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The theory of parametric amplification, with particular reference to subharmonic and second-harmonic

generation, is developed by using the Boltzmann transport equation with the constant-relaxation-time ansatz.

Subharmonic and second-harmonic generation in the absence of external fields is discussed with reference to:
(a) piezoelectric semiconductors in which piezoelectric coupling dominates the interaction, (b) nonpiezoelectric

extrinsic semiconductors in which majority carriers dominate the interaction, and (c) intrinsic semiconductors,

semimetals, and nonpiezoelectric extrinsic semiconductors in which minority carriers dominate the interaction.
At very high frequencies, extrinsic semiconductors in which majority carriers dominate the interaction are
found to be most effective for parametric amplification.

I. INTRODUCTION

Ultrasonic-second-harmonic generation due to
acoustoelectric interactions was first observed in
photoconducting CdS by Tell. ' Recently, there has
been a revival of interest, both experimental' '
and theoretical, ' '" in frequency-mixing effects,
mainly because of the role they play in the growth
of domains of acoustic flux under conditions of
acoustic amplification. In recent papers, Conwell
and Ganguly" and Spector" have discussed fre-
quency-mixing effects due to the acoustoelectric
interaction of the acoustic waves with the conduc-
tion electrons in piezoelectric semiconductors.
They used a phenomenological theory to obtain the
ac current induced by the acoustic wave. This ap-
proach limits the validity of the calculations to the
region in which the phonon wavelength, 2v/q is
much larger than the electron mean free path,
i.e. , ql «1. This condition is met in photoconduct-
ing CdS over a wide range of frequencies of inter-
est. However, amplification of acoustic flux has
been observed in high-mobility semiconductors
such as n-InSb, "GaAs, '" and Qe, "where the
phonon wavelength may be much smaller than the
electron mean free path. Therefore, it is of inter-
est to use a transport-equation formalism, which
is not limited in its validity to the long-wavelength
region, to calculate the ac current induced by the
acoustic wave. This approach would extend the
validity of the calculation to the short-wavelength
regime, q L» 1. At very high frequenc ies, def orm-
ation potential becomes the dominant mode of
acoustoelectric interaction even for piezoelectric
semiconductors. Therefore, it is also of interest
to include deformation-potential coupling in our
discussion of the frequency-mixing processes.

In Sec. II the t;heory of parametric amplification
is developed in terms of the linear and the non-
linear electronic conductivity tensors for semi-

conductors in which both electrons and holes con-
tribute to the interaction. In Sec. III, the linear
and nonlinear conductivity tensors are calculated
through the use of the Boltzmann transport equa-
tion. In Sec. IV, subharmonic and second-har-
monic generation is discussed in extrinsic semi-
conductors, intrinsic semiconductors and semi-
metals, and in piezoelectric semiconductors.
Finally, in Sec. V we present a discussion of our
results.

II. THEORY
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%e shall consider, as our model, a semicon-
ductor or semimetal with both electrons and holes
present. The acoustoelectric interaction of the
ultrasound with the charge carriers can be de-
scribed by the equation of motion of the lattice,
the equation of state of the material, Maxwell's
equations and an equation for the electronic current
induced by the ultrasound. For both deformation-
potential coupling and piezoelectric coupling, the
interaction is only appreciable if the electric fields
induced are longitudinal. " Therefore, we need
only Poisson's equation and the equation of con-
tinuity to determine the electric displacement in
terms of the electronic current induced by the
wave. The relevant set of equations are

15



4956 G. JOHB, I AND H. N. SPECTOR

Here $,- is the displacement due to the sound wave,

T;; is the stress tensor, S;,. is the strain tensor,
c,,-» are the elastic constants, C',

&
and C,, are the

deformation coupling constants for the electrons
and holes, respectively, P,~, is the piezoelectric
tensor. n and p are the respective electron and
hole densities, E is the electric field and D the
electric displacement, and e is the static dielec-
tric constant.

This set of equations has to be supplemented by
an equation for the electronic current density j.
We shall now limit ourselves to the case where we
have three collinear waves present where the high-
est frequency up, =(d, +co,. As we shall show in
Sec. III, the current densities induced by these
waves can be written

j 1,2i oij (~).2) 1,2j ij2( 3) +1,2) 3j 2. 11)

(2.7)

=o&l((v3}E3j +A;,„{(rj„(d2)E)jEe (2.8)

Here E'„=E„-q„q„C~ („/e is the effective electric
field arising from the passage of the sound wave of
frequency &„. Also, we take the electric fields and
the current densities to be parallel to the wave
vectors of the three waves. Therefore, in the fol-
lowing we shall drop the subscripts i,j, k, l and use

a one-dimensional model, with c, C ~, and P as
the appropriate components of the elastic, defor-
mation potential and piezoelectric constants, re-
spectively. Ne shall now treat separately the two

cases, in which either deformation-potential cou-
pling or piezoelectric coupling is the dominant
mode of interaction of the waves with the carriers.

n, = j.,/e-v„j),. =j„/ev, , (2.9)

where n; and j„are the electron number density
and current density, respectively, induced by the
acoustic wave of frequency &, and P; and j~; are
the corresponding parameters for holes.

