
PHYSICAL RE VIE% B VOLUME 15, NUNIBER 11 1 JUNE 1977

Semiclassical analysis of spin-lattice relaxation of a tetrahedrally coordinated
four-spin-1/2 system
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A semiclassical calculation of the proton spin-lattice relaxation of a tetrahedrally coordinated four-spin-1/2
group is presented. In this calculation, the nuclear spins are treated quantum mechanically, while the random
reorientations are treated classically. The relaxation mechanism considered is the thermally activated
reorientation of the spin group simultaneously about its twofold and threefold symmetry axes. The
reorientation rates around the twofold and threefold axes are assumed to be different. On this basis, the
temperature dependence of the relaxation is calculated, and it is shown that double extrema in the T,
temperature dependence can occur semiclassically as well as by tunneling.

INTRODUCTION

A number of experiments on proton spin relaxa-
tion of solids with one NH4 group per unit cell"
at temperatures above 50 K have shown two mini-
ma in T, and Typ the spin-lattice relaxation times
in the laboratory and rotating frames, respective-
ly. It is known that in weakly hindered lattices,
tunneling of the NH4 ion can be an important mech-
anism for spin relaxation, particularly at low tem-
peratures. In such cases, two minima may also
appear in the temperature dependence of the re-
laxation time, although usually the lower-temper-
ature minimum appears below 50 K.' We investi-
gated whether or not the occurrence of two minima
in the temperature dependence of relaxation times
in solids where the NH4' ion is strongly hindered
can be explained using the semiclassical model of
Bloembergen, Purcell, and Pound. 4 For this pur-
pose it was assumed that the NH4 tetrahedron re-
orients around all (three) twofold (C, ) or fourfold
(C, ) and all (four) threefold (C, ) symmetry axes.
The corresponding rates of reorientation are de-
noted by v„v„and v„respectively. The v, and

v3 reorientations are as sumed to take p lace by ro-
tational jumps preserving the orientational sym-
metry of the NH4 ion, while the v, reorientation
represents jumps by +90 around the C, axis.

The NH4 ion reorienting about a single C, axis
and a single C, axis was studied some time ago by
Genin and O'Reilly. ' These authors, however,
only calculated the spin-lattice relaxation time in
the limit in which the reorientation about the C,
axis is fast compared to the reorientation about
the C, axis. Their result, using their notation, is
1/T, = s(1/T, ), + (1/T, ),. Recently, ' we solved the
above limit exactly, and showed that the correct

result is 1/T, = s(1/T, )s + (1/T, ),.
In 1972 Kodama' studied the spin-lattice relaxa-

tion in ammonium chloride. He studied the NH4
ion reorienting about a single C, axis or about a
single C, axis, assuming that the two motions are
totally uncorrelated. For this reason he also ob-
tained the incorrect Genin and O'Reilly result.

A year later Mandema and Trappeniers (MT)'
reconsidered and improved Kodama's treatment of
the proton spin-lattice relaxation in NH4C1. They
discussed two models. In their model (a), only
stepwise reorientations by +90' about the C, axes,
and by a 120' about the C, axes are allowed. In
their model (b), reorientations to all possible (24)
orientations of the NH4 ion are permitted directly.

Vfhat is still missing is the exact solution of the
single C,-C, pair model, and its generalization,
in which reorientations preserving the orientational
symmetry of the NH4 ion about all C, axes and all
C3 axes are allowed. For the sake of completeness
(and simplicity), we also reproduce the MT results
for model (a). We have assumed, using their nota-
tion, that v=v'=2v4, and q=q'=2v3.

It has long been known, that for more than two
spina in a molecule, it is necessary to include the
correlations between different single-pair inter-
actions in the relaxation theory of such spin
groups. ' In general, the effect of the so-called
cross correlations is to cause a nonexponential
magnetization recovery. It has also been shown, 'o

that for systems described initially by a spin tem-
perature, the effect of cross correlations always
retards the relaxation. Furthermore, it was es-
tablished that these effects are more pronounced
in the case of anisotropic reorientations in solids.
However, .experimentally the only material found
so far, in which the deviations from the single ex-
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ponential recovery were significant, is CH, CN and
a solid solution of CH, CN in CD,CN. ' The effect of
cross correlations on the proton spin-lattice re-
laxation of the NH, ion reorienting randomly about
its symmetry axes was treated recently by MT. '"
They found that the observed nonexponential decay
of T, in NH4C1 at low temperatures cannot be ex-
plained by cross-correlation effects. We have ob-
served the nonexponential behavior of nuclear
magnetization also in several other ammonium
salts, such as NH, SnCl, and (NH, ),SnCl, . However,
on the basis of the existing theory (on cross cor-
relations), cross correlations cannot be responsi-
ble for the observed nonexponential behavior of the
proton spin-lattice relaxation in these solids.

