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Nucleation of vacancy precipitation during quenching of metals
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A theoretical model describing the nucleation of vacancy precipitation in pure metals is investigated. The
model introduces a new definition of nucleation based on a change in conditions from random walk to
concentration-gradient-controlled vacancy diffusion. Monovacancy as well as divacancy diffusion is considered.
Vacancy cluster concentrations are computed as functions of temperature during quenching for clusters of up
to six vacancies. The critical temperatures T~ for nucleation of precipitat'ion are computed for all considered
cluster sizes. Numerical parameter values are chosen to represent aluminium. The obtained densities of
vacancy precipitation nuclei are compared with available literature values of dislocation-loop densities in

quenched aluminium. Within the investigated limits, the choice of maximum cluster size before nucleation of
precipitation is not critical for the resulting densities of nuclei and nucleation temperatures T~.

I. INTRODUCTION

Clustering and precipitation of vacancies is a
phenomenon which is interesting from thermody-
namical as well as mechanical points of view for
many metals. A great number of quenching and
annealing experiments have been reported in the
literature, using calorimetric, resistivity, and
density measurements, as mell as structural
studies by transmission electron microscopy.

Initially, quenching was considered as an instan-
taneous event, and all vacancy clustering was as-
sumed to take place during subsequent annealing
(see, e.g., Befs. I and 2). Later, however, the
possibility of cluster formation and growth during
the actual quench was considered by Cotterill, '
Kuhlman-Wilsdorf, ~ and Doyama. '

Silcox and Whelan' have used a "continuum" ap-
proach to examine the special case of growth of
prismatic dislocation loops at constant tempera-
ture. Their expression can be generalized for the
case of voids. Wiberg et el.' used a similar method
to describe growth of voids during quenching of
aluminum. However, a continuum model must be
based on an assumption of preexisting vacancy pre-
cipitation nuclei, and cannot describe the early
stages of a quench, when the vacancy clusters form
and break up by random processes. For this pur-
pose an "atomistic" approach is necessary.

Cotterill' used the atomistic approach in a quali-
tative theoretical study of vacancy clustering during
a quench. He obtained the principal behavior of
the concentration versus time curves, when clus-
ters of up to four vacancies compete in the pres-
ence of low contents of impurity atoms. He con-
cluded that there was no unifying theory capable
of explaining all observations in quenching experi-
ments.

In the present work, an atomistic approach is
again used to describe vacancy clustering during a

quench and special attention is paid to the nuclea-
tion mechanism. A new concept is suggested for
the definition of nucleation in terms of a change in
diffusion conditions.

II. VACANCY CLUSTERING DURING RANDOM-WALK

DIFFUSION
1

Irrespective of equilibrium conditions, the for-
mation, growth, and breakup of vacancy clusters
can be described by random-walk diffusion of va-
cancies at sufficiently high temperatures. In most
metals, the migration enthalpy of mono and diva-
cancies is so much lower than that of large clusters
that it is not necessary to consider more than
mono and divacancy diffusion. Larger clusters are
essentially immobile during their lifetime, but
change' sizes continually by absorbing or emitting .

mono or divacancies. (In this respect, the instan-
taneous position of, for instance, all tetravacan-
cies changes with time. )

The random-growth and breakup process of va-
cancy clusters is described according to Fig. 1.
Clusters v, (i ~ 3 is the number of empty lattice
sites momentarily constituting the cluster) occur
at a concentration c, within an atmosphere of mi-
grating (diffusing) mono and divacancies v& of con-
centrations ej, j=1,2. 0.&, are probability coeffi-
cients for the transition of a v, &

to a v, by associa-
tion with a v&, while &,&

refers to the dissociation
of a v,. to a v, &

plus a v, All interaction between
more than two units (e.g. , the association of three
monovacancies to a trivacancy) is neglected. Fur-
thermore, if all vacancy sinks but clusters are
neglected,

pic, (t) = const

and

(2)

15 5129



JANE WIBERG AND OLOF VINGSBO

„-(ej+a&j)/ ar
kj fj (7)

Cj Cj

FIG. 1. Growth and breakup of vacancy clusters by
random-walk diffusion. v& is a cluster of i monovacan-
cies (i ~ 3) in an atmosphere of migrating units v j(j
=1,2). Growth, {upward arrows) takes place by associa-
tion and consip les a vj. Breakup (downward arrows)
corresponds to dissociation, creating a v j.

