polaritons

As in Ref. 5 and 6, we consider a one-dimen-
sional problem, in which "oscillators" are ar-
ranged with uniform spacing along the x axis, and
interact with each other and with a "field" vrhich
is defined everywhere on the x axis. We choose
our unit of length to be the spacing between oscil-
lators, so that they are located at the points x
= 1,2, . . . ; our unit of time is chosen so that the
speed of light is unity, and a factor of 4n is ab-
sorbed into the definition of the polarization. If
p„ is the polarization of the nth oscillator, located
at x =n, then the polarization density (P(x) is

6 (x) = g p„6(x -n).
n=1

The "vector potential" a(x, t) obeys the Maxwell
equation

a(x, t) -a"(x, t)=8 (x, t)

= g p„(t) 6(x n-)

n=1
(3)

P„(t)= —))'p„(t)+g g p„.(t) e~' "~ '- e'h(n, t).
(4)

Since the same equations would be obeyed by an
array of parallel, infinite, planar slabs of oscil-
lating material interacting with a fieM propagating
in a direction perpendicular to them, this is also
a model for a three-dimensional semi-infinite
crystal interacting with light at normal incidence.
The coupling constant g in E(I. (4) may be either
positive or negative, while the other parameters
v', Z, and &' are necessarily positive.

We seek solutions of (3) and (4) for fixed fre(luency

a(x, t) = a(x)e'"',

p.(t) =p.e '"'.
With these substitutions, the causal solution of (3)
is

a(x) =a;„(x)+'—g p„e' '* "',
n=l

while (4) becomes

(~' —~')p„=g g p„.e "'" "') + i(oe'a(n).
n' =1

ftn

(6)

In this section, we concern ourselves with the
"bare polariton" solutions, i.e. , with solutions of
(6) in the limit e' = 0. In particular, we seek solu-
tions of the form (I), which we write

p &&
k t4n+ ~ &-5 ttn

When (7) is substituted into (6), with e'~0, the
sums are easily carried out. For example, the
term proportional to 0'. on the right-hand side is

The interaction between different oscillators is
assumed in this model to fall off exponentially with
distance, so the equation governing the oscillators
ls

&ffcn' &-r t nm' I

00

&wn &(gtc4r)n' + &rn &(Etc~)n'

=1 n =n41

e$ tc+r &(ftt+r )n &-(5 tf-r) (n+1)
-rn

Summing the p contribution on the same way, we find

(e' —e')(ee""e()e"'")=ee ""( „*,„' ee(ee'""+()e "")Q p cosK —8
cosh@ —cose
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Equation (8) is satisfied for all n if and only if

a/(e '"«-I)+p/(e'" "—l)=0 (9)

what simpler, however, and more convenient for
comparison with other theories, to solve it direct-
ly. This we do in Sec. IIB.

v' —&'= (cosK —e ") /(c oshy —cosa'). (10)
B. Solution

We seek a solution of (5) and (6) with
Equation (10) determines &u as a function of K,

while (9) is a boundary condition. We see, there-
fore, that there is a solution of the form (1) or
(7) for each K, which means that the formalism of
Ref. 5 can be directly applied to this model. This
shows, incidentally, that, Ref. 6 to the contrary
notwithstanding, the validity of Eq. (1) is by no
means restricted to nearest-neighbor interactions.
It can be made valid for arbitrary interactions by
appropriate distortion of the interaction near the
surface, and it is, as we have just seen, also
satisfied by the exponential interaction. It is true
that it is not valid in general, and that it is com-
patible with the NA only for X= 0 or 1. The NA,
however, does not exhaust all possibilities.

If desired, one can now use the methods of Ref.
5 directly to solve Eqs. (5) and (6). It is some-

a, „(x)= e'"", a(n) = g a;e'"~",

p„= g p,e*"'",

where the sums go over an unspecified (for the
moment) number of transmitted modes. When the
solution has been found, one can calculate a(x)
for negative and noninteger x by direct use of (5).
It is a simple matter to insert (11) into (5) and (6)
to arrive at equations for the K,-, a, , and pj. The
sums are carried out just as before, except that
the sum on the right-hand side of (5) does notomit
the term n'=n. Since the sums go to infinity in
the positive, though not in the negative, direc-
tion, it is assumed that

~

e'"&
~

~ 1. Substitution of
(ll) into (5) gives the result

J

I p . . z saneef off e$4lfl ~ e'4 tl 2 p p el kgbj e ""s "' —1,. ~ 2 cosa', —cos~ '

Equation (12) can be satisfied for all n only if

(12)

(13)

i sin~
a =—

2 cosK& —cos

Insertion of (11) and (14) into (6) gives

(14)

which is satisfied for all n only if

Pg 0 (16)

cosK,. - e 6 (d sin(d
V —CO =g +coshl—cosKg ' 2(cosQp —cosKg)

(17)

