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A quantum theory is presented for the interaction of the Rayleigh waves with electrons in piezoelectric
semiconductor films. Our aim is to investigate the amplification of the Rayleigh waves with frequencies higher

than 1 GHz. The effect of the finite relaxation time of electronic states is properly considered in the range of
frequencies satisfying cow ( 1. A numerical example is developed for an n-type GaAs epitaxial layer on a semi-

insulating GaAs substrate taking the relaxation time into account phenomenologically.

I. INTRODUCTION

Recently, there has been an accumulation of
theoretical topics on the dynamical behavior of
elastic surface waves in an elastic medium:
scattering by the surface irregularities' or mass
defects, ' anharmonic attenuation in solids, ' inter-
action with conduction electrons, ' interaction with
surface modes of elementary excitations, ' and the
broadening of surface states of carriers due to the
scattering with surface modes of thermal phonons.
Above all, the interaction of low-frequency sur-
face waves with carriers in semiconductors has
been extensively investigated both theoretically'
and experimentally. ' The amplification of surface
waves in piezoelectric semiconductors with fre-
quencies higher than 1 QHz is especially import-
ant from the viewpoint of applications to micro-
wave electronic devices. However, for surface
waves with frequencies above 1 QHz, it has not
been fully analyzed, partly owing to the difficulty
of generating such high-frequency surface waves.

In this paper we present a quantum theory of the
Rayleigh-wave amplification with frequencies of
GHz range in a piezoelectric semiconductor layer
epitaxially grown on an insulating substrate with
same elastic properties. An epitaxial film of n-
type GaAs on a semiinsulating GaAs substrate
may be a good example of such a structure. It
should be noted that the Rayleigh wave cannot exist
as an eigenmode in the structure with different
elastic properties between the layer and the sub-
strate. The thickness a of the layer is assumed
to be 1 pm, which corresponds to the penetration
depth from the surface of a Rayleigh wave of
1 QHz frequency.

Throughout this paper, the medium is assumed
to be isotropic in its elastic properties, since we
only wish to survey the general features of the
amplification coefficient and to obtain some qual-
itative results which may be observed by the ex-
perimental investigations. We suppose that sev-

eral complications due to the crystal anisotropy,
possible existence of an oxidized thin layer on the
surface, surface roughness and so on, are ir-
relevant insofar as the qualitative features of the
results are concerned. We further assume that
some of the physical parameters (elastic stiffness
constants, piezoelectric constants, etc.) have the
same values as those obtained in bulk measure-
ments. These parameters could be different from
those of the bulk region near the surface. All
these complications, however, probably just mod-
ify by some modest amount the overall magnitude
of the effect.

Now we should treat the whole problem quantum
mechanically. This is a consequence of the dis-
creteness of the electronic states in the amplifier,
as will be shown in the following section. We cal-
culate the loss and gain of phonons due to their
interaction with the equilibrium electron distribu-
tion using a quasifree description of the conduc-
tion electrons and regarding the Rayleigh waves
as highly excited phonon modes. Perhaps at this
point one should note the value of the products ql
and &ov, where q and &u/2v (= v) are the wave num-
ber and frequency of the Rayleigh waves, and l
and v are the mean free path and relaxation time
of the carriers, respectively. The value of qL is
estimated to be unity at 1.19- and 3.45-QHz fre-
quency for appropriate carrier concentrations

N=1.7 &2&10" /mc' (case I) and N1.07 1x0' /cm'
(ca,se II), respectively, at T =7'I K.' This is an-
other reason why we should formulate the theory
quantum mechanically. In the calculation of the
amplification coefficient, the Born approximation
is valid only in the region +v) 1. The typical
values of 7 at T =77 K, obtained from mobility
measurements for n-type GaAs, are

7 =6.84x10 "sec for case II.
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Hence, for Rayleigh waves with frequencies of the
order of 1 GHz, we have cu7 & 1. We must, there-
fore, go beyond the Born approximation, ' that is,
it is important to take into account the finite re-
laxation time of carriers in our calculation.

In Sec. II we describe the configuration of the
layered system of a piezoelectric semiconductor
and an insulator which we shall use for determin-
ing the amplification characteristics and specify
the wave function of the electrons. In Sec. III, a
brief report on a quantum version of the Rayleigh
wave is presented. In Sec. IV we write down the
electron-Rayleigh-wave interaction in a quantized
form. Section V is devoted to the derivation of the
amplification coefficients. In Sec. VI, the numer-
ical analysis is developed for the epitaxial layer
of n-type GaAs grown on a semiinsulating GaAs
substrate. The amplification coefficients are
calculated both in the Born approximation and in
the phenomenological approximation where we
take the width (or, equivalently, relaxation time)
of the electronic states into account phenomeno-
logically. A summary and a discussion will be
given in Sec. VII.

