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We report an effective potential (EP) for replacing the ten core electrons in calculations on the Si atom. This

potential was obtained directly from ab initio calculations on the states of Si atom and no empirical data or

adjustable parameters are used. These ab initio effective potentials are tested by carrying out Hartree-pock,

generalized-valence-bond, and extensive configuration-interaction calculations on various molecules. We

considered Si, SiH„Si,, and H, SiO, and calculated excitation energies, ionization potentials, and electron

affinities both using the EP and without the EP (ab initio). In essentially all cases the agreement is to better

than 0.1 eV, providing strong evidence that the EP adequately represents the Si core.

I. INTRODUCTION

The idea of using a pseudopotential to replace the
core electrons in quantum-mechanical calculations
of the electronic wave functions of atoms, mole-
cules, and solids in now well established. The first
attempts consisted of the work of Hellmann and
Gombas' in the mid-thirties. They realized that
these pseudopotentials should incorporate the ef-
fects of the Pauli principle in order to avoid the
collapse of the valence electrons into the core re-
gion. This was put on a sound basis by Phillips
and Kleinrnan' in 1959. This work, together with
that of Heine and collaborators, ' initiated a vast
series of papers on the applications of pseudo-
potentials to the electronic structure of solids. '
These successes also reawakened interest in ap-
plying this approach to molecules and atoms. '

Although the basic idea in the pseudopotential
method is to construct a (simple) operator that
reproduces the effect of the core electrons of a
given atom on the valence electron, there are a
number of approaches to determine the specific
form of the pseudopotential. The most common
procedure (with many variations) is to select a
simple functicnal form for the potential and then
to adjust the several parameters in this potential
to fit the experimental energy levels of the atom
or the band structure of the solid while requiring
the pseudopotential to be weak (leading to orbitals
with minimal numbers of nodes). The alternate
approach is to use only theoretical information in
determining the potential, requiring the core po-
tential to reproduce the results of ab initio calcu-
lations. Our approach is of this latter category
(the method of Melius and Goddard"); we choose
the core potential so as to reproduce the shaPes
and energies of ab initio valence orbitals. The re-
sulting core potential is referred to as the ab initio

effective potential or more simply as the EP. Such

effective potentials have been previously developed
for Li, Na, and K atoms' and for Fe and Ni atoms, '
and applied to a number of molecules containing
these atoms. Here we report the effective poten-
tial for the core electrons of Si, which we have

applied to a number of complexes representing the
surface of crystalline silicon. We will assess the

accuracy of the effective potential by comparing
the results of ab initio and effective-potential cal-
culations on the ground and excited states of Si„
SiH„and SiH 0~.

The interactions of the valence electrons are
handled just as in ab initio calculations. Appro-
priate basis functions are placed on the various
centers and the molecular integrals are evaluated.
These integrals are then used for self -consistent
Hartree-Fock (HF) or generalized-valence-bond
(GVB) calculations and ultimately in configura-
tion-interaction (CI) calculations to include various
electron-correlation or many-body effects. A

special aspect of our approach is that we calculate
total energies directly so that we can determine
the potential surfaces and geometries for the vari-
ous excited states.

Since the shapes of the valence orbitals are de-
scribed correctly, we expect the overlap between
orbitals on various centers to behave properly and

hence for bond energies and geometries to be well
desc ribed.

Excitation energies, ionization potentials, and
electron affinities are obtained by solving directly
for the total energies of each state and taking the
difference. Consequently, one can distinguish be-
tween the different multiplet eigenstates of the
molecule (usually not possible with standard solid-
state pseudopotential methods'). Another advantage
of the present method is that since we include elec-
tron-correlation effects explicitly, we can describe
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processes that involve bond formation or bond

breaking.
Section II contains a comparison of the results

obtained for Si„SiH„and SiH, O, using the effec-
tive potential with those obtained by full electron
ab initio calculations. The method used in deriving
the effective potential is described in Sec. III, while
specific details of the Si effective potential are
presented in Sec. IV, along with a further com-
parison between the +b initio and effective-poten-
tial calculations. In addition in Sec. IV we include
a simplified (but less accurate) version of the ef-
fective potential to be used for large complexes.

II. COMPARISON OF THE RESULTS OF EI FECTIVE-
POTENTIAL AND AB INITIO CALCULATIONS

Before embarking on a description of the calcu-
lational details for the Si effective potential, we
will summarize some of the results of the com-
parisons between the EP and ab initio" calcula-
tions on molecules. This will put into perspective
the procedure and what we want to obtain from it.
We start with self-consistent ab initio Hartree-
Fock calculations of the electronic wave functions
of the Si atom (both the ground and an excited
state). From this ab initio calculation (using the

method described in Sec. III) we obtain an effective
potential without the introduction of any experi-
mentally determined parameters. It is this poten-
tial that we have used in the calculations below.