Equation (17) determines the K, as functions of &u,

while (13) and (16) are essentially boundary con-
ditions. For each value of e, Eq. (17) has two
solutions for cosz, , and for each of these we may
choose e'"& to be less than or equal to 1 in absolute
value. This will determine e'"J completely unless

a(x) = e'""+Re '"",
with the reflection coefficient R given by

(18)

j(Cd+k )2~e ~ —1 (19)

cosmic is real and lies between +1. In this case,
it can either be determined by adding a small
damping term to (4) or (6) and choosing the solu-
tion which then becomes less than 1 in absolute
value, ' or by the methods of Ref. 5. Thus, there
are always two transmitted waves, the sums over
j in (13) and (16) involve only two terms, and these
two equations are therefore sufficient to deter-
mine the two transmission coefficients p, and p, .

For x&0, Eqs. (5) and (11) give the result
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Equations (13), (16), and (19) can be solved easily
to give

2gy g {'d
p2 Q)2 ee +

y2+ K2 K2 ~2

(er ed~)(e (((-» e (-)(e »d-2 e-f ~)
e2$ 41

(ew e d(d)(e i((a e((d)(e ("2 e((d)

(20)

p»

~ i(»~+(d)'

We see, therefore, that a complete solution for
this model is obtained by first solving the quad-
ratic equation (IV) for the transmitted wave num-
bers, then (13) and (16) simultaneously for the
transmission coefficients. The electric field
within the medium is found with the aid of (14),
and the reflection coefficient is given by (20). We
note in passing that Eq. (20) for the reflection co-
efficient satisfies the requirements of causality. "'
Causality requires that R be an analytic function
of (d in the upper half-plane, in other words,
where e'" lies inside the unit circle. One verifies
immediately that this is satisfied by (20). The
apparent pole at ~=iy is cancelled because, as
+-iy, one of the solutions for cosK approaches
coshy (cf. Figs. 1, 2).

Equation (2V), like (17), has two solutions. Sol-
ving (24), (26), (28) for R, one finds

(i(o —y}(», —(u}(», —(e)
(in+ y)(», + (d)(», + (d))

' (29)

III. BIEI.ECTRIC APPROXIMATION

A. General remarks; Hamiltonian formulation

In this section, following the procedure of Ref.
9-22, we restrict ourselves to the continuum
limit. In this subsection, however, we do not re-
quire that the interaction between polarization at
different points fall off exponentially, but allow it
to be an arbitrary function of distance. The exact
field equations are taken to be

00

a(x)=a,.„(x)+I p(x')e'")"~''dx'
Qp

( '-~')(»(»)=d f d(*')«»'
0

+ i(de'a(x)

(21)

(22)

We seek a solution with a,„=e'"",and with, for
x&0,

a(x) = g aje'"&*,

p(x) = Q p,e'"~".
(23)

The analogs of (13),(14), (16), (17), (19) are, re-
spectively,

. P'
— =0,

zK»+ y

(25)

(26)

C. Continuum limit

For purposes of comparison with DA calcula-
tions, it is desirable to consider the continuum
limit of our model, even though this is neither
realistic"' nor much simpler. Accordingly, we
replace our discrete crystal with a continuous
one occupying the region 0&x(~. Both field and
polarization are now continuous functions of x. In
an obvious notation, Eqs. (5} and (6) are replaced
by

a(x, t) —a"(x, t) =p(x, t) (30)

(((»)d»(»») »J»()»»- »))=x(»(»»', »ld»'
0

—c'a(x, t), (31)

in which it is understood that the polarization field
p(x) is only defined for x&0.

The DA consists in replacing the true polariton
Green's function by that calculated for the infinite
crystal, i.e. , with complete translational invari-
ance; in other words, the interaction of the polar-
ization field with itself (though not with the elec-
tromagnetic field) is assumed to have transla-
tional invariance, i.e. , the integral on the right-
hand side of (31) is formally extended to —~. It is
obvious without a detailed calculation that this

approach leads to nonconservation of energy, at
least for bare polaritons; for, if such a polariton
propagates toward the surface from within the
medium, it experiences no change whatever in the
intera, ctions influencing it a,s it nears and reaches
the surface. Accordingly, it will simply "pass
through" the surface as though it were not there,
and formally "propagate" as a fictitious polariza-
tion outside the surfa, ce, leaving nothing inside.

