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We present here a method for calculating the power absorbed in the ferromagnetic resonance of a sample

consisting of metallic multilayers, with arbitrary directions of the applied static field. It is presented in as

general a form as possible and then a riumber of simplifications are introduced to make the numerical

calculation reasonable. These simplifications are shown to be justified and applicable for a large class of
problems, In a following paper, the method is applied to a particular problem, and a semiquantitative .model

of the resonance behavior is presented.

I. INTRODUCTION.

This is the first of two articles on the theoretical
study of ferromagnetic resonance (FMR) in iso-
tropic metallic magnetic multilayers, with applied
static field (H,~~) at an arbitrary angle with respect
to the film normal. Our wark is a logical exten-
sion of Hoffmann's study, ' in which he considered
primarily the case in which Ha» is normal to the
film surface. There is reason to believe that such
investigations of the effect of interfacial coupling
upon resonance absarption spectra will aid in clar-
ifying the troubling problem of the magnetic be-
havior of the surfaces. The possibility of analyz-
ing resonance spectra for arbitrary field direc-
tions, and under arbitrary conditions of coupling
strength, should contribute substantially to the un-
derstanding of this problem.

For the analysis of the properties of the individ-
ual layers, we use the approximate method, which
we have reported earlier. ' This permits us to
simplify both the mathematical description and the
numerical solution of the problem. The continuity
equations for the rf magnetization at the interfaces
between layers are those derived by Hoffmann, '
modified to make them consistent with the approxi-
mate calculation. Finally, an expression is de-
rived from Poynting's theorem for the power ab-
sorbed in terms of surface impedances.

In the following paper' we solve the problem of
FMR for a sample consisting of three layers with
similar properties. This is the simplest problem
to which the method can be applied. Based on the
results of this calculation, we are able to describe
a method for deducing the coupling strength from
absorption spectra. We show that it is passible,
from a relatively simple semiquantitative model,
to interpret and understand the numerical predic-
tions obtained from the calculations.

The method described here is applicable to a
large number of different problems. It may be
used for predicting the behavior of metallic multi-

layers with ferromagnetic' or with antiferromag-
netic' interfacial coupling. It may be used for in-
vestigating resonance in metallic films with fer-
rimagnetic surface layers, ' or with inhomogeneous
ferromagnetic surface layers. Finally, one can
develop a simplified version, neglecting conductiv-
ity, which may be applied to the ferrimagnetic
resonance in garnet films, with surface layers dif-
ferent from the bulk. ' " In all of these problems,
application of the method described here would
permit a more exact and more complete calcula-
tion (of linewidth, for example) than has been pos-
sible in the past. The semiquantitative model of
the following paper' should yield insights into all
of these problems. At present, we are using the
method to calculate transmission through thin bi-
layers, for which interesting exchange effects
might be expected '2

II. THEORETICAL SITUATION

Consider a ferromagnetic thin-film sample con-
sisting of N metallic layers, infinite in the x-y
plane. Each of the layers consists of isotropic
material. The spatial configuration is shown in
Fig 1.

The solution of the FMR problem for such a sam-
ple consists first of the simultaneous solution of
the Landau-Lifschitz (LL) equation and Maxwell's
equations to obtain the dispersion relations. Then
the relative amplitudes of the different components
are obtained from the continuity equations for the
electromagnetic (EM) fields and the rf magnetiza-
tion at the outer surfaces. There are two difficult-
ies in this procedure: First, the LL equation and
Maxwell equations form a set of differential equa-
tions whose coefficients are physical variables (dc
magnetization, exchange, conductivity, etc.), and
are difficult, if not impossible to solve analytical-
ly. It is therefore necessary to solve the problem
numerically, point by point. Second, the values of
the physical variables (mentioned above) at the in-
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FIG. 1. Spatial configuration of the sample.

terfaces between layers, and the behavior of the
solutions as a function of the z coordinate depend
upon the interdiffusion between layers; this is dif-
ficult to determine once the films have been pro-
duced. However, Hoffmann' has shown that when
this interdjffusion is small it is possible to divide
the problem into as many subproblems as there
are layers. In fact, when this condition is ful-
filled, the coefficients appearing in the LL and
Mmovell equations for the jth layer may be treated,
to first order as constant, even near the interfaces
of this layer (z =z& and z =z&„) as shown in Fig. 1.
In this case, the problem reduces to the solution
of the equations of motion for each of the N layers,
followed by solution of the continuity equations at
each of the N-1 interfaces and the exterior sur-
faces to fix the amplitudes of the different waves.