As summarized in Table I we carried out both
28-electron gb initio calculations and eight-elec-
tron EP calculations for the electronic states of
the Si, molecule (at the experimental equilibrium
geometry" for the ground state). The low-lying
states considered here have either two or four
electrons in the m orbitals and are denoted as m'

and m', respectively. The second and third col-
umns show the excitation energies obtained from
self-consistent GVB" calculations performed on
the ground state ('Z~) and the lowest-lying excited
state ('Z~). The fourth and fifth columns compare
the excitation energies obtained from CI calcula-
tions on the low-lying excited states of Si,. In
these CI calculations we included all appropriate
excitations within the space spanned by the GVB
orbitals for the 'Z, (w') or 'Z', (w ') states, leading
to ™200spin eigenfunctions of the proper spatial
symmetry for each CI calculation. In all cases the
+b initio and effective-potential calculations lead to
excitation energies agreeing within 0.1 eV for the
CI wave functions. It is important to note that even
for those states that are close in energy, the
ordering is not changed in the effective-potential
calculations. Since there are numerous states of

TABLE I. Excitation energies for various states of Si2 (8=4.244ao). All energies in eV.

State Ab initio

GVB
Effective
potential Ab initio

CIb
Effective
potential

Number of
configurations &

3Zg (n'2)

(7) )

(It' )

&Z„' (x4)

~ z„(m2)

'Z„(~4)

+u (714)

'a, (~4)

p pc

0.285

p.o '
0.218

o.o'
0.140

0.513

1.518

2.669

2.930

4.040

5.180

o.o'
0.070

0.519

1.409

2.640

2.867

3.962

5.066

248

167

217

261

180

261

180

248

The basis sets used were the Si {6s4p) and the Si (4s4p) of Table IV. See the Appendix for
a brief summary of the GVB wave functions. The 3Z~ calculation is GVB(1); that of the 'Z~+
state is GVB(3).

h The CI calculations were based on the SCF valence orbitals from GVB{1)and GVB(3) cal-
culations for the Z~ state (two electrons in & orbitals or r2) and the Z~+ state (four electrons
in n orbitals or 7t'4). All triple excitations were included.' Total energy calculated is -577.688 63 hartree.

d Total energy calculated is -7.360 94 hartree.
~ Total energy calculated is —577.74061 hartree.
f Total energy calculated is -7.413 76 hartree.
~ This is the number of spin eigenfunctions of proper spatial symmetry.
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TABLE II. Energies for SiH3 and SiH3+. The geometry is the same as in silane but without

one hydrogen atom; R»H=2. 796ao, the HSiH bond angle i.s 109'28'. The basis sets used are
the Si (6s4P) and the Si (2s2p) of Table IV, and a (2s) contraction of the three Gaussian hy-
drogen bases of S. Huzinaga, J. Chem. Phys. 42, 1293 (1965). All energies in eV.

State b Ab initio

Ionization potential
Effective
potential

Mulliken population per atom
Ab initio Effective potential

Si' H Si H

SiH3 2'
SiH+ ~A

Koopmans
theorem

00
8.637

9.396

0.0b
8.470

9.124

3.50
2.92

1.17
1.03

3.74
3.04

1.09
0.99

~ Total energy calculated is -290.56390 hartree.
Total energy calculated is -5.389 86 hartree.
The ten core electrons have been subtracted from the ab initio Si population.

various multiplicities and orbital coupling all with-
in a small range of energy, we consider Si, to be a
stringent test of the adequency of our EP.

Next we consider the SiH, molecule {using the
experimental geometry of silane" but with one
hydrogen atom omitted). Here we performed
Hartree-Fock self-consistent-field (SCF) calcula-
tions on both the ground state of the neutral ('A, )
and the ground sta.te of the positive ion ('A, ), lead-
ing to the ionization potentials of Table II. The
EP calculation leads to an ionization potential
within 0.17 eV of the ab initio value. In order to
provide an idea of how similar the wave functions
are, we compare the Mulliken populations" in
Table II. Also listed in Table II are the ionization
potentials from application of Koopmans theorem.
This leads to IP's too high by 0.7 eV for both ab
initio and EP calculations.

As a final test, we considered the molecule
H, Si-o-o, corresponding to the above SiH, unit
bound to an oxygen molecule {the new bond lengths
are 1.64 A, "for SiQ and 1.366 A, "for 00 while
the SiQQ bond angle is" 125'53'). In these calcula.
tions only the Si core is replaced by an EP. Self-
consistent GVB calculations (ab initio and EP) were
carried out on the ground state ('A"), and the CI
calculations were carried out within the orbital
spaces spanned by these GVB orbitals. The range
of the excitation energies, as shown in Table III,
is from 0 to 19.6 eV, and in all cases the ab initio
and effective-potential calculations lead to the
same ordering of states as in the ab initio calcu-
lations.