II. ELECTRONIC STATES IN A SEMICONDUCTOR LAYER

The configuration of the amplifier we prepared
for Rayleigh-wave amplification is depicted in
Fig. 1. A thin layer (thickness a) of a piezoelec-
tric semiconductor is grown epitaxially on an in-
sulating substrate with the same elastic proper-
ties as the semiconductor layer. A Rayleigh wave
with frequency of 1 GHz can penetrate about 1 pm
from the surface of the medium, so we take as a
typical value of the thickness a, 1 pm. We fix the
Cartesian coordinates so that the material oc-
cupies the half-space z & 0 and has the stress-free
surface parallel to the x-y plane (see Fig. 1).

In this configuration, the motions of electrons
parallel to the surface may be described by plane
waves and those perpendicular to the surface will
be described by some kind of standing waves de-
pending on the structure of the potential. En the
first approximation, we might a,ssume the poten-
tial along the z axis as a square well which has
infinitely high potential barriers at z =0 and z =a.
Of course, there might be depletion layers where
electrons are absent on both sides near z =0 and
z =a. The thickness of these depletion layers be-
comes narrower by inc rea sing the concentration
of donor impurities or by making an epitaxial film
with layered structure in which impurities are
more highly doped in the layers near z =0 and
z =a. As for the height of the potential barriers,
one may doubt whether the height on the side ad-
jacent to the insulating materials should be con-

Piezoelectric
sernic onductor

o ~(x.Y& )Q

Insulating
substrate

FIG. 1. Schematic drawing of the amplifier consisting
of a layered structure of a piezoelectric semiconductor
and an insulating material. Rayleigh waves propagate
parallel to the surface of the film (x y plane).

sidered infinite. However, we shall see in the
example of Sec. VI that this assumption is justi-
fied. Under these approximations, we can easily
obtain the wave function 0 (r) of the conduction
electrons as

with

P„(z) = (2/a)' ' sin(nv/a)z (n = 1, 2, 3, . . .), (2)

where r = (x, z) = (x, y, z), k = (k„, k,), and S is a
surface area. The energies of the electronic
states specified by k and n are given by

E„(k) = h k /2m +e „
with

e „=(v'h '/2ma')n',

(3)

where m is the effective ma. ss of the conduction
electrons (assuming a spherical constant-energy
surface). We note that the energy difference of
the two lowest quantized levels, e, —6, ls 1.61
x 10 ' eV for a = 1 pm and m =0.0'fmo (m, being the
mass of the free electron), and the phonon energy
at a frequency of 1 GHz is 4.14&&10 ' eV. Thus
the discreteness of the electronic energy levels
due to the quantized motion along the z direction
is important for such energetic phonons. This
point will be discussed again in Sec. V. Now the
field operator g(r) of the electrons is written, in
the second quantized form, as

III. SURFACE PHONON —A QUANTUM OF RAYLEIGH
WAVE

It is well known that there exist five eigenmodes
of elastic waves in an isotropic elastic medium

q(r)=~s QQ fk „e'"'"y„(z), (4)
k

where bg „and its Hermitian conjugate b& „are
annihilation and creation operators of the electron
field which satisfy commutation relations of Fermi
type.
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occupying a half space with stress-free plane
boundary. In this paper, we call the Ra,yleigh
wave which is a member of the above-mentioned
eigenmodes elastic surface wave or simply surface
wave. Hereafter, we refer to a quantum of elas-
tic surface wave as surface phonon.

In the configuration shown in Fig. 1 in which the

isotropic elastic continuum occupies the half-
space z ~ 0 and has a stress-free plane boundary
at z =0, the surface-phonon field operator is
written, using well-known eigenfunctions for the
Rayleigh wave, as

l./a

u(r) =Q a-uq(z)e' ~'" +H. c. ,2p~S

where p is the mass density of the medium, and
a- and its Hermitian conjuga. te a- are the annihila-
tion and creation operators of the surface-phonon
field satisfying commutation relations of Bose
type. The explicit expressions for the wave func-
tions u-(z) are

u-'(z) =i (q, /q)(q/J)'~'(e &'* [2yg/(I+q')]e»");

i =(x, i), (6)

u. (z) = -y(q/J)'~'(e ~'* —[2/(1 +q')] e "")
The wave vector q which is parallel to the surface
is related to the angular frequency ~ as &u =c„~ q~

=c„q and c„ is the velocity of the Rayleigh wave.
y, p and J are constants defined by the velocities
of the longitudinal sound wave (c,) and the trans-
verse sound wave (c,) as y'=1 —(c,/c, )', q' =1
—(c„/c,)', and J = (y-t))(y -q +2yt)')/2yt)'.