Even in this. situation, there remains one diffi-
culty: despite weak interdiffusion, the direction of
the static magnetization varies near the interface,
and the Hoffmann model fails if this variation is
large. We shall return to this question, in order to
quantify the limits of validity, in Sec. IV.

The special case, of small diffusion and of small
variation of magnetization direction within a layer,
is still of considerable interest. Under these con-
ditions one can directly apply the methods previ-
ously developed for FMR in monolayer films,
either exact' or approximate, to each layer. Fur-
ther, from the absorption spectrum, it is possible
to obtain, by a fairly simple method, an under-
standing of the behavior of the rf magnetization
near the interface. This will be demonstrated in
the following paper. ' Thus, this article is devoted
to the problem in the case of weak interdiffusion.

V ~ e~ =0. (4)

8& and M& represent the internal field and the mag-
netization in this layer. The electric field is writ-
ten as e& to indicate that the static component is
assumed to be zero; o& is the conductivity of the
layer. In these equations we have neglected the
dielectric, displacement terms in comparison with
the conduction terms (low-frequency approxima-
tion). The LL equation may be written

1 glVf~ 2&~'=M, x H, +,' V'M, —,-M,.
y, at ~2 ' y m,

Equation (5) is written with the convention y& (0.
A.

&
is the exchange constant and A& the damping con-

stant of the jth layer. The spatial orientation of the
fields and of the magnetization in a layer, far from
any interface, is shown in Fig. 2. It is easy to
show from Eq (5) tha. t the static components of
H& the internal field and of M;, which we .call H»,
and M, are parallel. We take them as lying in
the x-z plane. By writing the demagnetizing field
in terms of the static magnetization we see that the
applied and internal fields are related by

H» = H,» —(4@M„cos8&)2, (~)

and that

2 Mv„si 2 n&8+ H,» sin(n 8») =0-,

H opp

III. DISPERSIGN RELATIONS

A. Exact method

-47rMoj cosaoj 2

Consider the jth layer of the sample of Fig. 1.
The Maxwell equations for this layer are

1 s(H, +4mM, )axe~ =
c Bt

V && H~ = (4m o,/c) e, ,

V (H +4mM) =0,

Hoj

FIG. 2. Orientation of the static fields. z is the unit
vector in the direction normal to the sample plane. n
is the angle between the applied field H~~ and the nor-
mal.



FERROMAGNETIC RESONANCE IN METAL LIC. . .I. . .

where the angles, 8,&
and z, are as shown in Fig.

2.
For the infinite plate, propagation may be as-

sumed to be confined to the z direction, so that

Mi = Moi + mi

Hi = ~+4(,
where

m =m e~~~~ ~&
af

i(~ t -kg)

(6)

(9)

mi = —Qg Iii, n = x, y,
mi = -Ii)/4m,

where

Qi = (1/4w) [1 ,'i6,'Ii—,']—

and

(10a)

(lab)

5y = c /2' vy(d ~

Eliminating h by means of Eqs. (10), Eq. (5) re-
duces to

me; (mi)
~m,')

In Eq. (12)

(12)

We assume, in what follows, that m& and Q are
small compared to Mz and ~ (small-signal ap-
proximation). It follows from this' that m& is nor-
mal to M;, so, that only two of its three compon-
ents are independent. Substituting the values from
Eqs. (6)-(9) into Eqs. (1)-(5), and neglecting sec-
ond-order terms, ' one obtains

The terms a;, 5&, c&, d&, and 0& in Eq. (12) are
defined in Appendix A. The terms m& and m~~ are
the polar components shown in Fig. 3.

The system of homogeneous equations, Eq. (12),
has a solution only when the determinant of 6~ is
zero. From this condition, one obtains a disper-
sion relation which is quartic in k', except at n
= 0, where it decouples into two biquadratic equa-
tions, and at ~ = 90, where it separates into a
cubic and a linear equation in k'.