To see that the same thing happens in the full
theory, it is useful to cast the theory into Lagran-
gian-Ha, miltonian form. An appropriate Lagrangian
for Eqs. (30) and (31) is
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1 "
2I.=

2
[d'(x) —(a')'(x)] dx

1
2 ' [P'(x) —v'p'(x)] dx

oo oo

+ 2, u(ix -x'i)p(x)p(x') dxdx'
0 0

Both fields are formally defined for the whole
range —«&x& ~, but P(x) for negative x is ficti-
tious, being simply a mathematical device to re-
produce the DA. A Lagrangian for Eqs. (30') and
(31') is

+ axpx dx,
0

1
2E

[p'(x) —v'p'(x)] dx

with corresponding Hamiltonian
CO

H = [a'(x)+ (a')'(x)] dx+, [p'(x)+ v'p'(x)]
co 2&

1 00 00

u(~x x ~)p(x)p(x)dxdx.
0 0

In DA, one still has (30), but instead of (31), p
is given by

p(x, t) = —e' dt' dx' G(x -x', t t')a(x', t'-)
«00 0

+ 2 + x —x pxpx dxdx

+ a(x)p(x) dx,

with Hamiltonian

[a'(x) + (a')'(x)] dx
1

DA

1
oo

+ 2, [j'(x)+ pv'(x)] dx

c) 22q u(lx —x'
I )&(x)p(x') dx dx'.

P(x, t)= —d' dt' J dx'
«CQ «00

x G(x x ', t 't)a( x', t')h( x'),

where h(x) is the step function, equal to zero when
its argument is negative, and equal to unity when
it is positive; and G(x —x', t —t') is the Green's
function for the crystal infinite in both directions,
defined by

82
, + v' G(x -x', t —t')

u(~x x'~) G(x~ -x', t-t')dx"
«oo

= 5(x -x')5(t —t'). (34)

The right-hand side of (33), of course, is equal-
ly well defined if x is negative, and we can thus
use (3, ) to formally define a function p(x, t) which
is then well defined for all x. This formal p(x, t),
of course, is fictitious for x& 0, and is equal to
the actual polarization only for x & 0. With this
formally redefined p(x, t), and with the aid of (33)
and (34), we see that Eqs. (30) and (31) are to be
replaced in DA by

a(x, t) —a"(x, t) =p(x, t)a(x), (30')

B. Comparison with exact solution

We now return to our exponential model in the
continuum limit, and consider the solution when
the DA is made. We thus seek solutions of (30')
and (31') with fixed frequency. The resulting Eq.
(21) is unchanged, while (22) is replaced by

(v' ~')P( )=xZ e "'" 'p(x') dx'

(35)
In the exact theory, the Hamiltonian (32) repre-

sents a conserved energy. In the DA, the con-
served energy is given by (35), and includes a
contribution from the fictitious polarization in the
region of negative x. It is also evident from Eqs.
(30') and (31') that this fictitious polarization is in
general neither zero nor particularly small com-
pared with the "real" polarization for x& 0. The
DA, therefore, always entails a loss of energy
to this fictitious field, a quite unphysical effect.
In the author's view, this should be sufficient to
cast grave doubt on the usefulness of this approx-
imation. It is conceivable, however, that the ef-
fect of this might be negligible in special cases.

In Sec. IIIB, we return to our exponential model
in the continuum limit, calculate reflection and
transmission coefficients using the DA, and com-
pare these with the exact results of Sec. IIC.

p(x, t)+ v'p(x, t) = t u(ix -x'
i )p(x', t) —e'a(x, t)&(x)

(31')

+ i~&'a(x)k(x).

We again seek a solution of the form (23) for x

(36)



EXACTLY SOLUBLE MODEL FOR CRYSTAL WITH SPATIAL. . .

& 0, and again obtain (24), (25), and (28) when this
is inserted into (21). This time, however, there is
also a polarization, albeit fictitious, for x& 0. In
this region, we assume a polarization of the form (39)

(v2 ld2)QP e fQ~x ge'Yx Q Pg Q qa
y -z~, y+iq,

+2ygpp. ',
y+q

p(x) = Pp.e-'"". (37) for x(0. Equations (38) and (39) require that (27)
be satisfied, .and also

Equations (23), (36), and (37) combine to give

(v2 ~2) Q p eXICP ge l'X

&
y+zI(& y-zq&

P ~ P 0
y+iv& ~ y —iq

~ ~
P&. -~ P. = 0,

y —i c~ ~~ y+ iq.~

(40)

(41)

for x&0, and

~jx~x
+2yggp. .

2 2

+ gp, e*"~" ', ",
K& —47

(38)

v' —~' = 2yg/(y'+ q'„). (42)

Equation (42) has only one solution, so there is
only one wave number propa, gating in the fictitious
region, which we name simply q, its coefficient
p& (f for fictitious). One again obtains (28) for the
reflection coefficient. Solving (24), (40), (41),
and (28), we obtain for It

[(v, + v, )(y' —q ~) + (y' —a, v, )(q+ ld)](x, —ld)(x, —ld)

[(a, + ~,)(y'+ q&d)+ (y' —v, v, )(q —&e)](~, + ~}(x,+ &d)
' (43)