These results indicate that the excitation ener-
gies and ionization potentials obtained with the ef-
fective potentials are in excellent agreement with
those of the ab initio calculations. Since the sys-
tems compared here are reasonably distinct, we
consider these results to demonstrate the useful-
ness of our effective potentials.

TABLE III. Energies for various states SiH302 and

SiH&O+2. The geometry is as follows: The SiH3 geometry
is the same as in Table II; the 02 bonded as a peroxy
radical to Si atom, eclipsed with one of the hydrogen
atoms; Rsl~ =3.099ao., Rp~=2.581ao., the 0-0-Si bond

angle is 125'53'. All energies in eV.

State

Excitation energy
Ab initio Effective potential Number of con-

Cra CI figurations b

2An

2A1

2A'

2AJF

2AI

~A"

2A'

A"
iA»

'A'

~A'

3A'

3Aif

3AI

3A"

1AII

0.0
0.692
6.600
7.924
8.142

15.419
16.174

11.117
12.210
12.582
13.985
15.447
15.468
15.495
15.771
17.366
18.988
19.556
19.619

SiH302
0.0 d

0.662
6.617
7.850
8.116

15.453
16.172

SiH30+2

11.173
12.263
12.613
14.031
15.459
15.493
15.520
15.790
17.415
19.048
19.620
19.638

98
283
283
98

283
98

283

496
316
340
340
316
530
496
530
496
316
340
530

The CI was carried out using the SCF orbitals from
GVB(2) -SCF calculations of the 2A' ground state. All
double excitations from ground-state configuration into
the ~ orbitals of the 02 part were included. These cal-
culations were meant as a test of the effective potential
as compared with the ab initio results and need not repre-
sent the most appropriate way of describing the excita-
tions within this molecule.

"This is the number of spin eigenfunctions of proper
spatial symmetry.

C Total energy calculated is -440.297 63 hartree.
Total energy calculated is -155~ 154 56 hartree.
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III. AB INITIO EFFECTIVE POTENTIAL

The general form we use for the EP" is

Il)(LI
-=Q Ifm)(fmI

m=-l

is a projection operator onto states of angular mo-
mentum 3 with respect to the center of interest.
As described below, the V, (r) are obtained from
ab initio calculations on various states of the
atom; no readjustments are made to fit the molec-
ular systems. Rather, we have in mind that the
potential (l) describes the interaction of the atomic
core of interest with orbitals on all centers of the
system. With this effective potential we then com-
pletely eliminate the core orbitals from the sys-
tem. Consequently, no basis functions for de-
scribing the core orbitals are required, consider-
ably simplifying ab initio calculations. We do not
require that other orbitals be orthogonal to the
core being replaced and hence V, contains com-
ponents representing the effects of the Pauli prin-
ciple. As a result, for Si the V, for l =0 and l =1
are highly repulsive in the core region, as can be
seen from Fig. 1.

The V, (r) in (l) are fitted to an analytic expan-
sion of the form

V, (r) =Q Crrr" exP(-LBr'), (3)

for ease in evaluating the multicenter integrals
required in molecular calculations. Use of two to
five such terms allows an excellent fit to the ab

8.0— EhlTI AL

V (r) = Q V, (r)Il)(lI,
l=O

centered on each atom whose core is being re-
placed. Here V, (r) is a function of the radius only
and

initio atomic wave functions.
In calculations of the wave functions of mole-

cules (or solids}, we must evaluate matrix ele-
ments of the form

4F AI V1(rB)Ix.c&

where the X„„and X~ are (Gaussian) basis func-
tions centered on the various nuclei (A, B,C} of
the molecule. For terms of the form (3) Melius,
Kahn, and Goddard" have developed formulas,
algorithms, and computer programs allowing
rapid evaluation of the various one-, two-, and
three-centered integrals.

The EP is obtained as follows. We consider the
Hartree-Fock equation for the valence orbital of
angular momentum /, (I)"„,",

(Q + VHF + VHF)yHF= e yHF (4)

where V""„is the operator (involving Coulomb and
exchange operators) describing the interaction of
QH" with the core.