Because they cannot affect in any way the struc-
ture of the multiple minima in the temperature
dependence of the proton spin-lattice relaxation,
the possible effect of cross correlations is ignored
completely in the present calculation. Further-
more, only polycrystalline samples are con.-
sidered. The possibility that in this case aniso-
tropy of T, may cause nonexponential decay is
discussed briefly in Appendix C.

The detailed analysis of the experimental re-
sults" showed that the theoretical results compare
well with the measured experimental relaxation
times in strongly hindered solids, such as NH4VQ, .'
The discrepancies between theory and experiment
are large in weakly hindered lattices, such as
NH4SnC1, . In these solids, it is believed that the
tunneling mechanism plays an important role in
the relaxation.

tionary random process. Also

F"= (1 /r ')(~ ~)"Y"(e y )

(4a)

(4b)

The normalized spherical harmonics Y~(8, (t) are
given by

Y (8, Q) = —(~w)' '(1 —3 cos'8),

Y, '(9, Q) = w (—8'w)' ' cos 9 sine e '@

Y "(e y) = (~ ~)"' sin'8 e'" e

(5a)

(5b)

(5c)

In the above equation rp is the spin-spin separa-
tion (it is implicitly assumed that all distances are
equal), and 8 and P are the polar angles defining
the orientation of the spin-spin vector with re-
spect to the direction of the magnetic field.

When the Hamiltonian of the system also contains
the radio frequency (rf) interaction term, one can
formulate the spin-lattice relaxation time in the
rotating frame. " At exact resonance, that is,
when the frequency of the oscillating field ~ is
equal to the Larmor frequency up of the nuclear
splns Tl is given by

+ ~ J.(2) (2~ )]

where w, =yH, and II, is the amplitude of the rf
field. &,.0& (a&) and G,o~~(r) are defined by Eqs. (2)
and (3). The function of lattice coordinates Eo, is

E'„-=—(—5'm)' '(1./r o) Y,'(8... (t( „). (4c)

I. FORMULATION OF THE PROBLEM

In the semiclassical approximation, where the
lattice is treated classically and the spins quantum
mechanically, the spin-lattice relaxation time T,
due to the spin-spin dipolar interactions is given
by"

In this equation the summation runs over all spins,
5f& is the Kronecker delta, and ~p is.the Larmor
frequency. The spectral densities are defined as

(ra) = 2f oootooG, .
~

(o')do',
0

where

G g (r) ={&)~j(t+T)&g(t) —(& g )(F g)), (3)

is the so-called classical correlation function. "
The symbol {) represents the ensemble average
over the lattice coordinates. The motion of the
lattice coordinates is assumed to represent a sta-

II. CALCULATION OF THE SPIN-LATTICE RELAXATION
TIME IN THE LABORATORY FRAME AND OF THE SPIN-

LATTICE RELAXATION TIME IN THE ROTATING FRAME
FOR THE NH4 ION REORIENTING RANDOMLY ABOUT

TWOFOLD AND THREEFOLD AXES

In the following, the time dependence of the
probabilities P; (t ) that a proton-proton vector of
the NH, ion is in the ith position (i =1, 2, . . . , 6) is
considered. The rate equation for pf for reorienta.
tion of the NH4 ion about all the twofold and three-
fold symmetry axes, see Fig. 1 (only one axis of
each type is labeled in Fig. 1), are derived in the
following. We consider three models of reorienta-
tion:

Model A(Genin and O'Reilly): NH4 ion is allowed
to reorient at any given time, about a single (fixed)
C, axis and a single (fixed) C, axis. For a, powder,
the final expressions for T, and T,p are indepen-
dent of how we choose the C,-C, pair. The rates
of interchange of proton-proton vectors upon re-
orientation about the twofold and threefold axes
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Cp,

FIG. 1,. Geometry of the NH4 tetrahedron with the t=&

and C& symmetry axes.

are denoted by v, and v„respectively.
Model B: NH, ion is allowed to reorient at any

given time about all (three) C, axes and all (four)
C, axes, with the corresponding rates denoted by

v, and v-„respectively. As in the model A, the
reorientations take place by rotational jumps which
preserve the orientational symmetry of the NH4

ion in the lattice.
:,Model C: is the same as B, except that the re-

orientations about the C, axes take place by +90'
jumps. The corresponding rate of reorientation is
denoted by v4.

In all these cases, the time dependence of the
probabilities p, (t) is governed by a set of coupled
differential equations, which can be written in the
form

(7)

where the matrices H, for the various models are
given by,

V —V3 2
l
2P3

l
2V3 0 0 V2

l
.2V3

1-P —V2 2V

l
2V3

1
2V3 -V3 0 0 0

0 -V, —P, —,P,
1 1

2V3
(8a)

0

P2

0 0 l
2V3

l
2V3

l
PV3

1
2V —V —V3 3 2

-4v, —2v2

2v,

-4v, —2v,

V3

2v,

-4v, —2v,

2V2

V3

2v,

-4V, —2P2

V3

2V2

V3

-4V, —2v,

2v,

V3

V3
'

-4v —2v,3
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—4V —3V43

. l
V3+ 2V4

1
V, +2V4

1
V3+ 2V4

1V3+ 2V4

lV3+ 2V4

-4V3 —3V4

l
V3+ 2V4

l
v, +2v4

l
V3+ 2V4

1
V3+ 2V4

1
V3+ 2P4

-4V3 —3V4

1
V3+ 2V4

1
V3+ 2V4

1
V3+ 2V4

1
V3+ 2V4

-4V3 —3P4

1V3+ 2V4

1P3+ 2P4

1V3+ 2V4

1V3+ 2V4

V4

1P3+ 2V4

—4V3 —3V4

l
V3+ PV4

1
V3+ 2V4

l
V3+ 2V4

1
V, + —,V4

l
V3+ —,V4

—4V3.—3V4

(Sc)

The formal solution of the Eqs. (7) can be written
in terms of the eigenvalues of the matrices H as"

If we introduce the correlation times, correspond-
ing to the above models,
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1/~Crr =s "s+2Vs l (10.2a)

+C I II
=s((svs+2vs) —[(svs)'+(2vs)' —2v, v,]' '],

(10.3a)

=-,'((-,'v, +2v, )+[(-,'v, )'+(2v, )' —2v, v,]' '],

1/~cr =4v, +4v, ,

1/vc rr 6vs l

1/7'c r
= 4vs + 4vs,

1/7'err = 6vs + 3vs

(1O.4a)

(10.1b)

(10.2b)

(10.1c)

(10.2c)

and impose the initial and asymptotic conditions

p„(t = 0) = 6„
~ , ,

p„(& -")=~s,
then the solutions (9) for the models A, B, and C
can be written as

1(
p (T) =—

~
65 e r/'crv+ 1 —e ' 'crvr, s 6( r, s

ternally applied magnetic field II0 is parallel to the
z axis. It is.convenient to choose a second coordi-
nate system (x', y', z'), such that its z' axis is
parallel to the one of the symmetry axes of the
NH4 ion. The spherical harmonics with the polar
angles (8,&, p, r) in the unprimed system are trans-
formed into the spherical harmonics in the primed
system by

1',"(8„,P„)=g I)(')* (c(Py)1'. '(8,'„P,', ),

where D„') l(npy) are the elements of the rotation
matrix, 's and (().P y) are the Euler angles deter-
mining the relative orientation of the coordinate
systems (x, y, z) and (x', y', z '). Using the above
equation and Eqs. (4), the expression (13) for the
correlation function becomes, apart from the con-
stant multiplicative factor,

m' m"
s

and

III
+ ~ C(p) ( r/rc-ls e r/rcrv-)

af=I
(11a)

where the ensemble average is given by

&
y', (8,', (~), y', (~)) 1'," (8,';(o), y, (o))&

p (r)=+[66 e r/rcrr +1- e r/rcrr

+3(6 —() -)(e ' 'cr —e '«r)] .
(11b,c)