Developing the ideas of Cotterill, ' Doyama, ' or
Koehler et ul. , the association and dissociation
rates can be expressed by a system of differential
equations in dc,/dt. The general rate equation is

ding

c~c( 9+ Q((+~)J c(+j
j=l

v+ s((+I &

n23= n32= p.
(3)

(4)

+ g (c.„c,—o.'„c,c, ,); j=l, 2,
f=j+l

where also interaction between mono and divacan-
cies has been taken into account in the terms out-
side the summation. Conditions (4) simply reflect
the fact that, with the present indexing, the tran-
sitions n» and n» are equivalent to transitions
nl3 and n», respective ly.

The probability coefficients are
Nj/pTjf j4

for association, and

The corresponding rate equation for the migrating
vj configurations is

dcj 2 2

dt
—(g —1)(c(,.c~ —a.~c.)+82) ~ c2 ~ —&xg 2 ~ c)

~ 2 l ~

for dissociation. G is a geometrical factor, v is
the atomic vibration frequency, Mj is the migra-
tion enthalpy for vj, and B&j is the binding enthalpy
of a vj in a v, cluster. v is the product of the De-
bye frequency vo and an entropy factor e . The
entropy has, however, been neglected, and the
approximation v = vo is used. G is calculated as the
number of geometrically possible „'umps for the event
in question, and depends on the configuration of any
any particular cluster. Ithas beentabulatedfori =3
for allpossible shapes of trivacancies inan fcc lattice
by Koehler et al.' Already, for i = 4, however, the
number of diff erent geometries, each representing
its own contribution to the total concentration C4,
constitutes an extensive problem. Compared to the
exponential factors in Eqs. (6) and (7), and the c,.
values in Eqs. (3) and (5), the influence of G rapid-
ly falls with i, and the following simplification has
therefore been used in the present calculations.

The rearrangement from one configuration (a)
to another (b), with constant i is controlled by a
probability coeff icient

G &&~aa~/n r
ab ab (8)

fori &3, j=1 and fori &4, j=2. The corresponding
values are given in Table I.

The binding enthalpies B,j approach the mono
and divacancy formation enthalpies F j for increas-

TABLE I. Applied approximations for the geometrical
probability factor G and the binding enthalpies of mono
and divacancies to vacancy clusters.

B@

2
3

5
6

1 22G3
1.16G4
1.14G5

0.25F i
0.45F,
0.56F(
0.64F,
0.70F,

0.64F i
0.87F(
1.03Fg
1.14F(

where ~,~ is the (unknown) difference in binding
enthalpy between the two configurations.

j ~„~ is a small quantity compared to M, and

B&j, and at the high temperatures which are con-
sidered, a cluster is continually and rapidly swing-
ing between its different geometries. The cross-
section area for collision with a v j then approxi-
mates that of a sphere of radius

g —-'bil/32

(b is the shortest interatomic distance). G is now
considered proportional to the sphere surface, and
is approximated by
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B„=~,[(i —1)/3]',

B 2 = 2B I|—B2i =Ji, (2[(i —1)/i]

(ii)
(12)

which is in agreement with numerical estimates
by Cotterill. The applied approximations are
given in. Table I.

ing i, and are assumed to obey the empirical re-
lation

[09:,c,

-4
c„

l-5.— -'""'
I c,

~ 0 3 tg ~ ~ .~ . a~%..%e

Imax

I

C

III. - QUENCHING CONDITIONS

T =T,+ (T, —T3)e e', (13)

The system of rate equations (3)-(5) describes
the variation of c, with time. A quench is described
by the relevant temperature-time relationship,
with the aid of which the time derivatives can be
transformed to temperature derivatives. The
solution of (3}-(5)then gives the actual concentra-
tions c, =c,(T) during the quench.

In the present investigation the conditions were
chosen so as to correspond to a water quench ac-
cording to Hellstrom et ni, ' and may be described
by the exponential relation

Ic,

-10

c,-11

I I I I I ' T(K)
900 800 700 600 500 400 300

FIG. 2. e;(T) curves for imp=6 (full lines), j„~=5
(dashed lines), and imp=4 (dotted lines). The c& super-
scripts, when applied, refer to i~~. (E&=0.76 eV,
Mf 0 75 eV, and M2= 0.50 eV.)

where the coefficient e determines the quenching
rate. t„(T)=x'„/8D,

(eN// ATi2/3/8s2p tI/ 2/3)c 2/ 3
0 0 (19)

Tg=(~O }' (i4)

often referred to as the breakup time, is then a
function of temperature, according to

(p G ) le(N~+B~. )/ AT
0 4

With the same indexing as for 0.', the mean free
path of a migrating v& for collision with v, cluster
is defined by

x„=[i/(V, c,)]'/', (18)

where N0 is the number of lattice points per unit
volume.