The first step consists in replacing the Hartree-
Fock orbital Q„, by the "coreless Hartree-Fock
(CHF)" orbital' QpF whose amplitude goes smooth-
ly to zero as r- 0. The reasons for doing this are
to avoid singularities in the resulting local poten-
tial V, (r) and to minimize the number of basis
functions required to describe the valence orbitals.
The CHF orbital is obtained by simply mixing
Hartree-Fock core orbitals of the same l with Q"„,",

yCHF —@HF Q C yHF
C=1

so that &pcHF (0) =0 and the orbital is smooth. ' (This
is analogous to the procedure used in the ortho-
gonalized-plane-wave formalism, where the CHF
orbital is replaced by a plane wave. ) Once the
orbital Q~»is determined, one obtains a corre-
sponding Hartree-Fock equation. In it the core
and valence operators V"~ and V~~ are replaced
by new operators P ""and Vc"" which reflect the
fact that g~" may now overlap the core orbitals.
That is, Eq. (4} becomes

(ft ~ VcHF ~ VcHF)ycHF e ycHF (4')

o.o

4J
I—
O -4 0—

0.0 I.o 2.0 3.0
H [bohr I

4.0 5.0

FIG. 1. Si effective-potential components V& (r).
Curves plotted include the nuclear attraction term.

Note that the orbital energy is still the same while
the operator V ""now contains a repulsive part
(arising from the Pauli principle) which serves to
prevent the collapse of the valence orbitals into
the inner shells.

The CHF orbital in (5) is not normalized. After
renormalizing, the a,mplitude of (1)

"" at large r
differs from that of Q"„, by just the normalization
factor. This means that overlaps and other inter-
action quantities between orbitals on different
centers will be modified by this same (small) fac-
tor. We want the transformation from HF orbitals
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to coreless orbitals to leave intermolecular inter-
actions invariant, and hence we have modified the
CHF orbital as follows, leading to the coreless
valence orbital (CVO). The basis set for the HF
orbital is partitioned into the core set (those basis
functions important for the 1s and 2s core orbitals
of Si) and the valence set,

4 55l ~ CpXpl Z CpXpl 5

. HF

jf =1 P =N'+ I

where primes denote the core set. The CVO is
taken to have the form

(6)

(b+V~„+V5a )Q„g =@55,4'„, (455 }

In Fig. 2 we compare the HF, CHF, and CVO or-
bitals for the Si atom. The next step is to replace
the operator V~, in {4")with an effective potential

'Pn&
= Q apX[5~+ Q CpXp(

jf =l jI =N +1

where the valence coefficients are exactly the same
as in (6). The conditions on the a„of (7) are that

(i) QP, as written in (7) must be normalized and

(ii) the CVO goes smoothly to zero as r goes to
zero. To determine the (a„j, we set

~cvo(r)
lim "', = 0,
r 0

and adjust the other M' —1 degrees of freedom so
as to minimize the kinetic energy of the orbital.
The net result is

VP~(r) (that is, a mere function of r), such that the
eigenfunction and eigenvalue of (4") are also the
eigenfunction and eigenvalue of (8),

[b + VEP(r) + VQ ]y„, (8)

The components of the potential V, (r) are obtained
by projecting (8) onto the basis

&X„l[b+V~(r)+ V; e.-~]l 4" & (9)

and adjusting the parameters in (3) to minimize the
deviation of {9)from zero. [More precisely we re-
quire that the square of (9) summed over all basis
functions is minimized. ] In (9) one uses the normal
basis functions for an atom plus additional basis
functions representing important regions of func-
tion space for which V, (r) is significant. In partic-
ular, it is important to add diffuse basis functions
to the basis in order to ensure that fitting (9) will
lead to the correct long-range behavior of V, (r).
The basis used to solve (9) is included in Table IV
[we solve the HF equations for the new basis so
that all basis functions are included in the Q~ of
(9)]. After obtaining the effective potential, all
basis functions required only for the core can be
eliminated {along with the functions added only for
f it ting the EP) .

For those angular momenta l represented in the
core, V, (r) contains a large repulsive component
representing the effect of the Pauli principle (the
orthogonality of the ab initio valence orbital with
respect to the core orbitals). For I not represented
in the core, V, (r) is nearly independent of I Thus.
for Si we set

02t

C3

w 00
O

~ -05
Q. gHF

3s

S i 3S»85rALS V, (r}=Vq(r) for I ~ 2

and rewrite (I) as

v"(r) = V. (r) ls&&s I
+ Vp(r) IP&&PI

+V,(r) Z II&«l
2=2

02r-

or

V"=V,( ).V. ,I &&sl V, ,IP&&pl, (10)
05

00
C3

w
Ci

-02-
Q

@HF
3p

where

V. ,{r)= V, (r) —V,(r),

V, ,(r) = v, (r) —V,(r),

and where s, P, and d indicate l = 0, 1, and 2.

5

-04

-Q5 ~~ ~ ~ L
00 10 20 30 40 50 60 70 80

Dl STANCE c'ROM NuCLEuS [bohr ]

FIG. 2. HF, CHF, and CVO orbitals for the Si atom.
(a) 3s type; (b) 3P type.

IV. EFFECTIVE POTENTIAL FOR SILICON

In Table IV we list the usual basis for ab initio
calculations on Si and the additional functions used
for (9) for determining the potential.