The correlation times are given by Eqs. (10}. The
matrices t"„, are given in Appendix A. In the
above expressions the symbols r, s, s run from 1

to 6, 5„,is the Kronecker delta, and s denotes the
position of the proton-proton vector, which can be
reached from the position s by a C, jump (for ex-
ample if s = I, then s = 6 as can be seen from Fig.
1). The p,.'s Eq. (9), have in Eqs. (11}two sub-
scripts (r, s). The subscript r is equivalent to the
former i, and s characterizes the choice of the
initial conditions. p„,(v) is the so-called condi-
tional probability. The probability that a proton-
proton vector is in a position g at the time v = 0
and in the position ~ at a later time 7' is

w„,(~) =, p„.(~). (12)

Since (Frr &
= 0, the correlation functions G, r' (7 )

defined by (3) are simply

G,r (r) =(F,~"(~)Fr/(0)&.

The polar angles (g,r, lp, r) determine the orienta-
tion of the NH4+ ion with respect to the coordinate
system (x, y, z) which is oriented so that the ex-

(~) yls'(gl(r) yl(r))lrls"(gl(s) pl(s))
r ~ s

(16)

Since most experimental results are available for
powder samples, we have to perform the powder
a'verage over the Euler angles (). , P, and y. This
is achieved by using the orthogonality condition"

2r 7r 2'
(2)g (2)g

x (apy)dn sinp dp dy

which yields

( G(l!)(+)& ~ g ( 1) S is+ W (~)lrm(gl(r) pl(r))1

m r, s

fll(g/(S) yl($))

The polar angles (gr'r(", Pr'r ")) are easily deter-
mined, once the ion-fixed coordinate system
(x', y', z') is chosen. Then, using the expressions
(11) and (12), one can calculate (G(rr)(r)&,„. Final.-
ly, using Eqs. (1), (2), and (6), one obtains the
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following expressions for Ty ancl Tzp

IV
= 411K Q Dl(40& C&3) &

a=I

1/T I =
4oKD I ( u 0 & Tc II) + POKD I (e0 &

Tc ~ }&

(19a)

(19b,c)

n = (2v2) 7'n —= (4v2)

Tc', —= (4v4} ', TC114—= (3v ) '.
(iii) C, reorientation with concomitant rapid C,

reorientation v, /v, «1, v4/v, «1.
IV

T 40K Q Dlp (+0& +I& C&I}&
IP a=I

(20a)
'

7C 47C
I( 0& C} 1 2 2 1 4 2 2

+CO0~C + u07C

lp 40 Ip( 0& I& CII) 40KDlp (+0& dI& Tc J ) &

(20b,c)

where the correlation times vc, corresponding
to the various models are given by Eqs. (10). We
have introduced the notationK =(y2k/r30)'. In ad-
dition

40~1(+0& C3) 2 20KDI(~0& 2 C2) &

I 40K I(+0& C3} 40KDI( do& C3) &

(25a)

(25b, c)

IP 40 IP ( 0& I& C3} 2 20K Ip(~0& +I& 2 C2} &

(26a)

1/Tlp 40KDlp (~0& ~l& C3} 40KDlp(+0& +I& C3} '

(28b, c}

(iv) C, reorientation with concomitant rapid'C,
reorientation v, /v, » 1, v, /v, » 1.

Tc
IP( 0& I& C} 2 1 4 2 2 '1 2 2+ (Oi 7C 2 +&0~C

1/T, =—20KDI(OIO, TC2) + 40KD, (Id, 7'c )

40 DI(+0& 2 C3}&
(27a)

III. DISCUSSION AND CONCLUSIONS

In the following analysis some special applica-
tions of formulas (19) and (20) are considered.

(i) Pure C, reorientation v, =v, =0, v, 410.