In the presence of piezoelectric coupling, the
sound velocity c is modified to c' as a result of
"piezoelectric stiffening, "'

c"=c'(1+K'),
if the conductivity of the medium is small. Here
K' is the electromechanical coupling constant de-
fined by

K' =4ve„'/ceo, .

e~, c, and c0 are the material's piezoelectric,
elastic and static dielectric constants along an ap-
propriate crystal axis, respectively. We quote a
typical value of K' forQaAs, 4ve'„/c«c, =3.6&&10 '.
Therefore the correction for piezoelectric coupl-
ing to the sound velocity is small in this example.

H~=C g r V ~ ur$ r dr

c ~ bk, ~, bk, a „4;,(q-) + H. c. , (10)
j k, q

4me ~ - 1Ifr= q (r) — Z
0 2 i,j, l=l,

dr, e„,

x ~+ grdr

4meez ~ ~M M bg~q gbg;aq@;, (q) + H.c. , (11)
0 S k, q

where

2 X/2 a

4;~(q) = — —" yP(z)e &"P, (z) dz
2pcqJ Ci

(12)

and

IV. SURFACE-PHONON-ELECTRON INTERACTION

There are two mechanisms of phonon-electron
interaction in piezoelectric semiconductors. The
lattice distortion produces a change in the poten-
tial energy of a conduction electron which is pro-
portional to the strain, i.e., deformation-potential
coupling, and the electric polarization associated
with the acoustic modes of vibration may lead to a
local charge accumulation and a periodic electric
potential, i.e., piezoelectric coupling. It is the
induced electric field that is proportional to the
strain in the latter case.

We assume, therefore, that the interaction
Hamiltonian of the surface-phonon-electron sys-
tem may be written as in the bulk case

H~ = HD+Hp

fz
'~' ' 1 —4y"-2y 1 +2t)'

2pc„J y 1+q~ (13)

In the case of piezoelectric coupling (H~), we have
considered semiconductors with zincblende crys-
tal structure which have only three nonvanishing
components of the piezoelectric tensor e;», i.e.,
e ]4 e p5 e 36

= e~ . We have al so fixed the direc tion
of the wave vector q along the [110] crystal axis
(the easiest direction in which the Rayleigh wave
is accompanied by piezoelectric effects). We see

that electrons couple only with the longitudinal
wave in deformation-potential coupling (Hz&), but
couple with both longitudinal and transverse waves
in piezoelectric coupling. Unlike the case of bulk-
phonon-electron interaction, the relative phase
between the matrix elements for scattering by
those two mechanisms is not fixed to &m and de-
pends on the crystal structure of the semiconduc-
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tors in question. " Consequently, we cannot treat
the two mechanisms independently. However, for
a value of the deformation-potential coupling con-
stant C of the order of 10 eV, the strength of the
deformation-potential coupling is considerably
smaller than that of the piezoelectric coupling for
phonons of low frequency. A typical example is

q C/(4weev/eo) = 1.8x 10 "ur,

where we have tentatively taken the following set
of parameters: C = I eV, ev =0.15 C/m, &0=12,
and c, =2.9&&10' cm/sec. Then, two effects be-
come comparable at a surface-phonon frequency
of about 100 GHz and hereafter we can safely
neglect the contribution of HD. In this paper we
also neglect the effects of surface corrugation
which causes some change in the electronic wave
functions proportional to the magnitude of the sur-
face displacement along the z direction.

V. CALCULATION OF THE AMPLIFICATION COEFFICIENT

To calculate the surface-phonon amplification
coefficient, we conveniently employ the Green's-
function method. The one-particle electron
Green's function is written

p, i, $„

P-q. J, 3;3
FIG. 2. Surface-phonon self-energy diagram. The

internal lines represent the complete electron propaga-
tors (shaded circles denote the proper electron self-
energy parts). Vertex corrections are neglected apart
from electronic screening effects.

~ ( )
d(u' I', ' (p, ~')
2F

(16)

The spectral function Ai(p, ~) [I", (p, &u)] is given
by the discontinuity of G, (p, g„) [Z, (p, g,)] across
the real axis of the complex g„plane. In terms of
r", , A, is explicitly written

r I'(p, ~)
[~-&i(p) -~~(p, ~)]'+ [-'r "(p, ~)]' '

Gi(p, g„) = (14)
with

g )
deed' A i(p, (d')

2m
(15)

where l denotes the levels associated with the
quantized motions in the z direction and &„
—= —(2v+ 1) v/i P+ V, (p = 1/ksT and V is chemical
potential). Z, (p, &,) is the electron self-energy
function. We further introduce the spectral rep-
resentations for both the Green's function and the
self-energy function,

n i (p, (u) = Re Z, (p, (u)

d(u' r", (p, &o')

(0 -CO

Thus, we see that the spectral function I' ' of the
self-energy gives us the width of the single-elec-
tron excited states.