To determine the d potential V», we considered
the
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TABLE IV. Basis sets used in the ab initio and effective-potential calculations on the sil-
icon atom. The form of a given basis function y& of angular momentum t is g& =N&go»
x&y~g g~(-& z ). N is the normalization coefficient; P=q=s=0 for an s-type function (l =0),

p

P =1, q=s=0 for a P» -type function (L =1), etc.

Set used to obtain Ab initio double zeta EP (4s4P) EP double zeta
the EP, Eq. (9) (6s4p) basis setb basis set c ("s2pj basis set d

P 0!~n p ~pn ~pn D~n

Px

Px

Px

Px

P,
P»

P
Px

Px

Px

Px

d.y

dxy

dxy

dxg
d
d» g

26740.0
4076.0
953.3
274.6
90.68
90.68
33.53
13.46
4.051
1.484
0.2704
0.2704
0.099 32
0.037 31
0.014 01

163.7
38.85
12.02
4.185
4.185
1.483
0.3350
0.3350
0.096 99
0.027 66
0.007 890

2.973
0.7966
0.2863
0.1154
0.049 98
0.017 89
0.007 211

1 1.0
2 1.0
3 1.0
4 1.0
5 1.0

6 1.0
7 1.0
8 1.0
9 1.0

10 1.0

11 1.0
12 1.0
13 1.0
14 1.0
15 1.0
16 1.0
17 1.0

18 1.0
19 1.0

20 1.0
21 1.0
22 1.0
23 1.0
24 1.0
25 1.0
26 1.0
27 1.0
28 1.0
29 1.0

1 0.002 583
1 0.019 237
1 0.093 843
1 0.341 235
1 0.641 675
2 0.121439
2 0.653 143
2 0.277 624
3 1.0
4 1.0
5 1.0

6 1.0

7 0.011498
7 0.077 726
7 0.263 595
7 0.758 262
8 -1.173 045
8 1.438 335
9 1.0

10 1.0

1 1.0
2 1.0
3 1.0

4 1.0

5 1.0

6 1.0
7 1.0

8 1.0

1 0.043 662
—0.274 872

1 0.653 119
2 —0.200 408
2 0.424 753

3 -0.004 717

3 -0.036 542
3 0.345 438
4 -0.030 736
4 0.144 725

This basis set is essentially the (11s7p) set of S. Huzinaga [Report from the Department
of Chemistry, The University of Alberta (unpublished)] with diffuse and d functions added.

Dunning's double zeta contraction [T. H. Dunning, Jr. (private communication)) used in
all ab initio calculations.

This set was used in the EP calculations on the Si atom and the Si2 molecule.
d This set is equivalent to an ab initio double zeta set. It was used in the EP calculations

on SiH3 and SiH&02.

(is) '(»)'(2P)'(») '(3P)'(3&) '

quintet state of Si, solving (4) for the Q,~ orbital.
The V, ~ and V~ ~ potentials were obtained from the
Q~ and |II)~ orbitals of the triplet ground state of
Si,

(1s)'(2s)'(2P) (3s)'(3p)' .

In doing this we write

V, =Vg+V, g,
Vp = Vq + Vp q

and solve (9) for V, s and for V~ ~.
The resulting potentials are listed in Table V and

are plotted in Fig. 1. %ith just three terms each,
we were able to obtain deviations (sums of the
squares) of 1.886X10 ", 3.05X10 ', and 8.469
X10 ' in the least-squares fit to (9) for the Vs,
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TABLE V. Parameters for the Si-atom effective po-
tentials. See Eq. (3) for the definitions of n, f, and t.",
and Eq. (10) for the form of the total potential. Quanti-
ties are in hartree atomic units. The effective potential
for the core electrons also includes a long-range term
of +10/r. There is also a —14/r term in the h of (4),
corresponding to the nucIear attraction. We have de-
leted the +10/r term from the table with the understand-
ing that the nuclear attraction term in h will be -4/r.

0
-1
-1

0
-2
-2

0.099 173 6
0.290 009 0
3.210 516 9

3.564 100 9
0.157 085 4
1.847 828 5

4.062 023 7
0.238 986 4
0.968 644 3

-0.011896 20
—0.078 89166
-3.591 001 10

30.317 562 00
0.248 91789
4.080 043 40

36.585 571 00
0.453 266 22
0.869 548 14

V, ~, and V~ ~ potentials, respectively (for the
large basis set of Table IV).

Using the EP, the basis on the Si can be modified
to eliminate the functions required for describing
the core orbitals. This reduces the double zeta
valence basis from 18 to eight functions as indicated
in Table IV.