Also, from (2.3) and (2.5) we get

E; = -4[l(n; P,)e/i lf, e . — (2.10)

By substituting from (2.7), (2.8), and (2.10) in (2.9)
we get the contribution of the three waves to the
electron and hole densities up to terms second
order in the strain amplitude S:

A. Deformation-potential coupling

When deformation-potential coupling dominates
the interaction, we can neglect the terms involving

p in Eqs. (2.1)-(2.6). In the absence of recombina-
tion and intervalley scattering, we get the following
relation between electron and hole densities and
currents:

2 (I,o, ((d,)C,S, 4jjg, ((()1)o2(((),) (Cj) + C,)S,

A, ((v„—(v2) $2/' 3' [r~(,)],, '} { } [{c c }r,(-,}-c ][(c~+c,)r,(,
[( —r.(,)], ' * [(c, c.)r.(-,) —c.][(c, c.)r.g, ) —c.i)s, s.e'*', (1.11)

iq 3(T( (d)3C,S, 43lo, (((j3)o3((()3)(C2+C,)S,

+ ' r'{'
} [ —r, (u)3)] e,r{ '}r{ } [(C2+C,)r, ((v,) -C.][(c~ +C,)r, (&o2) -C,] S,S,e ' *, (2.12)

& = (e.-e. -g,),
rc p((vj) —1 —4 F(T() ~((d j)/l(d jE'' (2.13)

and n, is identical to n, with the subscripts 1 and 2
interchanged. The expressions for the hale densi-
ties are identical to those for the electron densities
with C„o,((d;), 1,((d, ), and A, ((()j, &()2) replaced by C2,
oj, (((j;), r2{(v,), and A2((d, , (c)2) and a change in the
sign of e. In the above

and

r(u), ) =1 —(4lj/2(d, e)[o,((v, ) +cr2(u), )] . (2.14}

The electric fields induced can now be calculated
using (2.10). However, in this case it is more
canvenient to work with the induced electron and
hole densities.
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B. Piezoelectric coupling

When piezoelectric coupling dominates the inter-
action, we can drop the terms involving C~ and C,
in Eqs. (2.1)-(2.6). Also, in this case we shall
consider only one type of carrier {electrons) to
contribute to the interaction since the presence of
holes would lead to negligible effects as long as
the hole density is much smaller than the electron
density. This is indeed the case in most piezo-
electric semiconductors of interest.

By using Eqs. (2.3), (2.7), and (2.8) together with
Maxwell's equations for a nonmagnetic medium,
we find that the electric fields induced by the ultra-
sound are

4mp/e

r ((u,)

4mp/e
3 r(~) 3

4im

I( )

(4wp/e)'x ((g, +~ )
~

S,S3e ' (2.17)

We are now in a position to solve the equations of
motion of the lattice (2.1) and (2.2). Following the
same procedure as in Ref. 10, we write the sound
wave amplitude as

$, = u,.(I) expt {q,. x —u,.t). (2.18)

dQI = —QIQI —'gIQ~ Q3e {2.19a)

Because of the smallness of the electromechanical
coupling constants, the amplitude will change very
little over the distance of a wavelength, and using
this fact we obtain the following set of equations
for Q„u„and u, '.

4im
, A( „-,) dQ2 iDx= -n~ —q,Q,*Q,e (2.19b)

(4mp/e)' dQ3 -iQx
&3Q3+'93QI.Q 2dx (2.19c)

E, =E,(1—2), (2.16)
where, when deformation-potential coupling domi-
nates

(2.20)

q,'q,'(q, —q.)
2q,ce'v, r(&u, )r(-&ver(tu, )

x{A,{~„-~,)[(C, +C,)r, (~,) —C,][(C, +C,)r,(-~,) —C,] [(C, +C,)r, (~,) —C,]

—AP((u„—(u3)[{C3+C,)r, ((u,) —C,][(cq+C,}r,{-ug —C,][(C3 +C, )r, ((u3) —C,]), (2.21)

q, q (q +q)
2q,ce'v, r(&u, ) r(&u, )r(~g

x{A,(&u„~,)[(C, +C )I' (~,) —C ][(C, +C )I' (~,) —C ] [(C, + C )I' (&u,) —C ]

-A, (~„~)[(c,+c,)r, (~ ) -c ][{c,+c,}r,(~ ) -c ] [(c,+c,)r, (~ ) -c ]) . {2.22)

The expression for g, is identical to that for q,
with subscripts 1 and 2 interchanged. When piezo-
electric coupling dominates, we have

q', q, (q, +q.) &(~, + ~.) (4&p/e)'
2q~ (u3'r((u, )r((ver((u3)

(2.2 5)

(4~p'/e)
Qi = — Im

2c r((u;)

q,q, (q, -q, ) t(~, ~.)(4~ p/)e' A(—

(2.23)

(2.24)

Again the expression for q, is identical to that for
g, with subscripts 1 and 2 interchanged.