The four pairs of k values for each frequency,
obtained from the dispersion relation, may be re-
introduced into Eq. (12) to give the relationship
between m& and m&e. Then Eqs. (2) and (10) yield
the electric and magnetic fields associated with
each solution. This constitutes the exact method. "

B. Approximate method

In the, absence of conductivity and of damping, .
G~ reduces to'

(Hoi+ 2Ailij~/M~ + 4wM~ sin 8~

-iQ,
i0)

Ifoi + 2A i 0)/Mo~)

U~~~= Uai= iQi/(200' —4mQ~M~ sin 80')

In Eqs. (15)

(15b)

(14)
The matrix Go can be diagonalized by the same

unitary transformation U~ which permitted Kobay-
ashi et gl."to obtain the uniform precession mode
for the magnetoeleastic insulator. The elements
of U' are

Ui„= U~„=Q)/(20~ +i4wQ~MO( sin'8')'~', (15a)

k-(d, sin'8~+a, cos'8„+i0, ) fi,
Qog =Qg+(2wMoq sin 80))'.

If we apply the transformation U~ to G~, the off-,
diagonal elements of the matrix,

m'
J

Jl

are generally small compared with the diagonal .

elements. ' Thus, in taking the determinant of S,
we may neglect the off-diagonal elements. Then
each of the diagonal elements yields a dispersion
relation which is biquadratic in k".

0'~yk) +7T2gk~ +773) = 0.~

4 3

4
w~~k~+w „.k)+m'6) =0.

(16)

(17)

X

FIG. 3. Cartesian and polar components of the rf
magnetization.

The terms m, &
of Eqs. (16) and (17) are given in

Appendix B Equation .(16) is the dispersion rela-
tion for the branches with the resonant sense of
polarization, Eq. (17) for the nonresonant sense.
We refer to these as p& and p~, respectively. The
relation between m arid p is given by.
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(mq) q fi1P

(m,')
(18)

Each of the dispersion relations, Eqs. (16) and

(17) gives rise to four roots, in two pairs, for
positive and negative propagation directions. We
shall refer to the roots of Eq. (16) for propagation
in the positive z direction as k» and 0,'„and to
those of Eq. (17) as k, &

and k, &. The rf magnetiza-
tion in layer j (omitting the time dependence here,
and in what follows) may then be described by

2

UJ + Ug
ktt COSe g llew nj + 12' nd

2 j +
gy M 21~nj 22I N+

tl= 1 tlJ@n't

(2o)

(21)

2

= P [C„'& cos(k&z)~+ C„'„&sin(k~. z)] . (19)

The eight coefficients C~'&(1 &P & 4), are to be
determined from the simultaneous solution of the
EM continuity equations, the continuity equations
for the different magnetization polarizations, ' and
the boundary conditions on the magnetization at the
external surfaces We m. ay now combine Eqs. (18)
and (19), and make use of the relation between
polar components of m evident from Fig. 3, to
solve Eqs. (10) for the magnetic field in terms of
the resonant and nonresonant polarized components
of the magnetization:

7 or 8 less numerical computation. ' Given this
fact, and the difficulties in numerical calculation
associated with the problem considered here, the
remainder of this and the following paper assumes
use of the approximate method.

IV. CONTINUITY EQUATIONS FOR THE MAGNETIZATION

For the case of weak interdiffusion, that is, the
case when the magnetization ~M~ remains essen-
tially constant almost to the interface, Hoffmann
has obtained a set of continuity equations for M at
each interface from enthalpy minimization con-
siderations:

M2 J gg
Aj.j+i

2+1

+Pg(Mg ~ z)(M~&&2) =0, (26)

+~ M. x ™j+~ Aj j+~ M. x MI' "' ez3+1 9+1

+P;„(M;„z)(M,„&&z)=0, 1&~ &Ã-1. (27)

The first term of each cf these equations repre-
sents the torque due to the gradient in the direction
of M near the interface, so that the exchange con-
stant is that of the material concerned. The sec-
ond torque is due to the exchange coupling between
layers, and contains the coupling constant Aj j+y.
The last term represents the torque due to the
interfacial (surface) anisotropy, and contains the
term P, defined as

k) =4m sine~(U'11/)+ +U1np~ ),
where

(22)

q„',. = (1/4w) [1--.'f5,'(k~)'] .
Then, with Eq. .(2), we may solve for the electric
field ej:

-c eh. '.
e j

4m(x j Bs

C 8kje'=
4wo j ez

ej =0.