We compare in Table VI the results of EP and
ab initio calculations on various states of Si, Si,
and Si'. Here we find errors of the order of 0.01-
0.06 eV, quite satisfactory for our purposes. Bear
in mind that the EP was determined from fitting
the d orbital to a quintet state and the s and P

orbitals to a triplet state. No further adjustments
were made and hence the good agreement here is
already evidence that the potential adequately rep-
resents the core electrons. At the HF and GVB
level, the lack of complete electron correlations
leads to errors in the exc itation energies. Thus
the experimental triplet-singlet excitation energy
is 0.781 eV, "and hence 0.275 eV below the GVB
value. The experimental ionization potential of Si
is 8.149 eV, "or 0.864 eV higher than the GVB
value, and the experimental electron affinity is
1.385 eV, "or 0.769 eV lower than our value.

For comparison in Fig. 3 we show the 3s and

3P, orbitals of the ground state (s'P') of Si for the
ab initio and EP calculations. In Table VII we
compare the orbital energies for the EP and the
ab initio calculations referred to in Table VI. In
most cases the difference between the ab initio and
EP orbital energies was about 0.001 hartree
= 0.037 eV. This difference is as high as 0.005
hartree only for some of the GVB correlated pairs.
In Tables VIII, IX, and X we show the orbital en-
ergies for the Si„SiH„and SiH, O, SCF calcula-
tions, respectively. Here we note that the differ-
ences between the ab initio and EP are larger than
they were in the atomic case. This is to be ex-
pected since the effective potential was constructed
from the atomic SCF calculations. In the molecu-
lar-orbital energies most of the differences be-
tween the ab initio and EP values are below 0.020
hartree=0. 3 eV, except for some of the GVB cor-
related pairs in which it is as high as 0.030 har-
tree. We note, however, that the correlation en-
ergies for most of those same GVB pairs (given
in Tables VIII-X) agree to better than 0.005 har-

TABLE VI. Energies for various states of Si, Si, and Si (energies in eV).

Excitation energy

Electronic state
Type of

wave function ~
Ab initio

SCF
Effective
potential

Simplified
effective
potential

Si quartet {s p )
Si triplet (s p )
Si doublet (s p') b

Si singlet (s p )
Si quintet (sp )
Si+ doublet (s p )

HF
GVB(1)
GVB(1)
GVB(1)
HF
GVB(1/3)

-0.616
0.0 '
0.684
1.056
2.893
7.285

-0.623
0.0
0.696
1.078
2.836
7.276

-0.030
00
1.532
1.107
2.476
7.192

'The basis sets used were the Si (6s4p) and the Si (4s4p) sets of Table IV. Both of them
were complemented with one diffuse function for each angular momentum type (f&„=0.037 31
for s and g&„=0.02766 for p type). See Ref. 12 and the Appendix to the present paper for
an explanation of the terms used in this column.

b For each state we considered the wave function using real orbitals and orbital symmetry
restrictions. Thus this state is not an eigenstate of L .

Total energy calculated is —288.843 78 hartree.
Total energy calculated using the effective potential is -3.676 68 hartree.

~ Total energy calculated using the simplified effective potential is -3.815 14 hartree.
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ab initio calculation

TABLE VII. Comparison of orbital energies for
ab initio (AI) and effective-potential (EP) calculations
for various states of Si, Si+, and Si . All energies in

hartree atomic units.

State
Orbital

3P 3P

Si quartet (s p ) AI -0.3020 -0.0615 -0.0615
EP -0.3028 -0.0620 -0.0620

0 i

BITAL

effective potential calculation

Si triplet (s P ) AI

EP

-0.5544 -0.2958
(0.9904)

-0.5551 -0.2956
(0.9900)

-0.8671
(-0.1380)
-0.8725
(-0.1409)

-0 I

LLJ
C3

I: -02-
CL

-03-

Si doublet (s p ) AI -0.3187 -0.0586

EP -0.3199 -0.0593

-0.0272
{07071) c

-0.0275
(0.7071)

-04

-0 5- I i I i I I I

00 I,O 20 30 40 50 60 7G BO

DISTANCE FROM NUCLEUS [bahr ]

Si singlet (s2P2) AI

EP

-0.5617 —0.2597
(0.9904)
-0.5629 -0.2590
(0.9900)

-0.8747
(-0.1382)
-0.8804

(-0.1412)

FIG. 3. HI orbitals of Si (P) as calculated ab initio
and using the EP. (a) 3s; (b) 3p.