1/Tl = poKDI(~0& TC3) (2la)

1/T, = ~40 KD (&uo,I& c,) + QKDI(+„Tc'3), (21b,c)

/Tl p 40KDlp (~0& +I& C3} & (22a)

I/Tl p
= 4oKDI p (010& ICI& Tco)+ 4oKDIP(&0& &I& Tco) ~

(22b, c)

The correlation times are defined as

(ii) Pure C, reorientation v, =0, v, 110, v4 310.

1/Tl = 20KDI((go, TC2) (23a)

1/T, = poKDI(IO„T C22), (23b)

1/T, = ~40ZDI(&00, T g4) + POKDI(&oo, Tc~4), (23c)

(24a)

1/T, p
= poKD, p (IIIO, „(dC22)T, (24b)

1/Tl p
= 4oKDI p (OI 0, Idl &

T C4) + 40KDI p (010& IIII& Tc4),

(24c)

with the corresponding correlation times given by

C

1+4207 c2

The result (19c) is identical with the MT model Ao

if we set, using their notation, v = v' = 2v4 and q = q'
= 2v3 ~

1/Tl = 40KDI(0&o& Tco)+ 4o'KDI(&0& Tc2 ), (27b)

(v )-I —T eE4&/kr
0$ (29)

where E„is usually referred to as the activation
energy. By inspection of the approximate results
given in the Eqs. (21)-(28), we can conclude that
the expressions (19a), (19b), (20a), and (20b) will
give two minima in the temperature dependence of
the proton spin-lattice relaxation time. For the
mode18, to give two minima, the condition.
E 2 + EI 3 has to be satisfied as we 11~ In this case,
it follows from Eqs. (27b) and (28b) that the ratio
of the high-temperature minimum (T,)"T, and the
low temperature minimum (T,)";„ is given by

(T )HT /(T )LT (30b)

and similarly for T,~. Therefore, model B will
yield two minima in the temperature dependence of
the proton spin-lattice relaxation, provided that the
reorientation about the C, axes is hindered less
than the reorientation about the C, axes. Two ex-

1/Tl = 40KDI(olo, Tc4) + 40KDI((go, TC4), (2'7c)

1/Tlp = 20KDIP(&0& Id» C2}+40KDIP(ado& +I&TC3)

+ 4oKDlp(100& &I& 2TC3) & (28a)

1/Tl p
—

40KDIP (Ico& &I& TC3 }+4pKDIP (&0& 0II& Tco) &

(28b)

1/Tl p
= 40KDIP(&0& &I& TC4}+ poKDIP(44& I& C4} '

(28c)

For a thermally activated process, the reorienta-
tion rates v, (i =2, 3, 4) are assumed to obey the
Arrhenius equation
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amples of T, and T,q temperature dependence for
the model B are shown in Fig. 2. On all graphs,
log:Ty and log T» are plotted versus the inverse
temperature 1000/T, and the relaxation times are
given in units of 10 ' sec. The upper graph in
Fig. 2 represents the situation when E~ & E,3. Only
one minimum in the temperature dependence of
T, and T» exists. The only indication of the ex-
istence of two modes of reorientation of the NH~
ion in this case is a slight variation of the slope
on the high-temperature side of the T, and T»
graph. The lower graph in Fig. 2 is characteristic
for E„&E~. Two minima in the temperature de-
pendence of Ty and 7",

~ are observed. The high-
temperature and the low-temperature slopes of
this graph are determined by the values E„and
E~, respectively. The parameters E„and ~„.
were chosen such as to display most clearly the
double minimum structure of the temperature de-
pendence of T, and T».

On the other hand, the model A displays two
well-separated minima in the temperature depen-
dence of the spin-lattice relaxation, when E~ & E,3

1O'

1O4

103
C)

102

10

104

103

C)
210

I—
10I—

10'—

/ L.
'~/

10
1.0

I I I I I I I

3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 19.0

1000/T (K }

FIG. 3. Theoretical temperature dependence of T&

alld +$p for model & . The parameters are &,&
= 1.9

kcal/mole, 7'p2=8X10 '~ sec, E,3= 5.1 kcal/mole,
&ps=5&& 10 sec Hp=9 9 kG H(=10 6 G

as well as if E„&E„. Figure 3 shows the situation
when E„&E~. Here the high-temperature mini-
mum is due to the C3 reorientation with the con-
comitant rapid C, reorientation, and the low-tem-
perature minimum is due to the C, reorientation.
For the ratio of the high- and low-temperature
minima we now have

lo
(T,)". /(T, )". = 1, (31a)