The absorption coeff ic ient def ined by equations
(2.20) and (2.23) takes into account only the elec-
tronic losses. However, the linear absorption co-
efficient, n, , appearing in Eq. (2.23) includes



4958 G . J 0 H R I A N O H . N . S P E C T 0 R

both the electronic and lattice 1osse s and the re-
fore our results are valid only when the nonelec-
tronic lattice losses are small. In situations for
which the above condition does not hold, our re-
sults can be easily modified by using the total,
electronic and lattice, linear absorption coeff i-
cients that appear in the parameters which de-
termine the frequency mixing processes. In
n- Insb" the lattice losses have been determined
to be less than 2 cm ' at a frequency of 3.8 giga-
hertz. However, at higher frequencies they can
become cons id e rably larger. "

By using the set of coupled equations (2. 19), we
can now discuss the various parametric processes.
When the amplitude of the acoustic wave is large
at the highest of the three frequencies &u, (pump)
while the amplitudes at both &u, (signal} and &u,

(idler) are small, we can neglect the second term
on the right hand side of Eq. (2.23} as compared
to the first. This neglects the depletion of the
pump and is therefore only valid for small x. As
a result, the second term on the right hand side
of (2. 19a) and (2.19b) acts as a source for waves
at the idler and signal frequenc ie s thereby leading
to nonlinear gain at these lower frequencies. The
solutions for the case of down-conversion have been
worked out and discussed in great detail in Refs.
10 and 14. It is found that if the real part of m,
where

m= & [ l (a, —a, —Ia)) '+ n, q,* lu, (o) I'}"
is larger than the imaginary part, then for large
enough x with o.3x«1

where the acoustic flux at a frequency &; is

P(~~) = .P~~—lh;I''.
and

(2.31)

& = 6192I'&l(a2- 2a, ) - i(q, 2q l)—l'p".~' (2 32)

In (2.30}and (2.32) the subscripts 1 and 2 refer to
the fundamental and the second harmonic, re-

spectivelyy.

III. CALCULATION OF CONDUCTIVITY TENSORS

The Boltz mann equation for electrons interacting
w ith acoustic waves of frequenc ies cu „(d„and &3
= &, + &, and wave vectors q„q„and q, is"

~f - sf e -, &f f f, -—+V ' —E'
ar . , m ' Bv

(3.1)

the frequency ~3. At small enough x where the

ampl itude of the wave at frequency &3 is still
small, we can neglect the terms containing u3 in

(2.19a) and (2.19b) and solve for u, and u, . The
solutions for the case of upconvers ion have also
been discussed in detail in Refs. 10 and 14. For
the degenerate case where u 3

= 2(d = 2&, = 2(d, we
have second harmonic generation. The ratio of
the acoustic flux at the second harmonic to the
initial flux in the fundamental is

P,/P', (0) =A[e '"2*+e ' ~*

-2e '"~'" 2'" cos(2q, -q,)x], (2.30)

u, (x) = Ce N~',

where the nonlinear gain coefficient is

a „=--,' (a, + a,) + Hem .

(2.26)

(2.27)

whe re E', is the effec tive electric field induced by
the acoustic wave, 7 is the carrier relaxation
time, and f, is the distribution to which the car-
r iers relax in the presence of the acoustic wave.
This distribution is"

a„,= -a, + lqlls, (o) I, (2.26)

In particular, for the degenerate case (d, = ~, = co

f.(v)=f.(v) + 2 u;
d

'df0

0
(3.2)

where g =q,jq, .
In the presence of an external drift field we can

have Q y
& 0. In this situation, the nonlinear cor-

rection to the gain coefficient causes the signal
(subharmonic) to be amplified at a greater rate
than that predicted by the linear theory. In the
absence of a drift field, when z1 + 0, there will be
a net gain at the subharmonic only if [@[is,(0)[ & a, .
Therefore, the threshold pump s train above wh ich
the signal at the sub harmonic would be amplified is (3 3)

Here f,(v) is the equilibrium distribution function,
$; is the amplitude of the acoustic wave, and n; is
the carrier density induced by the wave. In most
materials of interest the carrier density is low
enough so that we us e classical Maxwell -Boltz-
mann statistics. Therefore, we shall take f,(v) to
be the Maxwell -Bol tz mann distribution function.