(23)

(24)

(25)

Thus, the problem is solved for the bulk of a
given layer. However, before going further, it is
worthwhile to point out the limitation of the ap-
proximate technique. At antiresonance (FMAR),
the off-diagonal matrix elements of 8' are no long-
er negligible compared to the diagonal elements, '
and one must resort to the exact method for ac-
curate solutions. " Outside of this region, we have
found that the approximate method yields excellent
agreement with the exact method, with a factor of

Since we wish to employ the approximate calcula-
tion for the rf magnetization, we need to trans-
form Eqs. (26) and (27) into the coordinate system
of the resonant and nonresonant polar jzations.
This poses a problem: because of the interfacial
anisotropy and the coupling between layers, the
magnetization direction varies near the interface
even in the case of small interdiffusion. There
are two serious consequences of this fact: First,
a completely rigorous solution of the LL equation
should include the exchange interaction arising
from the variation of magnetization direction.
This makes the characteristic wave vectors func-
tions of position within each layer. Second, it is
not obvious a Priori that the approximate calcula-
tion can be applied in the surface 1'ayer, that is,
that the rf magnetization can be described simply
as the sum of a resonant and a nonresonant wave.
It can be proved, "however, that the exchange
modifies only the diagonal terms in G'(z) [Eq.
(13)]; it introduces no additional off-diagonal
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terms. In fact, for each point in space, the wave
vectors are given by the approximate calculation
if we use the transformation of Eq. (15) with 8, (z)
replacing 80&. This of course implies that, for the
region of the interface, the coefficients C+ in Eq,.
(19) must be replaced by C~~(z) when the k's are
replaced by k~, (z) (1 &p & 4). In order to make
this distinction clear, we designate the waves in

the interface region by $;, and those in the bulk of
a layer, where 8 = 8&, by p~'. Solution of the con-
tinuity problem thus requires transformation of
Eqs. (26) and (27) into equations for g&. This is
done after transformation into polar coordinates,
with Eqs. (18), in which 8„ is replaced by 8~(z).
Neglecting second-order terms, and making use of
m, ~ ~ =0, we find

(&;, /8& l „, (q;„[AU'(z~„)+8 BU'(z~„)]
~

+ BV (zy„)
~

' + CU"'(z~„)
~

=0,
I+i

(28)

9+1 9+1

(29)

where 8 —= 8/sz. A, , E are diagonal matrices
whose elements are given in Appendix C. The ele-
ments of the derivatives of U(z) are given in Ap-
pendix D.

A complete rigorous solution of the problem re-
quires solving the dispersion relations point-by-
point, followed by the point-by-point solution for

That is, one finds amplitude functions C»(z)
(1 &p & 4) such that the waves (& simultaneously
satisfy Eqs. (28) and (29) at all the interfaces.
This can be done, in principle, but is exceedingly
difficult. The problem can, however, be greatly
simplified if we make two assumptions (whose
validity we shall discuss later). First, we assume

that the thickness D&, over which 8;(z) is different
from 8+, obeys the relation

Dg ~dg,

where d& is the total thickness of the jth layer.
Second, 8,&, the value of 8&(z) at the interface,
obeys

) 8ig —8~ ( small .
When these two conditions are fulfilled, the mag-
netization direction is constant almost everywhere
and assumes values near the bulk value at the in-
terfaces. In this case, we can take g& as equal to
ii&' to first order, and Eqs. (28) and (29) become

[AU'(zz+, )+B 8U (zz+,)]
( (

+BU (zz„)
)

+ CU "'(zz ) '"
)

=0,
&») k~. )

[DU"(z„,)+E 8U'"(zg„)] I

'"'
)

+BU"'(z„,)
(

(30)

(31)

at the interfaces. We note that while g&' have been
replaced by p&' in Eqs. (30) and (31) the values of
8&(z) and of 8&„(z) in the matrices A Fare those-
at the interface. These are obtained from the so-
lution of the equation for the equilibrium magnetiz-
ation direction

8'8, (z)

= 2vM~ sin28~(z) +M~H, » sin[o, -8~(z)], (32)

where p =j,j + 1. Equation (32) is subject to two
boundary conditions: 8&(z) is equal to 80& far from
the interface, and simultaneously satisfies Eqs.
(26) and (27) at the interface.