10
-I

10-2
0

1oe

I

5.0
I

10.0
I

15.0
I

20.0

and the same for T». If the condition is Egg + E 3,
Fig. 4, we again obtain two minima in the T, and

T& p
temperature dependence. In this case, how-

ever, the high-temperature minimum is due to the

C, reorientation with concomitant rapid C, reorien-
tation of the NH» ion. It follows from Eqs. (25a)
and (26a), that

10 (T~)" /(T~)" (32a)
cA 4

m 10
C)

10

10.
I

10
I—

10-1

10
0

I

5.0

/
I I

10.0 15,0

1000/T (K )

I

20.0

FIG. 2. Theoretical temperature dependence of .T&

Tfp for model B. The parameters are, upper graph:
E,2=5 kcal/mole, &p2=5X10 ' sec, &,3=2 kcal/mole,
7'p3= 8~ 10 sec. Lower graph: E,2= 2 kcal/mole,
~p2= 8&& 10 ' sec, 8,&= 5 kcal/mole, &(I = 5& 10 ' sec,
Hp=10 kG, H1 =10 G.

and the same holds for Typ The parameters E,&

and &p) for model A, were chosen such as to fit the
theoretical curves to the experimental results ob-
tained for NH4VO3. ' As already mentioned, the
model C yields one minimum only in all situations
and typical graph for this case is given in Fig. 5.

Apart from demonstrating the occurrence of
double minima in the temperature dependence of
the spin-lattice relaxation, this analysis yields also
the following interesting result. Comparing Eqs.
(25a) and (27b) and (26a) and (28b), we can see
that both models, A and B, will give an almost
identical temperature dependence of the spin-lat-
tice relaxation, provided E~ & E„for model A and
E 3 %Ega for model B. In both models, the low-
temperature minimum is given by
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105

104—

10

210

10 '—

TI--—T,P

/L ~

pendix 8) is to consider the proton absorption
spectrum in the vicinity of the low-temperature:
minimum. In model A. the absorption spectrum is
motionally narrowed because of the rapid reorien-
tation of the NH4 ion about a single C, axis, while
in model B, the motional narrowing is due to the
rapid reorientation about all C, axes. The line
shapes for both cases and for polycryst811ine sairi-
ples are given in Refs. 12 and 17. They are dis-
tinctly different. It shouM be noted also that the
calculated second moments of the motionally nar-'-

rowed spectra are the same for both models. If
we write

(33a,b)

(34a,b)

and also the ratio of the high-temperature mini. mura
and the low-temperature minimum is 3 in both
cases. The only notable difference between the
two models is on the high-temperature side of the
high-temperature minimum, as can be seen from
Figs. 2-4. However, experimentally this differ-
ence would be hard to detect, because at higher
temperatures other mechanisms become important
in relaxing the spin system and. the reorientational
contribution is difficult to establish accurately.

Another way to discriminate between models A
and 8 apart from studying single crystals (see Ap-

10

10'

. 10

10

I
CO 1()3

10

I—
10

10 '—

10 '0 20155 10

1000/T (K ')

FIG. 5. Theoretical temperature dependence of 7'&

and T&& for model C. The parameters are E,z
——2

kcal/mole, &p3=8x10 ' sec, E,~=5 kcal/mole, 7@
=5x10 ~ sec, Hp=10kG, H&=10 G.

10 I I I I I I I I I

1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 170 19.0

&Ooo/'T (K ')

FIG. 4. Theoretical temperature dependence of T& and
T fp for model A . The parameters are E,) = 5.1 kcal/mole,
vp2

—-5x10 ~5 sec, E,&
——1.9 kcal/mole, v@=ex10 ~~ sec,

Hp=9 9 kG Hf=10 6 G,

j/I =M'+g'
2 2.

where 42 is the interionic broadening and M2 is
the intraionic contribution, then

M,' = g y ~k /r 0 . (35a,b)
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As illustrated by modelsA, B, and C it can be
expected in general that double minima will occur.
in the temperature dependence of the spin-lattice
relaxation, and also that many different types of
reorientation will yield similar or sometimes