Si quintet (sP ) AI -0.7247 -0.3487 -0.3487
EP -0.7298 -0.3489 -0.3489

tree = 0.015 eV.
We find that the EP obtained using the above

ideas leads to excellent agreement with ab initio
calculations while eliminating core orbitals and
core basis functions. However, although thi. s EP
leads to great computational gains, it still requires
four basis functions of each type (s,p„p„,p, ) on
each Si. For use in our studies of large clusters
we have also developed a much cruder, simplified
EP (SEP) adjusted so as to require only two basis
functions per type per center. In this case we
eliminated all core functions from (7), leading to a
smooth valence orbital with finite amplitude at the
nucleus. The parameters for the SEP are listed in
Table XI. Since the orbital is finite at the nucleus,
the SEP is much less repulsive at small r than the
EP. A plot of this potential is shown in Fig. 4.
Table VI compares values of energies obtained
with this SEP and ab initio calculations for the Si
atom.

For band calculations on solids using plane-wave
expansions, an overriding consideration is the re-
duction of the number of plane-wave components.
Thus, for such studies the SEP is likely to be more
useful than the EP.

V. CONCLUSIONS

These results are very encouraging. The effec-
tive potential produces wave functions of ab initio
quality, as well as very good agreement in the
energy quantities of molecular and atomic systems.

Si doublet (s p')

EP

-0.8661 -0.5817
(0.9819)

-0.8664 -0.5801
(0.9811)

-1.185
(-0.1341)
-1.189
(-0.1370)

See footnote b of Table VI.
"Numbers in parentheses indicate CI coefficients of

GVB correlated pairs. The wave functions of these pairs
have the form C&Q&+C2(I|f2+ C3$3, where the C& (CI coeffi-
cients) satisfy ZCg =1. See Ref. 12 and the Appendix to

t
the present paper.

This orbital is correlated with a 3Pg orbital having
also C& =0.7071.

This orbital and a 3p, orbital like it correlate the 3s
orbital in a GVB(1/3) wave function.

It must also be noted that since the wave functions
obtained with the effective potential are smooth at
the core, we can reduce considerably the number
of primitive functions on the basis sets employed.
This produces an appreciable reduction of cost in
the calculation of the integrals. A further reduc-
tion in cost (for large complexes) is obtained whet.
one uses the simplified effective potential for atoms
that are not actively involved in the calculation
(e.g. , "bulk" atoms when calculating surface prop-
erties). Besides this, one gets the corresponding
reduction in the SCF costs due to the smaller num-
ber of electrons involved.
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TABLE VIE. Comparison of orbital energies for ab initio and effective-potential calculations
for the 3Z~ and the 'Z~+ states of Si2 (R=4.244ao}. All energies in hartree atomic units.

3+

Effective
Ab initio potential Ab initio

Effective
potential

Eo
Eg

~n„„

-0.6613
-0.3374
—0.4728
—0.3104

-0 ~ 6678
-0.3303
-0.4732
-0.3116

A. Orbital energies
-0.6829
-0.6648
-0.4749
-0.2S72 a

-0.6843
-0.6675
-0.4761
-0.2976

Bond pair

B. GVB pair quantities
7r bonds o nonbond-

(x„and 7t' ) ing pair
7t' bonds

(n„and r„)
o nonbond-

ing pair

-0.1118
0.7977
0.0094

-0.1147
0.7931
0.0095

-0.2982
0.5239
0.0278

-0.9774
0.6445
0.0424

-0.2990
0.5228
0.0278

-0.9773
0.6434
0.0202

This orbital is the first natural orbital of a correlated pair. See Refs. 12 and 19.
The wave function for a correlated pair has the form C&p&+C&(I52, C2 is the CI coefficient

for the second natural orbital (C& +C2 =1); A E is the correlation energy of the pair; S~ is
the overlap of the GVB orbitals of the pair. See Ref. 12 and the Appendix to the present
paper.

APPENDIX: GENERALIZED-VALENCE-BOND (GVB)
%AVE FUNCTIONS

where

(A2)

In order to clarify the discussions of wave func-
tions in this paper we include in this Appendix a
brief summary of the GVB wave functions. For
further details the reader should consult Hefs. 12
and 19.

Consider a, two-electron system such as H, or
the He atom. The Hartree-Fock wave function has
the form

4""(1,2) =8 [p (1)g (2)a(1)P (2)]

= P(1)P(2)[a(l)P(2) —P(1)a(2)] . (Al)

where 8 is the antisymmetrizer. The optimum
orbitals are obtained by solving the resulting vari-
ational equation

B""=h+J
h is the one-electron Hamiltonian, and J& is the
Coulomb potential for an electron in orbital Q.

In the GVB wave function for two electrons one
allows each electron to have its own orbital; thus

(1, 2) =g{y,(1)P~(2) [u(1)P(2) —P(l)n(2)])

=[4.(1)e (2)+0 (2)e.(1)]

x[~(1)p (2) —p(1)~(2)], (AS)

where (II), and (I|), are generally nonorthogonal. Ap-
plying the variational principle to the GVB wave
function leads to the equations

TABLE IX. Orbital energies for SiH3 and SiH+3. All
energies in hartree atomic units.