The solution to Eq. (3.1) can be written
3

f(v) =f,(v) + P q, (v) expi(q, x —&u, t) +c.c.

I s,„(o)I
= a,f I z I (2.29)

If initially there are waves present at frequenc ies
(Ll 1 and &„ then a third wave will be gene rated at

Here we have taken the three waves to be collinear
with their wave vectors lying along the x axis. Sub-
stituting from (3.3) in (3.1), we get the following
equat ions:



NON LINEAR ACOUSTOELECTRIC EFFECTS IN SEMICONDUCTORS 4959

[& +i(q)vx —((()q)]S'g(v) = —
g

E ufo+ fo1 1 1 ~v2 1 0 g ~ 0

e f,
m 1 —'(q, ,—,) vvv', ' ' ', 1 —i(q,v, — g )

n, r ' v,' 1 i(-q,v, - (o,)v

( ~ (q. .— .) ) (3 4)

g, obeys an equation identical to {3.4) with subscripts 1 and 2 interchanged.

[T '+i{q,v, —(d )]g,(v) =—;E,f, + ' f,

e f, 2e
+ E,E2

m 1+i(q,v, —(q),)w ~mv2

2v2 iq&v 7'1+,' + ( ~ (q,v, —,) )

nP, 2v, iq, r
n, r v,' 1+i(q,v, —(v,) v.

f, 2e 2v,' gqvT
1+i(q v, —(q),)v mv', ' ' v,'1+i(q v, —(d,)r

nP, 2v, iqr
( ~ '(q, v, —,) ) (3 5)

The ac current induced by the ultrasound is

j; =-e dvvg, - v, i=1, 2, 3. (3.6)

Here the charge of the carriers is taken to be -e.
Substituting from (3.4) and (3.5) in (3.6) we can write the ac current density as

f )q
= o„((v,)E, —R,(u, )n,ev, +[T„„((qp„(q),—(q),) +7'„,(-(q)„(q), + ur, )]E«E,

—„((d„(v,—tu, ) v, n, E,*-& (-(d„&v, + v, ) ev, n«E, (3.7a)

The expression for j„is identical to that for j~ with subscripts 1 and 2 interchanged while

f„=q,„((u,)E, R, ((u,)np v,-+[v'„,((ui, (o3 —&u)) +T„,((u„(u, —(u,)] ,E,E

-S„((d„(v,—(u,)ev,n, E, -S„((d„(g,—(d,)ev,n, E, . (3.Vb)

Here'4

1/22a m a, a; a&

q; l q l ' iq l n'' 'q l (3.8)

(3 8)
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and

2 op [ -w a, -a, a, -a,
w' 'v, )q,/(a3 —A.31a,) iq, / iq, l iq, l iq, l

3

a, —X„a, i(q, /)' iq, / i(q,l)' iq, l iw'~'(q, /)' iw'~'(qx/)'

q 2 2

(a, —x„a,)' (q,l)' iq, / (q,l)' iqp w' 'q, l w"'q,

ag- a„a, (q,l)' i q, / w'~'q, / (q,l)' iq, l w '~'(q, /)3
„

-2g ' a, -a, as 03 ag a32 2

q"' Iqt(, —q„q,) (qt)* 'qt (qj)* q 1 '"*qt

(3.10)

+
(a, —x„a,) q, / iq, / (q,/)' iq, l w "'(q,l) ' (3.11)

where W(z) = e erfc(-iz}, o, is the dc conductivity of the electrons, /), is the mobility of the electrons, a,
=1 i(v, r-, X„X=&o„/(d„ l is the electron mean free path, v, =(2kzT/m}'~2 is the mean thermal velocity and

v, is the velocity of sound. By using the e(enation of continuity we can rewrite (3.7) as

A* = a*'*(~ )E1+A***((v3 - ~2)~2' 3

i 3* = a*'.(~2}R2+A**.(~3 -~,%';R3

J3 x oxx (+3) 3 Axxx ((v 1 t (d 2% 1@2 t

where

(3.12a)

(3.12b)

(3.12c)

&r,', ((v, ) = o„((d,)/[1 —R, (ru, )], (3.13)

( )
~xxx ((q)3t (q)1 (dg) ggz ( (dxt (q)1 + (q)2} egg ((q)3t (q)1 (q)3)(TXZ ((q)3) + Sgg{ (q)2t (q)1 + (d2} (Jxg ( (t)2)

1 -R,((v,) 1-R ((v,)

( ) — XXX{ 1t ~3 +1) Txxx(+2q +3 ~2) zx((q)1t +3 (q)1)oxx((dq) +333((q)2t (q)3 (d )oxx((q) )
1-R,((q)g 1-R,((vg)

{3.14)

(3.15)

(y,', ((v3) =e(uc/4w(1+3(v3/(v2)),

A„,((d„—(u,) = (e (v, /3/4w v,}{1+i e3,/(up

(3.16)

&& [(1+i~Ju&g '+(1 —ia)2/&O23) '],

(3.17}

Ne note that for the degenerate case w, =co, =e,
the nonlinear conductivity A((d„&q)2) is smaller by a
factor of 2 than the expression obtained by using
E(/s. (3.10), (3.11), and (3.15).