'

almost identical temperature dependences of the
proton spin-lattice relaxation. For example, one
can see without detailed calculation, that 1C, +1C3
with the condition E~ & E„, 4C, + 3C2 with the con-
dition E„&E~, and 3C, + IC, with the condition

E~ & E„, all give almost identical temperature
dependence of the spin-lattice relaxation. It might
seem that models B and C represent the most
natural choices for the reorientation of the NH4

ion, and that all other possibilities can be dis-
carded. However, the experimental results on
proton spin-lattice relaxation and proton magnetic
resonance absorption in NH4VO„' " for example,
show that model A describes more correctly the
motion of the NH4 ion in this solid.

It has been noted already that knowledge of the
detailed structure of the proton absorption spec-
trum" is important for distinguishing different
modes of reorientation. In addition, the angular
dependence of the proton spin-lattice relaxation in
single crystals can also be used to distinguish
those types of reorientation of the NH4 ion, which
cannot be distinguished on the basis of the data
from polycrystalline samples. For this purpose,
we derive in Appendix B the orientational depen-
dence of T, and T,~ in single crystals for models
B and C. Model A will be discussed in detail in
Ref. 12.
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APPENDIX A

(A 1)

The constants C„~ are determined from the
equations

6

P (II„-A„5„)C',.",' =0
j= 1

with the following definitions

$=—v, /r„a=—+[(-,) +$ ——,g] ', Xa—= —,+as(,

-3X' —,'+3/ —3a
(2X +X,)(—'+ $ —a) —,'+ $ —a

and
I II

A„(55„.—1)=erf„,+ g (A„-A.)C'„.', (A2)

-3X,
(2X +X, )(-,'+ $ —a) —,'+ &

—a

C(r )l »S

2 -I -I -I —I 2

-I 2 -I 2 —I -I
-I -I 2 -I 2 -I
-I 2 -I 2 -I -I

2 -1 -1 -I -1 2

(A3)

where A„-=1/7'c—„, with Tc„given by the Eqs.
(10.1a)-(10.4a) and H„, given by the Eq. (Sa). The
result is

2 a(2X +X, )
' 2 a(2X +X,) '

X+
2 a(2X +X, )

'

APPENDIX B

To obtain the expressions for T, and Ty~ in a
single crystal the correlation functions G rrr»r(r. ),
given by Eqs. (15) and (16), have to be calculated.

The result for models B and C is

-A-B0 B0
A 8 0 -B 0 -A

0 0 0 0 0 0
C(rr)r,s A B 0 B 0 (A4)

and

9=~sK g ( I)"&'[A» j(~ado ~err)+B»j(&rco ~cr)]
&=i

0 0 0 0 0 . 0

A 8 0-B 0-A
1/T,

&

——a»Kf 2[Ao j(2&@»Terr)+Boj (2oo„vcr)]

-C -C -D

-C -C -D

C D C

C D C

2[» j(&o ~err) +Br j(&o ~c r)]

+ [A» j(2rco~ ~err) +B» j(2oro~ ~c r)] ) ~

(B2)

C(rrr )r,s

-D -D -E D E

C C

D D

D -C -D -C

E -D -E -D

C C D -C -D -C

(A 5)
where the correlation times 7«and ~~» are given
by Eqs. (10.lb), (10.2b), (10.lc) and (10.2c)

j ((u„7c)-=ac/(I + odor c)»,

and the angular functions A~ and B~ are defined by

A (nPy ) =-'D'",*, ( Pr)D', ,'*(nPy) + r [D'",*,(nPy}D",,,'* (nPy)+D'",*.(nPr)D", '*,(nPr)]

+[D»»(npy)D»»(npy)+D»» (npy)D» z*(npy)]),

B»(npy)= z f fD»*,(npy)D» *z (npy)+D '„,* »(npy)D»'o (npy)]

—[D» (npy)D (npy)+D»*2 (npy)D *(npy)]].
—[D'-'»*l(npr)D'"*(npr)+D'"* «pr»'»"l*«pr)]

where k =0, 1,2. The powder averages of functions A» and B„are obtained by using Eq. (17):

(B3a)

(B4a)

(A. ( Pr))., =-.'(-1)', (B,( Pr))., =. (-1)'.
Inserting these expressions into Eqs. (Bl) and (82) we recover the results for powder givenby Eqs. (19b,c)
and (20b, c).