Let us now consider the validity of the two as-
sumptions made above on the size of D and of 8.
For simplicity, we ignore the interfacial aniso-
tropy term, which we assume will be less import-
ant than the exchange coupling term. ' %hen two
adjacent layers have the same magnetization, the
gradient at the interface is zero, and the two hypo-
theses are automatically satisfied. When the ap-
plied field is parallel or perpendicular to the film
normal, the magnetization in each is parallel to
the field, and they are again satisfied automatical-
ly. Finally, when adjacent layers have similar
values for the magnetization M,g Mo j y or when
the applied field is strong (for arbitrary 8), then
the bulk magnetization directions of adjacent lay-
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ers are close to each other [see Eq. (7)]. We then
expect the magnetization gradients to be small,
and two conditions to be satisfied, at least to first
order. This will be discussed further below, and
in PaperII. ' In all other cases, for example, when
the magnetizations in adjacent layers are dissimi-
lar, and the field is small but 8 is close to 0 or
90', we have not found an a priori criterion for
determining if the assumptions are good. It is
necessary in these cases to solve Eq. (32) and de-
termine 8;(z). If the hypotheses are satisfied, one
may use Eqs. (30) and (31); if not, one must solve
Eqs. (28) and (29).

(9iy= ~. ,&+i= ~ ~ = ~0,&+i

P9 (z ) IJP+ 1(z ) UJ IJJ+ 1
J+g

and Eqs. (30) and (31) reduce to

(33)

(34)

Jyd+1 (sg- j o,j+1

(35)

+
i /+1 9+1 si j+1 ~O.9+1

Jy/+ 1 8 0)

(36)

The continuity equations for the two polarizations
are decoupled and may be treated separately. We
note that when the coupling A& &„between layers
j and j+ 1 is weak these reduce to

8Wp=0~ P=j~ j+& ~ (37)

The spins are free at the interface. When the cou-
pling is strong, the waves are in phase and

M, ~+,p, ™„J"~+ (38)

From Eqs. (35) and (36) we find that the gradients
of the rf magnetization are related in a fashion
completely independent of the coupling:

A& & A~+

Qf Oy/+ 1
(39)

The derivatives of the rf magnetization waves have
the same sign at the interfaces.

A. Decoupling the continuity equations

Let us now assume that the above hypotheses
hold and that Eqs. (30) and (31) apply. In this case,
the problem can be further simplified. Inspection
of these equations indicates that the resonant and
nonresonant senses of polarization, p' and p
are coupled. However, if the magnetizations of
adjacent regions are similar, or if a strong field
is applied, as indicated above, the magnetization
directions satisfy

There exists one other case for which the two
yolarizations are decoupled. When the interfacial
anisotropy P is large, the first terms of Eqs. (30)
and (31) dominate the others. The continuity equa-
tions then reduce to

p~ = 0~ P =j~j+ 1 .
The spins are pinned at the interface s =s&„.
[This result can also be obtained directly from
Eqs. (26) and (27).]

(40)

B. Continuity equations at the outer surfaces

At the external surfaces of the sample the con-
tinuity conditions are given by Eqs. (30) and (31),
with AD~=0, Ag g+~=0:

(41)

+BU"(z„„)
i

" =0. (42)
(si nk

These equations are equivalent to those which have
been given previously in the literature'" for sin-
~~lefilms. Theydiffer only in that they are written
in terms of p'and p . The only nonzero terms
remaining in matrices A and D (see Appendixes C
and D) are those proportional to P, the surface
anisotropy. When P is large, the first terms of
Eqs. (41) and (42) are dominant, and the spins are
pinned at the external surfaces. If P is zero, the
external spins are free. Except in these two lim-
its, p' and p are coupled at the external sur-
faces. Clearly, the value of P may be different
for each of the external surfaces.