Equation (43) bears little resemblance to the exact
result (29), and in general will lead to quite dif-
ferent results, especially, as may easily be veri-
fied, in the case of greatest interest: I(.„x„qall
real and of the same order of magnitude. This is
because the contribution of the fictitious polariza-
tion is generally of the same order of magnitude
as the real polarization in the medium. This last
may be seen by evaluation p&/p, . The result is

pz/p, = (x, —v, )(y'+ q')/(x, + q)(y'+ x', ),
with p&/p, obtainable, of course, just by inter-
changing 1 and 2. It is easily seen that P&/P, and

p&/p, are never both small over a wide frequency
range. For example, for frequencies well off
resonance, one has v, -q iy, x, -~-, and ~pz/p, ~-1. The same is true near resonance, when

Ky v„q are all real and comparable in magnitude .
The fictitious pola. rization is therefore not negli-
gibl. e compared with the real contributions, and
its effect on calculated reflection coefficients will
normally be at least as great as that of spatial
dispersion itself. We conclude that the DA, in
addition to violating energy conservation, is in

fact not a good approximation, at least for the
model considered here.

IV. NEAR-NEIGHBOR APPROXIMATION

A. Solution with NA

and

a(x) Q p ef 0) Ix ill

2 ff mOO

(44)

(v' —ld')p„=g g p„.e "l" "'l+ilde'a(n).
n =n-N

(45)

Inserting

a(n) = ae'"", p„=pe'"",

one finds

(46)

The prescription of Mahan and Obermair' is
first to solve for the w,- for a medium extending
from plus to minus infinity, then to impose bound-
ary conditions in such a way that there is no ficti-
tious polarization outside the medium. Applying
this to our model, we replace Eqs. (5) and (6) by

cos~ —e "+[e "'""'cosxN —e ""cosx(N+ 1)] e'ld sinld
P —Ct) =g +

coshy —costs 2(cos~ —cosz) ' (47)
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Equation (47) determines the allowed values of
cosa in NA. It differs from the exact result (17)
by the expression in square brackets on the right-
hand side. For each value of &o, it has (N+ I)
roots. For large N, the term in square brackets
oscillates rapidly for real x (cosx real and between
—1 and 1), and rapidly becomes large for

~
cosa~

& coshy. There is no singularity at cosv= coshy,
since the term proportional to g in (47) is, des-
pite its appearance, really just a polynomial of
Nth order in cosa. For sufficiently large N, it is
easily verified that the quantity in curly brackets
is very nearly equal to N for cosv= cosh@.

In Fig. 1 (for positive g), and Fig. 2 (for negative
) the behavior of the right-hand side of (47) for

large N is compared qualitatively with that of the
exact expression (17). Real roots occur where

2 2the curves cross the horizontal lme (v —&u ). If
the maximum of (17) in Fig. 2 occurs for coss(1,
as shown in the figure, there will be a narrow fre-
quency range about the tangent at this maximum
for which the oscillations in (47) cause the num-
ber of roots in this vicinity to vary erratically
with N. The width of this frequency range de-
creases with N, but in this vicinity the NA certain-
ly does not converge uniformly to the right result
For positive g (Fig. 1), one sees from the graphs
that there are always two real roots for the exac t
result (17). For the NA, there are two real roots
for odd N, while for even N there are either three
or one, depending on whether v' —e' lies above or
below the minimum of the dotted line in Fig. 1.
For v' —~'& -g, the two real roots (or two of the
three, as the case may be) approach for large N
the two exact roots, while for v' —co'&-g, this is
true only for one of the real roots. In general, one

pl
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FIG. 2. Qualitative plot of the right-hand sides of
Eqs. (17) (solid curve) and (47) with N large (dashed
curve) as functions of cos8 for g&0.

sees from the figures that the NA for large N
sometimes furnishes a good approximation for both
of the actual roots, sometimes for only one of
them, and sometimes (for negative g) for neither .

one.
It appears, therefore, that one is justified at

this point in harboring doubts about the usefulness
of the NA. The great majority of the roots that it
leads to are spurious in the sense that they seem
to have nothing to do with roots of the exact equa-
tion. In some cases, moreover, the N+ 1 roots
include a good approximation for only one (not
both) of the exact roots, or for neither one. How-
ever, a little reflection shows that one should not
]um'ump to this conclusion too hastily. One is actually
interested in physical quantities such as the reflec-
tion coefficient, rather than the refractive indices
themselves, and it is still possible that the NA

may converge to the correct answer for these.
In particular, we will concentrate on a generaliza-
tion of the reflection coefficient, to be described
in the next Sec. IVB.

Even
N

B. Generalization of reflection coefficient

We make the definitions

-jco
@n= -2e pn~ (48)

Od
N

6I(s) = s ' Qq„s",
n"-i

(49)

where s is a complex number. If the solution has
the form (11), then

FIG. 1. Qualitative plot of the right-hand sides of
Kqs. (17) (solid curve) and (47) with N large (dashed
curve) as functions of cose forg&0.