In the long-wavelength limit, q&l «1, we can use
the asymptotic form of W(z),"

W(z) = (i/w'~ z)(12+1/2z'),

and the conductivity tensors reduce to

A„,((y„u)2}=(~(o,p/4wv, )(1+i(o3/(dv) '

&& [(1 i(u,+/()d'
D( ++i1(/d(2)v v'],

(3.18)
where ~, is the dielectric relaxation frequency, e
is the static dielectric constant and (vv=v,'/D,
where D is the diffusion coefficient for the elec-
trons.

In the short-wavelength limit, q/ »1, we can use
the small argument expansion of W(z},"

(iz }"
W(z) = g { /2}, ,

and we get



15 NON LINEAR ACOUSTOKLECTRIC EFFECTS IN SEMICONDUCTORS 4961

e~ (tv&) = (-&tv, e/4e) (q,/q, )'(1 +in '~'v, /v, ) &
(3.19}

2

A t —&r ) = — ' — &tt —rr„) —2' 'r' tt —2&„))4e mv'g q, (1 —X») Vo

2

+ — 2(1+X„)—2iw'~' —a (1+2&t») (3.20)

e ' 1 v I

A (td tv ) = — ' — 2(1 —A. ») —2iw' '~ (1 —2&t. ,3)
4w mv,' q, (1 —A.») Vo

(3.21)

whereq~=(4wn, e'/ekeT)'~' is the electron Debye
wave vector.

The results of this section are also valid for the
contribution of holes to the current density if we
replace the electron parameters in the expressions
for the conductivity tensors with the corresponding
hole parameters.

IV. APPLICATIONS

P go C~ 1

v c e 1 +((v /td +(v/t&tt&)

[1+( /» }']"
[1+(tv,/2(d +2(e/(vD)']'~'

v,' e [I + (t&t,/2' +2(&t/t&t g'] 't"

4(sit C, [1+(td/2tdg']'i'

whenql «1, and

(4.3)

(4.4}

We shall now use the results of Secs. II and III
to discuss subharmonic and second-harmonic gen-
eration in extrinsic and intrinsic semiconductors,
and in semimetals where the deformation-potential
coupling dominates the interaction and also in
semiconductors where piezoelectric coupling dom-
inates the interaction.

A. Extrinsic semiconductors with majority carriers dominating
the interaction

( )
qt (C./e)'o,

2cv~ 1 + ((&&~/t&lt +(&&(/tdt&)
(4 1)

whenq;l «1, and

e (C./e)'q&(e "V./v g
2c 4w [1 +(q,/q, )']' (4.2)

when q, l » 1.
For subharmonic generation at the subharmonic

frequency ~, we get

As a specific example of such an extrinsic semi-
conductor, we shall consider a n-type material.
The results for a P-type material will follow in an
analogous fashion. For the majority carriers to
dominate the electron-phonon interaction, the ac
conductivity of the minority carriers must satisfy
the condition 4'~(tv;)/e «&d, . This condition will
be satisfied if there are no minority carriers and
will be satisfied at low frequencies if the density
of minority carriers is small. Therefore, neglect-
ing the minority carriers, we find that

q' ee q,
' (C,/e)'

c 4emvo q [1+(q,/q)']'[1+ (q,/2q)'] '

(4.5)

S~ = (1/2C, ) mv,'e'~'(v, /v, ) [1+(q,/2q)'] (4.6)

when ql »1.
In Figs. 1 and 2 we plot ~tt)~ whenql «1 and when

q/» 1 respectively and in Figs. 3 and 4 we plot $~
in the regions ql «1 and ql »1, respectively. The
parameters used for n-Ge and are given in Table
I. The ordinate in Figs. 1 and 2 is in arbitrary
units. We note that (t}] is a monotonically increas-
ing function of frequency in both of the regimes

ql «1 andql»1. Also, forql «1, Sfb is quite large
()10 ') up to a frequency of 1 GHz. Therefore, in

the absence of external drift fields, subharmonic
generation will be negligible below 1 6Hz. Above
a frequency of 10 QHz, the threshold pump strain
for nonlinear gain at the subharmonic becomes
comparable to the one obtained by Conwell, for
piezoelectric CdS." But here we are almost at the
.boundary of the regime ql «1. For ql » 1 the thresh-
old strain decreases rapidly with frequency until
it reaches a constant value at a phonon wave vector
equal to twice the electron Debye wave vector q~.
Therefore, the deformation-potential coupling
should become a more important mechanism for
subharmonic generation than piezoelectric coupling
at very high frequencies. However, the phenom-
enological model used by Conwell" is not valid
at very high frequencies whenql »1. We shall
discuss the case when piezoelectric coupling dom-
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0 0
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FIG. 2.
~ Q shown as a function of wave vector in s-Ge

in the region ql» 1.
FIG. 4. Threshold pump strain shown as a function of

wave vector in e-Ge when ql »1.
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TABLE I. Physical parameters for n-InSb, n-Ge,
and Bi.