U. SOLUTION OF THE PROBLEM: ABSORBED POWER

SPECTRUM

In order to write an expression for the power ab-
sorbed by the specimen, one must know the vari-
ous components of electric and magnetic field
throughout the sample. That is, one needs the dif-
ferent coefficients C~; (1 &P & 4; 1 &j &N) of Eq.
(19). In order to obtain these, one simultaneously
solves the equations of continuity for the EM fields
and for the magnetization waves of both yolariza-
tions at the external surfaces and at all the inter-
faces. In general, this is a difficult problem, and
we shall solve it in the special case of complete
symmetry about a central plane, with completely
free or completely pinned syins at the outer sur-
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g= ge) e)+ 1p e& eg+

z =sg+„1~j ~ ~ (N - I);
and at outside surface:

Qx hx
0 1

0 1

e",=e", ,
e'=e'

0 1 P

(43)

(44)

(45)

(46)

(4'7)

faces. By complete symmetry we imply symme-
trical excitation, a sample. consisting of an odd
number of layers, with layer j identical with layer
N -j + 1, and interfacial conditions identical at z
=zy and 8 =zN g+2 ~

Under these assumptions, only one half of the
continuity equa, tions need be solved, as the other
half are identical and are solved trivially. The
equations which remain are the continuity equations
for the transverse electric and magnetic fields at
the interfaces" [see Eqs. (20), (21), (23), and
(24)]:

h) =h~+„h~ =h~~+ „

When R„,= R„„=R, there is conservation of the
polarization of the EM mode as it is reflected at
the sample surface. " R is a surface impedance,
in the same sense in which the term is generally
defined. " In this case, Eq. (50) is quadratic in 8
and has two solutions, A' and R . These are the
characteristic impedances of the system. To each
of these, there corresponds a characteristic polar-
ization of the EM wave in vacuum. These two po-
larizations are linearly independent, "and it is
possible to treat any incident polarization as a lin-
ear combination of the characteristic polariza-
tions. Letusbe more explicit: letg*andh, be
the values of the incident magnetic fields in the
waves corresponding to A' and R, let P'be the
power absorbed when the incident field is h, and
let P be the power absorbed from h, . Since the
two polarizations are linearly independent, the
power absorbed when tl'e incident field is

given by the sum of the power absorbed separately
from fields of intensity aa*Ih,'I' and bb* Ih, I',
that is,

8 8 1 P P=aa*P'+ bb*P (51)

plus'the equations of continuity for the two polar-
izations of the magnetization at the interfaces and
at the surfaces. -

In all, there are 2(N+1) equations for the EM
field, and 2N equations for the magnetization, giv-
ing a total of 2(2N+ 1). As for the number of un-
knowns, there are 4(N —1) values of C~~ to be de-
termined for the first 2 (N —1) layers, and 4 for the
central layer (due to symmetry, only the even so-
lutions are kept for this layer). Finally, there are
four unknowns (h*„h",, e"„8,") at the surface, giving
a total of 4(N+ 1). That is, there are two arbitrary
amplitudes which we may specify.

Let us now introduce a set of quantities which
ylay the role of surface impedances":

The problem of calculating the resonance spec-
tra is thus reduced to the problem of obtaining P'
and P, that is, to a solution of the equations of
continuity with the characteristic impedances of
the system. Let us therefore, obtain explicit ex-
pressions for P' and P .

To the two surface impedances 8' and R there
correspond two series of coefficients (C~&)' and

(C») . Introducing these coefficients into Eqs.
(20), (21), (23), and (24), we obtain the magnetic
and electric fields everywhere inside the sample.
From Poynting's theorem, one obtains expressions
for the power absorbed by the sample, and by each
of the layers. We find" that the power absorbed
by the whole sample is given by

R„,= -each", , (48) &' = (c/v)lb~'I' Re(Z') . (52)

ff,„=e",/h", . (49)

R„„R~+n, A„,+ AIR„„++3=0. (50)

With Eqs. (48) and (49), we may eliminate the two
electric components (e'0 and et) from Eqs. (46) and
(4V). Then, from the group of continuity equations
[Eqs. (30), (31), and (41)-(4V)], one obtains the co-
efficient C~& in terms of h"„h'„R„„,and R„„. Us-
ing these coefficients in Eqs. (20) and (21) along
with Eqs. (44) and (45), one obtains two homoge-
neous equations for h0 and h~0. Setting the deter-
minant of this system of equations to zero, we ar-
rive finally at an equation of the form