(R(s) = Q
Xg —S

where

(50)

(51)
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g e»$ Ky (52) &R&2&(s) = 0 (59)

If the allowed wave numbers are ordered in such
a way that

A»V

P» O&2

(53)

then (49) converges for all s with
f
s

f

& [x, [
. If

desired, the function &R(s) may be defined else-
where by analytic continuation. If, for example,
the solution has the form (11), Eq. (50) provides
an analytic continuation for other values of s. We
will adopt the convention that &R(s) is defined only
by the series (49), and is undefined where that
series fails to converge. We define &R(s) as the
analytic continuation of &R(s). It is clear that &R(s),

where it is defined at all, is a physical observable;
it is perhaps debatable whether &R(s) is observable
where &R(s) is undefined. For purposes of theoret-
ical calculations, it is more convenient to deal
with &R(s), and then to define &R(s) as being equal to
&R(s) within the circle about the origin passing
through the nearest singularity, and undefined
elsewhere. Comparison of (49), and (50) with (5)
and (19) shows that the reflection coefficient R is
given by

R = —e""&R(e&").

Under certain conditions, one can define an ob-
servable related to &R(s) in regions where &R(s) is
not defined by making subtractions. Thus, if (11)
holds and

~
x,

~

&
~
x,

~

(not equal), then one can de-
fine an asymptotic form of q„as follows:

where Y=e '",Z=e". We see that &R(s) is defined

&R&2&(s) is defined everywhere.
For the NA, the methods of Mahan and Ober-

mair' give the results

(60)

(x~ —s) (x, —s) P2 (x~ -x,) '

(61)

(x, —Y)(x, —Y) P (x, —Y)

(x, -s)(x2-x, ) &,~ (x, -x, )

(x, —Y)(x, —Y) )"' (x, —Y)
(x2-s)(x, -x2) ~'2 (x~ -x2) (62)

Derivations of Eqs. (60)-(62) are given in the Ap-
pendix.

Comparison of (57) with (60) shows that the NA,
in cases where it approximates one or more of
the exact roots, gives correctly at least some of
the factors contained in &R(s). It remains to be
determined whether the product of the other fac-
tors in (60) is equal to the remaining factor(s) in
(57). The answer to this question requires an
analysis of the other roots of (47), a matter which
we take up in Sec. III C.

This can then be subtracted off from the observed

q„, and the result used to define a "subtracted
&R(s)":

q„"'=q„-q'„", (54)

&R&'&(s)=s 'gq"&s"= g (55)
n-1 &~2 +j

&R"'(s) is defined for
~

s
~

& ~x2~. Its analytic con-
tinuation &R&))(s) has one fewer pole than &R(s).

Similarly, if also jx2~ & ~x2~, one can make a sec-
ond subtraction to obtain a function which is ana-

(x, —Y)(x, —Y)(Z —s)
(x, —s)(x, -s)(Z —Y) '

@&,)( )
(x, —Y)(x, —Y)(x2-Z)
(x, -x,)(x, —s)(Z —Y) '

(57)

(58)

&R&2)(s) = P I&
~ (56)

g~3 Xg -8
For our exact solution one finds, using Eqs. (13),

(16), (48), (50), (55), and (56),

C. Analysis of roots

We first make a few general remarks about the
meaning of the NA for our model. As far as its
effect on the calculated transmitted wave numbers
is concerned, the NA consists in replacing the
term proportional to g on the right-hand side of
(17) with the corresponding term in (47), which is
just the power series expansion of the correct ex-
pression in e'" and e '", taken through the Nth
power. The derivation of (17) is valid for all val-
ues of cosz, since it involves an infinite series
only in positive powers of e'", and this can be
chosen —1 in absolute value for all values of cosK.
The power series, however, does not represent
the function at all points, but converges to the
function only within a circle of convergence whose
radius is the distance from the origin to the near-
est singularity, in our case cos&= cosh&, e '"= e".
There are always N+ 1 roots of (47), of which at
most two are approximations to roots of the exact
expression. We call these "physical roots, " the
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other roots will be called "unphysical roots." For
large N, we do not expect to find the unphysical
roots in the region well within the circle of con-
vergence, since in this region the power series
represents the function well, and we would expect
it to have at least approximately the same roots.
In the region well outside the circle of conver-
gence, the power series diverges, and the Nth
order polynomial will be very large in absolute
value for large N, larger in particular than the
other terms in E(I. (47). Therefore, we do not ex-
pect to find roots here either. The remaining
possibility is that they lie near the circle of con-
vergence, so this is where we shall seek them. It
should be noted that the tendency for the unphysical
roots to converge to the circle of convergence will
not be uniform in x. A glance at Fig. 1, or at Eq.
(47), reveals that, for fixed N, there are always
values of v' —&' for which there are roots well
outside the circle. For fixed &, however, one can
always find N large enough that the extra roots
will lie near the circle of convergence.