Parameter
n-InSb
(77 K)

n-Ge
(10 K) Bi

m*e
mp
v, (cm sec ~)

vp (cm sec )
vF (cmsec ')
7, (sec)
~& (sec)
np pp (cm 3)

E'

p (gcm 3)

p (esu cm 2)

Ce (eV)
Cp (eV)

0.013mp
~ ~ ~

4.0 x 105

4.2x 107

10 12

~ ~ ~

2 5x10&4

18
5.8
1.8 x 104

6.0

0.082m p

~ ~ ~

105
106

10 "
10"
16
3.0

10

0.01m p

mp
2.0 x 105

10
10 "
10-iP
5x 10
10
9.74

10 1

When ql «1 our results reduce to those of Spec-
tor. " In Figure 5 we plot the second-harmonic
flux' versus the phonon wave vector forql »1.
The flux at the second harmonic increases with

frequency. For phonon wave vectors much above
the electron Debye wave vectors, the frequency
dependence of g is approximately cg4. Therefore,
deformation-potential coupling should become the
dominant mechanism for harmonic generation at

very high frequencies even for piezoelectric semi-
conductors. The harmonic generation due to this
mechanism should be completely negligible at
frequencies below the dielectric relaxation fre-
quency of the majority carriers. "

B. Intrinsic semiconductors and semimetals

q,
' [(c,+c,)/e]'

&( j) 2 [1 ( / )2] 0 P'
whenql «1, and

(4.9)

o, ((g, ) =w'~' ' ' q,'[(C~+C,)/e]',
0

(4.10)

when q/ » 1,where p = p, p~/(p, , + p~) and D = (y,D~.
+ p~D, )/(g, + p&) and ~v=v,'/D and the Debye wave
vector q~ is the same for both electrons and holes.

For subharmonic generation at the subharmonic
frequency &, we get

In intrinsic semiconductors and semimetals,
there are equal numbers of electrons and holes.
Therefore, the ac electron and hole conductivities
are of the same order of magnitude. When the in-
equalities (4v/e)o, (z, )»&u; and (4w/e)o~(u, )»v,
hold, we have space-charge neutrality and no elec-
tric fields are induced by the sound wave. Since
the density of electrons and holes is equal and can
be quite high (of the order of 10"cm ' in a semi-
metal like Bi), it is possible for the condition of
space-charge neutrality to hold up to very high
frequencies. In fact, for Bi, the conditions for
space-charge neutrality hold to the highest fre-
quencies now available. Under these conditions,
where charge neutrality holds, we get

10

a) 10
CU

E

3:

4

[1+((u/2(u v)'] '~'

[1+(2(u j(gg'] '~'

2 e [1 (2 / )2]l/2

4~v (Cp+C. ) [1+(~/2~v)']"' '

(4.11)

(4.12)

5 e
'l 0 whenql «1, and

(4.12)

&,„=[~+'(C~ +C,)] (m'~'v, /v, ), (4.14)

10

-8
10 0.0

I

2.0
I

4.0
Q /Qd

I

6.0
I

8.0
I

10.0

FIG. 5. Second-harmonic flux as a function of wave
vector shown for n-Ge vrhen ql» 1.

when ql » 1.
The above results are valid for nondegenerate

semiconductors. In semimetals, where the elec-
trons and holes are degenerate, we have to replace
the factors k~T in the above equations by 3EF p EF
being the Fermi energy of the degenerate carriers.

We shall now apply these results to Bi the pertin-
ent parameters for which are given in Table I. In



4964 G. JOHRI AND H. N. SPKCTOR 15

PgP', (0) =B& 2*x', (4.15)

022

p21
I—

o20

Ct

EQ

) o19

Q
1 7

06
I

)07
(Hz)

FIG. 6. ~g) as a function of frequency in Bi shown in
the region q/«1.

Figs. 6 and 7 we plot ~t)) in arbitrary units versus
frequency and Sth versus frequency, respectively,
in the region q/«l. In the region qf «1, ~t)~ in-
creases with frequency. This dependence on fre-
quency becomes linear in the region q/ » 1. There-
fore, nonlinear gain at the subharmonic will con-
tinue to increase with frequency even in the region
ql »1. However, in this region, the linear loss
also monotonically increases with frequency. The
threshold pump strain for net gain at the subhar-
monic falls from 10 ' at 1 MHz to 10 ' at 0.1 GHz.
It must then go through a minimum because when

ql »1, S,„becomes independent of frequency and
has a relatively large value (5x10 '). Therefore,
in Bi, in the absence of external drift fields sub-
harmonic generation should be negligible above a
frequency of 0.1 GHz.