Si SIMPLIF I ED EFFECTIVE POTENTIAL
0.0—

SiH~ ~A) SiH+3 ~A(

Orbital Effective Effective
energies Ab initio potential Ab initio potential

g -4.0—
I—

LU
I—

CL
O -80

a

E a

6 ra
Eg» a

-0.7137
-0.4823
-0.3453
-0.4822

-0.7110
-0.4802
-0.3353
-0.4801

-0.9981
-0.755S

-0.9965
-0.7548

—0.7559 -0.7548

0.0 I.O 2.0 3.0 4.0 5.0
R [bohr]

' Doubly occupied orbital.
b Singly occupied orbital.

FIG. 4. Si simplified-effective-potential components
V& (r). Curves plotted include the nuclear attraction
term.
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TABLE X. Orbital energies for the A ground state of
SiH302. The basis sets used are the Si (6s4P) and the Si
(2s2P) of Table IV and the H (2s) and O (4s2P) of T. H.
Xhuming, Jr. , J. Chem. Phys. 53, 2823 (1970); and
S. Huzinaga, ibid. 42, 1293 (1965). All energies in har-
tree atomic units.

TABLE XI. Parameters for the Si-atom simplified
effective potentials. Quantities are in hartree atomic
units. See caption to Table V.

1NO

Cp

S~
AE

Ab initio

A. Orbital energies

-20.6740
-20.6181
—1.3737
-1.0588
-0.7313
—0.5940
-0.5099
-0.6345
—0.4910
-0.6172

B. For GVB pairs
a. Si-O bond

-0.7721
—0.0852

0.8424
-0.0142

Effective
potential

-20.6777
-20.6148
—1.3771
-1.0638
-0.7293
-0.5972
-0.5084
-0.6367
-0.4911
-0.6207

-0.7691
-0.0881

0.8376
-0.0147

Vg

where

0
-1
-1

0.099 1736
0.290 009 0
3.210 516 9

1.90165
0.253 28

1.31007
0.192 52

-0.011896 20
-0.078 891 66
-3.591001 10

14.7148
0.195044

5.870 41
-0.059 582 2

(A6)

~iNO

C2

41

b. O-O bond

—0.7871
—0.1639

0.7151
-0.0397

-0.7909
—0 ~ 1637

0.7154
-0.0396

~ This orbital is singly occupied.
1 NO and 2 NO indicate the natural orbitals of the

correlated pair, C&p&No+ C2(t)~o., C2 is the CE coefficient
(C& + C& = 1); b, E is the correlation energy of the pair;
S~ is the overlap of the GVB orbitals of the pair. See
Ref. 12 and the Appendix to the present paper.

(A5)

HG~P =e Q HG~Q =& Q

which must be solved for the optimum orbitals. In
solving for these orbitals it is generally more con-
venient to transform the spatial part of (AS) to the
natural orbital (NO) form

and N, D, and D, are suitable normalization con-
stants. Since Q, and Q, are orthogonal, the cor-
responding variational equations are simpler to
solve.

Replacing a HF pair such as in (Al) by a GVB
pair such as in (A3) or (A5) accounts for the dom-
inant electron correlation of many-body effects in-
volving these electrons. From the form in (A5) one
can say that in the GVB method we solve for the
occupied and correlating wave function simultane-
ously and self-consistently.

For a molecular system the correlated orbitals
generally localize on or around one or two atoms,
leading to what can aptly be interpreted as a bond
pair, a core pair, a nonbonding pair, etc. It is
possible to selectively correlate only certain pairs;
for example, in the ab initi0 wave function for the
'Z~ state of Si„we might correlate all (four) pairs
involving the valence orbitals (Ss and Sp) but not
correlate the Si core orbitals (ls, 2s, and 2p, ten
altogether). Such a wave function would have the
form

~[41~2 410( 114114 12 ~12412411)( 13413414 144 14 0 23)

[ten doubly-occupied core orbitals and four GVB
correlated pairs (expressed in the (A3) form)].
This wave function would be denoted as GVB(4),
indicating that four pairs are correlated.

The programs for calculating the GVB orbitals C,Q,Q, +C,Q, (t), +C3$3$3+C,Q,Q, , (A8)

can also allow additional natural orbitals in an ex-
pansion of the form in (A5),
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and occasionally there are cases where such ad-
ditional correlations are important; for example,
a nonbonding orbital in a negative ion (CH, ). Such
a wave function for two electrons is denoted as
GVB(1/4) indicating 4 NO's for describing one elec-
tron pair. For a many-electron wave function the

form (AS) would just replace the doubly-occupied
orbital of a HF wave function. Physically not more
than four to five NQ's in an expansion of the form
(AS) can be expected to be important, correspond-
ing, for example, to in-out (1) and angular cor
relations (3) of some doubly occupied orbital.
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