If (47) is multiplied through by (coshy —cos«),
the resulting equation will have the same roots,
plus a spurious one at cosl(.'= coshy. Doing this,
and rearranging somewhat, we obtain

that it has simple poles at Y, Y ', and 0. Thus,
E can be written

( )
(z -x, )(z -x&1)(z -x,)(z -x,')

(z —I')(z —Y ')(z) (67)

)
(x, —Y)(x, —Y)
(x, —s)(x, —s) ' (69a)

3 xg-s (70a)

Case (I&). One exact root within circle of con-
vergence and well-approximated by NA for large
N; other exact root outside circle; NA has one
physical root, N unphysical ones. (R„(s) can be
expressed by (68), together with

where K is a constant.
In solving E(Is. (63)-(67), and using the results

to eva, luate (R„(s), we must distinguish between
three cases, according to how many of the exact
solutions lie within the circle of convergence.

Case (a). Both exact roots within circle of con-
vergence, hence both well approximated by NA for
large ¹ NA has two physical roots, N —1 unphys-
ical roots. For large N, (RN(s) can be written

(R„(s)= (RN8(s)(RN„(s), (68)

G(cos«) =g[e "'"—"' cosN« —e ""cos(N+ 1)«j

= E(cos«),

where

(63)

x, —Y
(RN8(s) =

x —s1

g+ Y(R„(s)= j

(69b)

(70b)

E(cos«) = (coshy —cos«)

6 co sin(0
p —co '- -g(cos« —e ")

2(cos(d —cos«)

Case (c). Both exact roots lie outside circle of
convergence, neither one well approximated by
NA; all N+ 1 roots of NA are unphysical. (R„(s)
has the form

-yeN6 iN8 ye(N+1}6 i (N+1)8)e e e (66)

Comparison of (64) with (17) shows that E, con-
sidered as a function of z = e '", has zeroes at the
exact roots z =x„x,', x„and x,.'. Inspection shows

is a relatively smooth, well-behaved function of
cosI(.'. The relevant circle of convergence is that
of (47) considered as a function of e '". Near this
circle we have

e '"=e"' e', where ~6~ is small.

Inserting this into (63), we find for the function G

1
g[e r(N+1)(e(r+6)NeiN8-+ e-(y+6)N iN8)-

e-rN(e(r+6&t(N+1)ei(N+1)8+ e-(y+6)(N+1) ((Nr&)8)}-
iy

(65)

which for sufficiently large N becomes, apart from-
terms falling off exponentially with N,

x —Y
(R„(s)=(R„„(s)= x ~ —s (70c)

For all three cases, our task is to evaluate
(R„„(s), the contribution of the unphysical roots.
The number of such roots is different for each
case, but for sufficiently large N all lie close to
the circle of convergence, so we can safely use
(66). We rewrite the function G in (66) as

G(z) = e ""'H(z),
where 1. and H are defined differently for each
case, as follows:

case (a): L=N, H(z)= —,'g(Z ' z),
case (b): L=N+1, H(z)=-,'g(z ' Z),

(72a)

(72b)

case (c): L=N+2, H(z)=-,'g(Z/z)(z '-Z). (72c)

In each case, we are seeking I. —1 roots, apart
from the spurious one at z =Z. In each case, the
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roots are the solutions of

e"'"&= (z/g)' =F(z)/a(z) = Q(z). (73)

' Y —ge'«r L (YL -Z )(s -g)
~Ir2 (s) II s ge22ir /L (Y g)(s1 gI )

'

Taking logs of both sides of (73), remembering
that the log is only determined up to an additive
multiple of 2a'i, and dividing by L, we find

5+ i 8 = ln( —,z) = 2rli I/L + lnQ (z)/L,

where / = 1,2, . . . , L —1 is not necessarily small
compared to L. For l= 0 we obtain the spurious
root mentioned above, and higher values of l re-
peat the same roots again. Thus, to within O(N '),
the desired roots are

Z e2n'5 t /L
lO

In this approximation, we obtain for (R„„(s)

ln(zr/z&2}= (1/L) lnQ(z, ). (77)

Using (77), (75), and (70a)-(70c), defining z,
=Ze', 0=2&ll/L, and replacing a sum by an inte-
gral, we obtain

ln (()))
— ln

(z - Y)(z, -s) „
(z, —Y)(z -s)

that the subtracted functions for NA also disagree
with the:exact results. There are, therefore,
well-defined observable quantities for which the
NA converges to the wrong result as N becomes
large.

It remains to be decided whether the NA gives
the right result for (R(s} in the other region, ~s

~

&Z. The answer to this requires the evaluation
of the correction term in (74) proportional to lnQ.
We rewrite (74) a.s

In arriving at (75), we have used the fact that

I-
(Y Ze2'rrlL) —YZL—

t=0

so that

I YL —ZL
(Y ge2Ãl IL)

Y —Z

As N, L-~, we see that

(76)

(z —Y)(z, —s) dz,
)

2&li (z„—1'}(z -s) z,
where the cont'our is the circle with radius Z.