For second harmonic generation at the second
harmonic frequency 2w, our results agree with
those of Spector" when ql «1. The behavior of
the second-harmonic flux with particular refer-
ence to Bi is discussed in that payer in the region
ql «1. To calculate the second-harmonic flux when
q/»1 we note that for an intrinsic semiconductor
or semimetal the denominator on the right-hand
side of equation (2.40) becomes vanishingly small
if we only take into account linear electronic loss
or gain. In that limit the ratio of the flux at the
second harmonic to the square of the flux at the
fundamental is

10

)0 3

~04
)p6

I

10
(Hzj

I

)08

FIG. 7. Threshold pump strain as a function of fre-
quency shown in Bi for ql «1.

where

B = (6/Pv, (u')it), i' . (4.16)

Therefore, for a intrinsic semiconductor we get

q' &eq' ' +C, '
8pv,' 8~k~Tpv,' e

(4.17)

For a semimetal such as Bi, we have to replace
the factor ksT by ', E~ in Eq. (4—.17). The coeffi-
cient B which determines the second-harmonic flux
increases quadratically with frequency. At fre-
quencies in the gigahertz range, B has a value of
about 10 '. Therefore second-harmonic genera-
tion should be quite important in Bi in the region
ql »]..

The above results for second-harmonic genera-
tion in an intrinsic semiconductor or semimetal
when ql » 1 neglect linear lattice losses. However,
because the frequency dependence of the linear
lattice losses is the same as the electron losses
in the Landau-Burner regime where cgv&» 1 and

v~ is the lifetime of thermal phonons, "(4.17) is
still valid even when lattice losses are taken into
account.

It is interesting to note that for an extrinsic
semiconductor where minority carriers dominate
the interaction all the results of this section are
applicable, the parameters g„g, and ~~ being
the ones for minority carriers. However, for
minority carriers to dominate the interaction in an
extrinsic semiconductor, the condition 4vo~(&u;)/e
»&, must be met. This puts an upper limit on
the frequency up to which the results of our cal-
culations would be valid.
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C. Piezoelectric semiconductors

Here we shall consider the carriers to be elec-
trons and the dominant mode of the interaction to
be via the piezoelectric coupling. For such a
material we get

1P -5

10

(
qt (4&p /&)&ca/tot

2c I+(to,/tc, +tot/ten}'] '

whenq, /«1, and

(4.18} -1O g

Z

q, (4sp'/e)s'~'v, /v, q,
'

2c [1+(q„/q, )']' q,
(4.19}

when q, l » 1.
For subharmonic generation at the subharmonic

frequency u, we get

c,tt (4sp/e)'
cv,' [1+(to, /to + to/too)']

1p-11
CL'

CL
I—
m

1p-13

[1 + (tc/2&u o}'] '~s

[1 +(&dz/2tlp + 2tc/ten} ] ~
(4.20) 1Q 17

and

~v e [1 + (tc,/2(c + 2(c/(c n}']'~'

2/t 4sP [1+(tc/2tog']'~'

1p-19
1P6 1p7 1P8 g

I

1 p1O

when q/ «1, and

FIG. 8. (tt( as a fttnction of frequency shown for s-lnSb
in the region ql«1.

(4sp/e)3
[1+(q,/q)']'[1 + (q,/2q)'] (4.22)

and 2.4—

0
q~

~I/2 1+ 4 23

when q/ » 1.
In the long-wavelength region, q/ «1, our results

are the same as those obtained by Conwell and
Ganguly' using a phenomenological approach. In
Figs. 8 and 9 we plot (t/( in arbitrary units, when
q/«1 and whenql »1, respectively. The param-
eters used are for n-In' and are given in Table I.
In the regionq/«I, ~t/~ increases with frequency
as long as (d~ &p»(d This condition is satisfied
intt-InSb. In the regionq/»1, ~t/~ has a maximum
at a phonon wave vector equal to the electron Debye
wave vector and falls off rapidly above that. In
Figs. 10 and 11 we plot S~ versus frequency when

ql «1 and whenq/»1, respectively. Whenq/«1,
Sc, falls off from a relatively large value (&10 ') at
1 MGz to 10 ' at 1 QHz. In the short-wavelength
region, q/»1, Su, has a minimum (-10 ') at a
phonon wave vector of the subharmonic equal to
the electron Debye wave vector and then increases
for wave vectors above q„. At very high frequen-
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FIG. 9.
~ tt) shown as a function of wave vector in

n-InSb ashen q/» 1.