Einstein. 's formula gives the corresponding
average migration time

t„=(2x„/2D, )2,

where

D ~-&g / k T+h,S / A, ~ g2p ~-&g / A Tj 0 0

(i7)

(18)

is the diffusion coefficient for a v, (u is the lattice
parameter). It is now possible to express the mi-
gration time as a function of temperature as fol-
lows.

IV. NUCLEATION OF VACANCY PRECIPITATES

As seen from Eq. (7), the dissociation probability
coefficient a,.

&
can be considered as the frequency

of successful attempts to break up a v, cluster.
The corresponding average lifetime

Tf/= (B0/k) [InG, l/n8n2

—3 inoIr, /i) - -'. inc, (T'„)] ' . (21)

where c,=c,(T) is the solution of the rate equa-
tions (3)-(5). It will be shown later (see Fig. 2)
that all c„ i &2, increase rapidly at the beginning
of a quench, with the consequence that both v,&

and t„.decrease. A numerical comparison shows
that, for sufficiently high temperatures at the be-
ginning of the quench, 7 0 & t,&, and both associa-
tion and dissociation take place by random walk
diffusion as described by Eqs. (3)-(5).

Below a critical temperature T,&
= T*,&, however,

the breakup time is longer than the migration time,
and vacancies begin to flow into the v, cluster.
This implies the development of vacancy concentra-
tion gradients around the cluster, which at the
same time becomes localized in space and starts
to grow.

The change from random-walk to gradient-con-
trolled vacancy diffusion is hereby introduced as
a definition of the nucleation of a vacancy precipi-
tate. The critical temperature T*,&, typical of
each particular ij combination, is obtained from
the critical condition

tg (2O}

After substitution of Eqs. (15) and (19), T~& is im-
plicitly given by



This equation can be solved numerically, or graph-
ically from the intersection of the t,&(T.) and v, &(T)
curves.

The present definition of T* can be compared
with earlier suggestions and calculational methods,
e.g., in Ref. 3.

V. NUMERICAL COMPUTATION

The rate equations (3)-(5) and the nucleation
temperatures T*,

&
have been solved numerically

for i ~ 6 with the aid of an IBM 370/155 digital
computer. The digital solution of up to six coupled
differential equations represents a rather difficult
problem, particularly as the range of c, spans
over many orders of magnitude, and the deriva-
tives dc, /dt are differences between terms, each
of which is many orders of magnitude larger than
dc,./dt itself.

Numerical values were chosen to represent
aluminium. The only boundary condition necessary
is Eq. (1).

VI. RESULTS AND DISCUSSION

A. General properties of the concentration curves

The essential parameters of the model have been
varied in order to study the effects on the family
of c,(T) curves, and on the nucleation temperatures
T*,.&. Irrespective of the choice of parameter
values, the principal shape and position of the
curves was always the same, as seen from the
diagrams in Figs. 2-4.

Because there is a finite binding energy of a
migrating unit to a cluster, there is a higher prob-
ability of association than dissociation, and all
cluster concentrations grow with decreasing tem-
perature at the expense of the monovacancies.
After T =600 K, clusters of all orders except i,„
occur in roughly the same concentrations (about
10 '). Mutual competition then causes irregular
curve shapes, the detailed interpretation of which
is not of interest for the present model. The only
significant feature is a continuous loss of divacan-
cies in this interval.

B. Quench parameters

The quench temperature Tq was kept constant,
in order to allow assumption of a high initial va-
cancy content.

The quench rate was altered by varying the time
coefficient 8 and the temperature T, of the cooling
medium in the intervals

7 e 30, 85 T, 285K.
Only minor differences were obtained in the curve

TABLE II. Applied basic G values.

Cluster
geometry

60'
90'

5 20'
180'

84
20
24
56
$4

tails, for T &400 K, and in all the runs reported,
the values 8 = 7 and T, =285 K were chosen as best
representing a water quench.