The power absorbed by the jth layer [and by its
mirror image, the (N —j + 1)th layer] is

&g' = (c/v) Ih g' I' Re(l &'I'&„'.+
I g'I'&.'„)I:::,.i

For the central layer

P(sr+ 1)r~

1&j & ', (N I). --(53)

= (c/vr) Ih,'I' Re(Ix,'I'8,'„+Ig I'ff'„,) I, ,
(54)

The coefficients A. '„, A. '„, and the R's are defined in
Appendix E. We note finally that Eqs. (52)-(54)
are not exact. In going from Poynting'. s theorem to
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these final equations we have neglected the surface
and interfacial impedances in comparison with the
intrinsic impedance of vacuum. This is always a
good approximation, since R never exceeds a few
ohms, "while the vacuum impedance is 367 A."
Equations (52)-(54) have the desirable feature of
being relatively simple and easily used in numeri-
cal calculations.

A. sjecial case. Let us consider the special case
in which the interface anisotropies are negligible,
and one of the two conditions, strong applied field,
or similar neighboring layers, are satisfied. As
we have shown in Sec. V, the two polarizations are
then decoupled and may be treated separately. The
nonresonant polarizations will be only weakly ex-
cited, "and it is possible to neglect them without
introducing any inconsistency in the continuity
equations. In this case, Eqs. (20), (21), (23), and
(24) yield

A,/+I ~e eg+I
h~ k~+, e~ e~+,

z =z„„1&j& ,'(N+I). - (56)

Equations (56) permit us to eliminate half of the
equations of continuity for the EM field. Since we
may neglect the continuity equations for the non-
resonant polarization, the total number of equations
and of unknowns is half of what it was previously.
Following the same reasoning as i.n the previous
discussion, we obtain a linear equation in A for a
single surface impedance. Then, the absorbed
power is

Z =(cl~) Ih I'Re(Z) (57)

for the whole sample,

&(=(cl') i~pl'~e(l~l'~l. '=." ), 1 ~i» l(&-I)
(58)

for the jth layer, and

~(». )y. =(c/'v) l~; I'Re(l~l'~l. -.( „,)„) (»)

for the central layer. The c'oefficients X and r are
defined in Appendix F. This is obviously a much
simpler numerical problem than the general case.

Whether we are interested in the general or the
special case, the power can always be obtained by
another approach. Combining Poynting's theorem
with Gauss's theorem, one can integrate the energy
density to obtain

e", U'„(z)

(55)
When we take account of Eqs. (33) and (34), this
implies

J' = —'(gp Em m. h*dv +-,'o e e*dv.
V

This expression is usefu1 in the interpretation of
the behavior of the system, but is disadvantageous
for numerical calculations as it requires lengthy
numerical integrations.

VI. DISCUSSION

We have presented here a method which permits
us to solve, by an approximate treatment, the
problem of FMR in metallic multilayers for arbi-
trary directions of the applied static field. The
restrictions on the validity of the approximations
and of the method are: first, that the FMR spec-
trum not include the antiresonance of either of the
layers, as the approximate dispersion relations
are not valid in this case'; second, the interdiffu-
sion between layers must be weak so that Hoff-
mann's equations' will be applicable; third, the
static magnetization near the interfaces must obey
the conditions, discussed above, of small change
and of small tegion of change (compared to the
layer thickness). If the second and, especially,
the third conditions are not obeyed, the wave vec-
tors become point-by-point functions of position
and a comp1etely different approach must be taken
to the problem. We have seen that when the third
condition is fulfilled, the magnetization may be
described everywhere in a layer in terms of the
two polarizations p,

' and g . If adjacent layers
are sufficiently similar, or if the applied field is
sufficiently large, one may simply neglect the non-
resonant polarization in the solution of the prob-
lem. Evidently, the conditions of small change of
magnetization direction and of similar layers are
closely interrelated if the interfacial coupling is
reasonably strong.