4966 G. JOHRI AND H. N. SPECTOR 15

V. DISCUSSION
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FIG. 10. Threshold pump strain shown as a function of
frequency in n-InSb when ql«1.
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I
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I

2.0
I
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FIG. 11. Threshold pump strain as a function of
wave-vector in n-In8b shown in the region ql»1.

cies, q»q~, even for piezoelectric semiconductors
the dominant mode of interaction is via the deform-
ation-potential coupling because of its stronger
frequency dependence.

For second-harmonic generation our results re-
duce to those derived in an earlier paper" and of
Spector and Wu. " The behavior of the second-
harmonic flux is discussed in detail in Refs. 11 and
23 for both ql «1 and ql » 1 regions. The second-
harmonic flux also falls off rapidly for phonon wave
vectors above the electron Debye wave vectors in
semiconductors in which piezoelectric coupling
dominates the interaction.

In this paper, we have studied the nonlinear
parametric processes which can occur when ultra-
sound propagates in a semiconducting material
with particular emphasis on subharmonic and sec-
ond-harmonic generation. Although the calculations
presented here were done in the absence of a dc
electric field, the presence of such a field would
not greatly modify our results for the nonlinear
parameters g and A which determine subharmonic
and second-harmonic generation as long as the
drift velocity of the carriers is much smaller than

their mean thermal velocity. '4 However, the pres-
ence of such an electric field would have a drastic
effect on the linear absorption coefficient changing
a linear loss to a linear gain when the drift velocity
of the carriers in the electric field exceeds the
sound velocity. Also, even in the absence of a dc
electric field, both electronic and lattice losses
in high mobility semiconductors such as InSb and

GaAs are low enough so that second-harmonic gen-
eration should still be detectable in samples of
reasonable length. '

Our main results have already been given in Sec.
IV. These results indicate that deformation-po-
tential coupling will become the dominant mecha-
nism determining both second-harmonic and sub-
harmonic generation at wave vectors above the
carrier Debye wave vector even in piezoelectric
semiconductors. For carrier concentrations in

the range 10"-10"cm ' this corresponds to fre-
quencies between 1 and 100 GHz. On the other
hand, for acoustic wave vectors much smaller than
the carrier Debye wave vector, parametric pro-
cesses via deformation-potential coupling should
be completely negligible except in intrinsic semi-
conductors and semimetals. The reasons for this
are twofold. First of all, the coupling coefficient
for deformation-potential coupling has a much
stronger frequency dependence than that for piezo-
electric coupling. Therefore at high enough fre-
quencies, deformation-potential coupling should
dominate piezoelectric coupling just because of the
frequency dependence of the coupling coefficients.
In addition, the effects of screening seem to re-
duce harmonic generation due to deformation cou-
pling to a greater extent than they do when piezo-
electric coupling is important. However, in in-
trinsic semiconductors and semimetals, screening
of the deformation potential will be absent due to
the existence of space-charge neutrality which re-
sults from the equality of the electron and hole
densities. Thus in these materials, because of the
absence of screening, deformation-potential cou-
pling can be an important mechanism for para-
metric amplification processes even in the mega-
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hertz frequency range.
In addition to taking the effects of deformation

coupling into account in considering nonlinear fre-
quency mixing effects and showing that it is the
dominant interaction mechanism at frequencies in
the high-gigahertz regime, our treatment using
the Boltzmann transport equation has extended the
previous treatments of ultrasonic parametric ef-
fects' "'" " into the frequency range where' »1.
Our results agree with these previous treatments
in the long-wavelength limit q/ «1 but do yield new
results for both subharmonic generation and sec-
ond-harmonic generation. For example, for pie-
zoelectric coupling, the threshold strain for sub-
harmonic generation reaches a smaller value when

ql »1 then it does whenql «1 in n-InSb as shown in

Figs. 10 and 11. Also in this same frequency re-
gime, the threshold strain for deformation-poten-
tial coupling reaches a constant value for wave
vectors q &q„ that is much smaller than the mini-
mum value of the threshold strain for piezoelectric

coupl ing.
The theory developed using the Boltzmann trans-

port equation is valid for ultrasonic frequencies
such that the sound wavelength is much longer than
the de Broglie wavelength of the carriers. This
condition may be violated in the microwave fre-
quency region at low temperatures. Mosekilde
et a/. "have extended the quantum treatment of Wu
and Spector" to treat second-harmonic generation
due to the interaction of ultrasound with electrons
of arbitrary degeneracy. Their treatment agrees
with that of Johri and Spector" for the case of non-
degenerate electrons when the sound wavelength
is smaller than the electron de Broglie wavelength
but they find a cutoff when the wavelength of the
fundamental is less than half a de Broglie wave-
length. We expect that a quantum treatment of
parametric processes will yield the same kind of
high-frequency cutoff for other frequency-mixing
effects.
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