D. Maximum cluster size

The maximum size of clusters, considered during
the random walk diffusion, is given by the choice
i „ofmaximum cluster order. A basic problem
is to what extent this restriction affects the validi-
ty of the model. Naturally, because the initial
cluster concentrations c,~( qT) decrease with in-
creasing size, very big clusters must be negligi-
bly few. Mainly for computational reasons, the
present calculations have been restricted to i,„(6

As mentioned in Sec. VIA, all c, fori &1 are
expected to, and also found to, increase during the
quench. The fact that the binding enthalpies in-
crease with i implies that the rate of concentration
increase is always higher for bigger clusters,
which is also seen from the diagrams for T &600
K. In addition, however, c, always exceeds all
concentrations of smaller clusters and approaches
c, & 10 ' for T &450 K, irrespective of the choice
of i . An example (i =4, 5, 6) is reproduced in
Fig. 2, which also shows that the three c,-,„
curves are essentially the same. This property of
the model is of central importance, particularly
with regard to the nucleation conditions, and will
be discussed later in Sec. VIH.

C. Geometry factor G;&

As seen from Eq. (10) and Table I, the approxi-
mated G&& values are based on G» and G» for mon-
ovacancy diffusion, and by G,~ and G4, for divacan-
cy diffusion. Table II gives the applied values.
G» was varied for all possible geometries, includ-
ing different sums up to G»= 114.

The lowest G» values resulted in a somewhat
lower consumption of the migrating units and a cor-
respondingly reduced c, growth rate for i —3. No
essential relative changes occurred, however, and
in all the reported examples, the value G» 114
has been used.
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log c,

-4—
C)

teresting temperature range T~ 600 K (cf. Sec.
VIG).

The monovacancy migration enthalpy M, was
varied between the limits of 0.62 (Ref.1) and 0.75
eV.' The effect was much lower than that of vary-
ing F„and can be neglected together with the even
smaller effect of varying M, .

G. Nucleation conditions

-10

-11 1
I I I I I T (Kj

900 800 700 600 500 400 300

FIG. 3. Effoct of divacancy diffusion. The case of
both mono and divacancies as migrating units (full lines)
is compared to the case of neglecting all association with
divacancies (dashed lines). (iffy~=6, E&=0.76 eV, M&
= 0.75 eV, and M, = 0.50 eV.)

E. Mono and divacancy diffusion

The influence of divacancy. diffusion was studied
by eliminating all divacancy association. (This
was simply achieved by choosing G~4=0, which
gives all divacancy association probability coeffi-
cients n2*= 0.)

The effect is not drastic, as demonstrated by the
two families of curves in Fig. 3. Naturally, the
divacancy concentration increases, but the general
c, drop for the lowest temperatures is still visible.
At the same time, however, the monovacancy
losses decreased, primarily at the expense of
c, , which is of greater importance for the pre-
diction of vacancy precipitation densities. There-
fore, divacancy migration is always included in
the results reported hereafter.

The effect of neglecting divacancy dissociation
(G„=0) was minimal, which simply reflects the
high binding energies of divacancies.

F. Vacancy formation and migration enthalpies.

Because the binding enthalpies are expressed in
the monovacancy formation enthalpy F, the latter
has a rather strong influence via the exponential
relationships (6) and (7). E, was varied slightly,
between the literature values 0.V3 (Ref. 10) and
O. V6 eV, ' typical of aluminium, with the resulting
curve shifts of Fig. 4.

Although exaggerated by the logarithmic scale in
Fig. 4, the effect may be of importance in the in-

Critical temperatures T*,
&

for defining the nuclea-
tion conditions of vacancy precipitation, were nu-
merically computed according to Eq. (21). A sum-
mary of representative (c,, T f&) coordinates are
plotted in the c,-T surface of Fig. 5(a) for i =6.

The points corresponding to j =2 are well grouped
along the early steep part of the c, curves. The
chronology is always such that bigger clusters of
correspondingly lower concentrations nucleate
first.

For monovacancy diffusion, the biggest clusters
again nucleate first, but now occur at the highest
concentrations. All the smaller clusters nucleate
later, in the range where the irregularity of the
concentration curves affects the exact coordinates.

The divacancy-controlled nucleation is thus
found to occur first (at the highest temperature).
It is, however, numerically negligible, because
the resulting concentration of precipitation nuclei
(about 10 ') is two orders of magnitude lower than
that corresponding to monovacancy controlled nu-
cleation (about 10 ').

If, consequently, the nucleation at T~& ~ is dis-

log C;

.4-
C)

C6

-7
C5

C3"

C2

-10

-11 ~'
ce

I I I I I T (K)
900 800 700 600 500 400 300

FIG. 4. Effect of varying the monovacancy formation
enthalpy from 0.73 (dashed lines) to 0.76 eV (full lines).
(~max = 6s M~ = 0.75 eV, and M2 ——0.50 eV.)
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regarded, and T*, , is considered to represent
the physically effective nucleation temperatures,
it is possible to judge to what extent the unavoid-
abLe choice of i affects the results of the model.