SEMICLASSICAL ANALYSIS OF SPIN--LATTICE. . . 5105

Using the formulas given in Ref. 16, the expressions (BSa) and (84a) can be rewritten in the following
form:

and

4~
W, (nPy}=,~ y;, (P, O}I „{P,O)+-, „, {-,sinP}

I(-i)' (",'" )"+(','"-}"+2 (BSb)

ttt(o(ty)=( 2 2'1 2 2 ()(
—'sinP)'I (-1) I(

+.
) [—'(—'sits)) + —,'(it —scent)) ]

1 —cos
+( . [—'(—'sinP) + —'(2+2cosP) ] —(—'sin()) cos4y (, (B'42)

sinP

In the above calculation the coordinate 'system
{x,y, z) is oriented with its z axis parallel. to the
direction of the external magnetic field H, . The
z' axis of the ion-fixed coordinate system
(xt, y', z') is parallel to one of the C, symmetry
axes. The Euler angles {oPy}, determining the
relative orientation of the coordinate systems
(x, y, z} and {x',y', z '}, are chosen using the con-
vention in Ref. 16. That is, the Euler angles z
and P are identical to the polar coordinates (t), 8 of
the z' axis with respect to the coordinate system
(x, y, z}.

APPENDIX C

where

+ (()—2f) I+~o~ cr

+2(1+f)~+4o~ cr
(C1)

f = sin P —+sin P —+sin~P cos4y.

In a polycrystalline sample, the observed mag-
netization is the average over the Euler angles
(a, P, y). That is,

( Mo{t )) =Ma(1 —(e " 8 & ') ) s

where we have assumed that the thermal equ&libri~
$m magnetization M, is M, (t = 0) =0; and
R{P,y}-=I/T, (P, y). The average in the above ex-
pression is given by

(e-s( B,y) 2)
)

4g
e s[ s "~' sinP dP dy . (C2)

Equation (C2) can be written in the form"

If expressions (BSb) and (B4b) are inserted into
Eq. (Bl) the result is

I 9.If f c]I + (1 f)
cd[7

Tj 1+(so~ cIr 1+ ~0 crt

t tl

(e "') =esp(-(tt) t + g (-1)"—I„),nl
(CS)

where 1V1„are called semi-invariants or cumulants
and are given by

M„= g (-t)pt "t '(ps, —1)) ( . )(n] )
(C4)

The average (R') is defined by
7I' 2 K) )t st&~pe.4&0 0

The sum in (C4) runs over the integers s„satisfy-
ing the condition+, i ,s=n The f.irst four cumu-
lants are

M, =(R), M, =(R')-(R)',
M, =(R') —3(R')(R) + 2(R) ',

M, =(R') -4(R')(R) —3(R')'

+12(R')(R)'- 6(R)'.

We calculated the expression

exp(-(R) t+-,'M t' —~M, t'}-=( exp(-Rt ))

for the graphs in Fig. 2 and for the values of t
ranging from 0 to 3/(R). The effect of averaging
for the upper graph of Fig. 2 is such that

(exp(-R t ))
exp(-(R) t )

and is increasing with the increasing inverse tem-
perature. However, the value of 6 is so small
(E~ 10 '), that it cannot give rise to any observable
nonexponentiality in the time evolution of the mag-
netization.

For the lower graph on Fig. 2, 6 is initially in-
creasing with the inverse temperature, from
b, —= 0, at P =4 to ~=2x10~ at P =6 and t=3/(R)
(P = 6 is roughly the position of the high-tempera-
ture T, minimum on this graph). In the region
between the two minima, 6 is at first decreasing
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and reaches the value 6x IO ' at I3 =8 and for
t =3/(R), and then starts increasing, do that at
p =12 and t=3/(R), 6 =5x10 '. For the values of
f =2/(R), the deviations from the simple exponen-

tial decay are even smaller. Therefore, also in
this case, the averaging over the Euler angles does
not give rise to any appreciable effect in the decay
of the magnetization.
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