Even if the three conditions cited above are
obeyed, if adjacent layers are not sufficiently sim-
ilar a solution involving all of the polarizations be-
comes very difficult numerically. It is relatively
easy to see why this becomes a problem. We can
write the set of continuity equations as a matrix
equation

~C=r . (60)

In Eq. (60), C is a vector of amplitude'coefficients

C„,-, I" is a vector whose components depend upon
the fields at the surface of the sample, and v' is a
matrix whose elements depend upon the physical
properties of the various layers Solving .Eq. (60)
is equivalent to finding the inverse of &. In the ap-
proximate problem of N layers, ~ is a 4Vx4N
matrix. In the more complete problem, it is an
8Nx8N matrix, as one takes into account both
resonant and nonresonant polarizations. The terms
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relating to )he nonresonant polarization appear in
the same rows as those relating to the resonant
polarization. These different types of term may
differ in size by several orders of magnitude. If
one simply attempts to invert the matrix, it is
impossible to find an appropriate normalization
which avoids overflows or underflows, and the
numerical accuracy becomes unacceptable. As a
result we have not yet solved such a problem, al-
though it is likely that this can be dope by using
the solution of the simpler problem as a starting
point. 2'

In the following paper, ' we shall present the solu-
tion of a particular simple problem, along with a
semiquantitative model explaining the results of
the calculation.
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APPENDIX A

The terms in Eq. (13) are defined as follows:

aj —(A j /y j)(Hpj /M» + 1/Q j) + 2A j jlj k j /y jMpj,

k, =a„+M„/q, +2A, k', /M„,
cj =Hpj+4mMpj+2Aj 0 j /Mpj,

d, = (A j /y j )(Hp j /Mp j +4'�)+ 2A j A j k j /y jM 0j,
Q=j/pjy j.

APPENDIX B

The terms in Eqs. (16) and (1V) are defined as
follows:

2
m, —pAjQpj 5j $,j/Mpj,
'Tp j [2AjQp jul j /Mp j + (Ppj + 2VMpj sin'80 j)

&&(XjQj/yjMpj —iQpj)05j+ piQpj6j j, .

m, j = (Flpj+4Mpj)-(Qpj+i Xj Q j /y jMllj) +0j,
jj4j —PAjQpj 5 gpj/Mpj,

n, j =(Hpj+2jjMpj sin Hpj)(kjQj/yjMllj+iQpj)

X p5j —2Aj Qpj (0j/Mpj+ 01Qpj 5j,
0'pj = (ffpj+ ~Mpj)(Qpj —iyjQj/yjMpj) Qj

where

$,j =1+i jljQj /Qpjy jMpj,

(pj=1 —ihjQj/QpjyjMpj .
APPENDIX C

The diagonal elements of matrices A-F of Eqs.
(28) and (29) are given by

al, = (Aj ~ j+,/M, j) cos(8, j+, -8,j)
—P jMpj cos28jj,

~p =sinHjj[(Aj j~,/Mpj) cos(Hjj —Hj j~,)

-pjMpj cos Hjj],

fj„=Aj/M, j, 5„=(A, /M, j)sine„,
cll +j ~ j + 1/MO

~ j +1) cos( Hi » j +1 —8 1j) &

c„=-(Aj „,/M, j„)sinH, j,
dll (Aj j+1/Mp j+l)cos(Hj j+1

—pj+1M0 j+1cos28j j+, ,

dpp =slnHj j~1[(Aj j 1/Mp j 1) Cos(81 j+1—Hjj)

2—Pj+,Mp j+, cos 8& j+J»
ell Aj+1/Mp, j+1 l

epp (A j + 1/Mp j + 1) sin 81 ~ j + 1

fll =-(Aj, j+1/Mpj) cos(Hi
1 j+1-Hjj»

f 0
= —(Aj j /Mpj) sin81 j

The derivatives of the matrix U in Eqs. (28) and

(29) are given by

HUp„(z) SUp, (z) p ( )
~Q+jip exp

SUP (z) HUP, (z) U (
Qpp —Ap

where

Ap = 2Mpp sill Hp (z) P =J,j + 1 .

APPENDIX E

The terms in Eqs. (53) and (54) [omitting the (+)
and (-) superscriptsj are defined as

z„, I. ..=(e,"/k;)I. ..,

ft,„I, , =-(ep" /kp") I. ..,

1+ Ipi h", ), „
1 kg I c =up

1+ ~jj~'
i kll, =., I

'

where

APPENDIX F

The terms in Eqs. (58) and (59) are defined as
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