Figure 5(b) demonstrates the effect of varying
i between 4 and 6. It is seen that the three
Tf, nucleation points [the upper box in Fig. 5(b),
with indices 61, 51, and 41] form a very narrow
group in the diagram. The corresponding concen-
tration of nuclei is about 10 'irxesPective of the
choice of i

Also, the i=i, points, though at lower concen-
trations, form a well-defined group which, how-
ever, modelwise cannot contribute. Once nuclea-
tion has occurred, the present definition of nuclea-
tion as a transition from random-walk to gradient-
controlled diffusion makes the rate equations (3)-
(5) irrelevant for describing events at tempera-
tures T & T*, and all corresponding c,(T & T*)
curve tails must be disregarded. The i,„clusters
now define the positions of the nuclei and grow. by
monovacancy diffusion in the established vacancy
concentration gradients. The continued growth
of vacancy precipitates proceeds during the quench
process according to mechanisms described pre-
viously, ' and will not be further treated here.

r-—
)51

)max -1
~ d
L

I

31~------~+ 31
d

H. Applicability of the model

41
d

52'
62 d

-10—

-11—
I I I T (K}

900 800 700 600 500 400 300

S, (ev) M, (ev) M, (eV)

b
V
Cl

0

0.76
0.76
0.76
0.76
0.73

0.75
0.75
0.62
0.68
0.75

0.50
0.50 (no divacancy association)
0.62
0.50
0.50

(b) E~ = 0.76 eV, M& = 0.75 eV, and M2= 0.50 eV.
~ glSX

FIG. 5. Vacancy precipitation nucleation coordinates

(g&, T&~&) for some representative parameter sets. The
numbers in the diagrams refer to the i and j subscripts,
respectively.
(a) i~~=6

It has thus been shown that the suggested model
describes the temperature dependence of the
cluster concentrations c, ,„(T) before nucleation
essentially independently of the choice of i
Above all, however, the obtained concentration
c, (Tf,) of vacanc'y precipitation nuclei does
not depend critically on the choice of maximum
cluster size, within the limits investigated. This
is, in fact, one of the most important properties
of the present model. As intimated in Sec. VID
above, an i limit is physically justified because
the starting values of e, in thermal equilibrium at
T, decrease steeply with i. At the same time it is
technically desirable to work with as low an i
as possible. If the result had proved dependent
on the i chosen, the model would have required
an extension towards bigger and bigger initial
clusters. This rapidly becomes impracticable,
because the computational complexity (and cost)
grows extremely steeply with i. (Earlier atomistic
calculations' were restricted to i = 4.)

Eventually, the gradient-controlled growth of
nucleated vacancy prepipitates may lead to a struc-
ture of defects, which are stable and of a size per-
mitting observation and measurements at room
temperature after the quench. This is the case
for intrinsic dislocation loops in quenched alumi-
nium, and the present calculations were numeri-



NUCLEATION OF VACANCY PRECIPITATION DURING. . .

cally adjusted to that metal. The obtained concen-
tration of nuclei corresponds to a precipitation den-
sity

N (
= (N, /i) c,= 10 ~ m 3 . (22)

Reported values of quench loop densities in Al
vary up to 5 x 10 m . ~ The present, calculated
X& value must, however, be expected to exceed
the observed loop densities for the following rea-
sons:

(i) The model neglects all vacancy sinks other
than precipitates. [In principle, this can be com-
pensated for by introducing a "vacancy loss fac-
tor, "which, however, must represent distribution
inhomogeneities (cf. below). ]

(ii) It is a typical feature of the observed struc-
tures of quench loops that the space distribution
is strongly inhomogenous, mainly because of the
action of external surfaces, grain boundaries and
edge dislocation segments as vacancy sinks.
Therefore, reported loop densities correspond to
mean values, which are lower than local density
maxima. The latter, although also subjected to
some losses, would be more representative of the

idealized situation of the present model.
An estimate of local loop densities from available

reports" "(particularly Ref. 15) gives a value

N, , = (7+ 2) x 10"m '.
Finally, it should be pointed out that the model

easily can be applied to other pure metals, simply
by introducing relevant numerical values of the
material parameters E» M„and M» and of the
structural parameters Gy2 Ggy Gy3 G3g G24 and
G~. The effect of alloying elements and impuri-
ties can be introduced by adding the diffusion con-
tributions of vacancy-impurity pairs.

The present results, though numerically carried
through only for aluminium, indicate that i ~ could
be restricted to 4.
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