From (64), (71), and (72a)-(72c), and (73), one
sees that z = z, at z = Z, i.e. , that lnQ(Z) = 0. For
convenience, we draw all cuts from the singulari-
ties of the various logarithms through this point.
Thus, lnz, lnz2, ln(z —Y), etc. , all have discontin-
uities of 2gi at z =z, = Z.

Now consider the typical term in (78)

(R„"„'(s)-0, ~s
~

&Z. (76')

In the case (76'),
~

s
~

&Z, the NA predicts zero
for rR(s), since neither rR»(s) nor the correction
involving lnQ is infinite. In this region, 61(s) is
undefined according to the NA, as are all the sub-
tracted functions, since in the NA for large N,
there are arbitrarily many poles of rR(s) near the
circle of convergence. The exact result (57) is
not zero in this region. Moreover, (R(s) is defined
in part of this region for case (c), (R"&(s) for case
(b), and 61'2&(s) for case (a). It is easy to verify

ln(z —Y) o = l& ln(z —Y) dlnz, .dz p

z o

It can be transformed by means of partial inte-
gration into

[ln(z —Y) lnz, ] — & & lnz, d ln(z —Y).

The integrated term is just 2rli ln[Z(g —Y)j —4&l2,

since z =zo at both endpoints, and because of the
discontinuity in the logs. The other term can be
transformed by means of (77) and another partial
integration to give

lnzo d ln z —Y = — lnz d ln z —Y + — in@ z
1 dz

L z —Y

= —2&li ln[g(Z —Y)j+ 4rr'+ ln(z —Y) d lnz+ —l/ lnQ(z)
1 r dz
L z —Y'

The integrated parts now cancel, and the first
integral is cancelled by the term which is the
same function integrated over a slightly different
contour, and with no singularity in the region be-
tween the contours. Thus, only the term in in@

remains. Doing the same thing for the other terms
in (78), one obtains

(79)



The contour is now slightly distor'ted from the
circle

i
z

i
=Z, and passes through the exact solu-

tions. Its evaluation 18 dlffel"ent fox' the thl ee
cases.

Case (a). For this case, one sees from (6V) and

(72a) that Q has the form

(z -x,)(z -x11)(z -x,)(z -x,').('-~)('-y-)('-Z-)' .

Q thus has four zeroes and foux poles, all within
the contour of integration. The integral (79) breaks
down into a sum of integrals of the form

which is readily seen to be zero if u, b, e are all
inside the contour, as in the present case. The
correction is thus zero in this case. From (68),
(69a), and (76), we see that the exact result (57)
18 1epx'oduced.

Case (5). This time we have

(z -x,)(z -x, ')(z -x,)(z -x,')
( -I)(. I")( Z')

The zero at z =x, is now outside the contour, the
other zeroes and poles inside. The integral (V9)
is a sum of terms of the form (81), which con-
tribute nothing, plus a term

inc -x2 — —-- — - =ln- 2 . 82

Equation (82), together with (68), (69b), and (76),
again reproduces the exact result (5V).

CcF88 (c). T1118 18 8111111Rx' 'to CRse (b). We 11Rve

this time

~ z(z -x, )(z -x, ')(z -x,)(z -x,')
(z —Y)(z —I' ')(z -Z ')

Ther'e ax'e n0%' two zex'oes out8ide the contour',
plus terms of the form (81), leading to a correc-
tion of

(x, —r)(x, —I )
(x, -s)(x, -s) '

wllicll RgRln leRds i'0 tile exRct X'eslllt (57),
We conclude, then, that the NA for large N con-

verges to the correct result for 6t(s) or $(8) for
~8

~
&Z, but not for ~s

~

&Z. In particular, it gives
the x ight result for the reflection coefficient.
Where it converges, the convergence is fairly
rapid. The only approximations made in the above

derivation were the omission of terms falling off
exponentiaBy with N in arriving at (66), and the
replacement of the sum by the integral in (78).
The error thus faQS off exponentially with ¹ The
convex'gence 18 not uniform ln M, h0%'evel. When
one of the exact solutions is sufficiently near to
the circle ~z

~
=Z, the replacement of the sum by

the integral in (78) is not a good approximation
for those terms lying near this exact root. A look
at Figs. j. and 2 shows that one of the exact solu-
tions always passes through -Z for some v. At
t ls point, and for a narrow frequency range
around it, there will be an appreciable error in
the NA even for arbitrarily lax'ge ¹ The frequency
range in which the error is appreciable will, of
course, become narrower as N becomes lax'ge.

D. Conclusiggg

According to the foregoing analysis, the NA con-
verges to the correct result for some physi. cally
observable quantities (including those most fre-
quently of practical interest), but not for all. Its
usefulness, therefore, depends on the specific
purpose for which it is to be used. One can use it
to calculate reflection coefficients, and, for small
N, also as a model for gaining insight into qualita-
tive properties of the solution, There are always
observable properties, however, for which it gives
the wrong answer, and one must ascertain in each
case whether the quantity being calculated is one
of those for which the NA ls applicable, The cx'1-

terion for this %'ould seem to be whether the quan-
tity in question involves use of the polynomial ap-
proximation outside the radius of convergence of
the powex series.

As N becomes large, the analytic structux'e of the
NA solution [as expressed, e.g. , through the sin-
gularities of R(s)] becomes increasingly different
from that of the exact solution. The NA, there-
fore, would appear to be a highly inappropriate
model fox' the pux'pose of gaining lnslght into the
mathematical structure of the solution.

Apart from quantitative details, the derivation
just given depended not so much on the particular
model considered in this paper, but on the fact
that the power-series expansion possesses a finite
radius of convergence. Whenever this is the case,
most of the NA roots for large N will lie near the
circle of convergence, i.e., in a region where the
actual function is not well approximated by the
Wt -order polynomial, and one would expect to
obtain erroneous results for some quantities by
taking these roots seriously, as the NA procedure
requires one to do. The ladlus of convergence 18
finite, and the NA therefore suspect, whenever
the faBoff of the interaction is no faster' than ex-
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ponential. When the interaction falls off faster than
exponentially (Gaussian, factorial), one would ex-
pect the NA to converge to the correct answer for
all quantities of interest.

One final question is whether, in view of the
finiteness of actual crystals, it might be better
to use the limit of the NA for large N than the
exact result for the semi-infinite crystal. The
answer to this question turns out to be in the nega-
tive. If the crystal is of finite thickness, one still
obtains Eq. (17) unaltered for the allowed wave
numbers within the crystal. The difference is that
now there are no infinite sums, so one cannot re-
quire

~

e'"
~

~ 1, which means that each solution of
(17) leads to two solutions for e'" (one propagating
forward, the other backward). One also finds
twice as many boundary conditions, so the prob-
lem is still soluble, and the solution still differs
from the NA.

bors. Before making elaborate and expensive cal-
culations, however, one should first ascertain
whether this approach encounters convergence
problems similar to those of the NA. The author
hopes to make this the subject of a future publica-
tion. If the prognosis is favorable, it would be
worthwhile to perform some calculations, using
the methods of Philpott' to permit the treatment
of actual crystals with other than normal inci-
dence.
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APPENDIX: DERIVATION OF EQS' (60)—(62)

In the Mahan-Obermair theory, one has'

V. DISCUSSION
q~

x~ —Y
(Al)

For the soluble model considered in this paper,
it has been shown that neither the dielectric nor
the near-neighbor approximation leads to correct
results for all physically observable properties.
In both cases, arguments have been given for the
belief that this is not an artifact of our model, but
a general conclusion.

Of the two approximations considered, the NA

appears definitely to be the better. Despite its
failure to converge to the exact result, for all
properties, it remains useful as a model which
violates no fundamental principles, possesses no
blatantly unphysical properties, and actually gives
correct results for many properties, including
those usually of most interest.

The DA, on the other hand, possesses the highly
unphysical property that energy is always being
leaked into fictitious polarization waves outside
the material medium. Because of this, and be-
cause other models are available which are at
least equally easy to use and which lack such un-
physical properties, the author feels that the DA
in the future should be used, if at all, only with
the greatest caution.

Another matter worth pursuing is the use of the
model of this paper in practical calculations. Ac-
tual planewise interactions in crystals are not
exactly exponential in their distance dependence,
but they can be represented as an infinite, rapidly
converging sum of exponentials. "" The present
model can easily be extended to treat an interac-
tion represented by a finite sum of exponentials;
the amount of labor involved for N exponentials
is essentially the same as that for N nearest neigh-

g qp&=0, 1=0,1,2, . . . , (N —1). (A2)

Thus, one immediately finds

~ x,. —s D(1') ' (A3)

with

(x& —5) (x —5)

x J
~ ~ ~ (A4)

x2

+ II (x, -xx).

Since this depends only on the differences of the
x&, it will not affect the value of the determinant
if each x& outside the first row is replaced by x&

With this replacement, one can factor out
Q(x& —$) ' and then add $ to the various x& to ob-
tain

Expanding the determinant (A4) in cofactors of
elements in the first row, one finds that each co-
factor is a determinant of the type
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(» —h)
' (» —h)

'

&(t)='
(»g —5) (»2 —5)

(», -$) (». -$) " =]g (», -$)'
d =1 (», -&)' (», -&)' ~ ~

(, -&)' (..-&)' ~ ~

x x1 2
= ]$ (», —&)-',.

~ ~ ~ ~ ~ ~ ~ ~ ~

( 1)N&N+l)/2 Q (» ])-y g ( ) (A6)

From (A3) and (A5), one immediately obtains (60). Equations (61) and (62) are obtained by subtracting off
the contributions of the poles at z =x»x, .
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