To derive the surface-phonon amplification (or
attenuation) coefficient n, we calculate the sur-
face-phonon self-energy function II (Fig. 2). Neg-
lecting vertex corrections other than the screening
effect of the electrons, we obtain

dp
(2e)'

du' du" A;(p, e')A„(p —g, &u')

(»)' (&x -~')(&g -K.-~')

=2g(q)' Z 14'i, (q) I' A (p ')A (p ")
zf 2m

2 2s fp +4/ (gp
(19)

with

2ve/i p +-p,
where @&i=-4;&, f(cu) = (e " +1) ', and g(q) is the
coupling constant involving the correction due to
the screening effect which is induced by the redis-
tribution of electrons, i.e., g(q) =4wee~/e, e(q)
with electronic screening factor e(q) =1+(4vNe'/
q'e, ksT). N is the electron concentration. As in

the preceding discussion, the width I'"' of the
surface phonon is given by the discontinuity of II,

dX

&A;(p, ~')A, (p —q, u)' —h(u) . (20)
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So far, no account has been taken of the fact that

the electrons have a drifted distribution in the

presence of the applied electric field. In a situa-
tion where the electrons have a drift velocity v in

the direction of the surface-phonon wave vector
q, we must replace jud by -hex with x = v/c„—1,
the drift parameter. Noticing that Pk~x «1 in the

range of surface-phonon frequency and x in which

we are interested and that n is related to I' ' by
I '= -~kc„, we get the final expression for u as

6p d(AP 2

(2 )' 2
sech

2 (

x Q((p, ~')Q)(p q, ~'+@~x) (21)

The amplification coefficient z in the Born approx-

imation is obtained by taking the limit I '~-0 in

the spectral function A, or simply replacing A by
the 6 function:

A, (p, u)) =2v6(e —k'p'/2m —e, | (22}

Here, the educated reader will probably ask to
what kind of physical quantity the real part of the
phonon self-energy function corresponds. The
real part of the surface-phonon self-energy func-
tion gives the frequency shift or the velocity shift
of the surface phonon, i.e.,

u = u +Re II (q, -hex}/g = q c, (1 + o) = q c,

where & and c„are the renormalized angular fre-
quency and velocity of the Hayleigh waves, re-
spectively. In the numerical example of Sec. VI,
we shall see that o is negligibly small (of order
10 '-10 '). Finally, we write the explicit expres-
sion of 4;, (q),

2y(1+2@ ) &[1 —(-1)' 'e ""]
(2P,J 1 8 ftnva)'+ *(s+j)*II(ne )*+~*( -A*1

(23)

For a Rayleigh wave with a frequency of 1 6Hz
yqa =2gqa= 1, so the number of electronic energy
levels which contribute to o. is 2 or 3 around a
fixed level denoted by i.

VI. NUMERKAL EXAMPLE

In this section, a numerical example is devel-
oped for an n-type GaAs layer grown epitaxially
on a semiinsulating GaAs substrate. We consider
the Rayleigh wave propagating along the [110]
crystal axis. The following set of parameters are
taken: T =77 K, eJ, =4.7X10' esu/cm', m=0.07m,
(m, being the mass of the free electron), p = 5.32
g/cm', co=12.9, and c„=2.9&&10' cm/sec. As for
the electron concentration, we take two typical
values, %=1.73&& 10"/cm' (case I) and %=1.07
&&10'6/cm' (case II), a.s stated in Sec. I. The ener-
gy gap E, of an intrinsic QaAs is 1.51 eV at 77 K.
The number of energy levels which contribute to
the summation in the expression for n [Eq. (21)]
is about 50 and aM=1.35x10 ' eV=0.018x gE~.
Therefore, it is a good approximation to regard
the height of the potential barrier as infinity.

The calculation of z in the Born approximation
is straightforward with no reference to the width
of electronic states or the relaxation time of car-
riers. On the other hand, the exact calculation of
Eq. (21) requires the knowledge of the relaxation
time. The finite relaxation time of conduction

electrons is caused by several collision processes
such as acoustic-phonon scattering, piezoelectric
scattering, optical- and polar-optical-phonon scat-
tering, intervalley-phonon scattering, impurity-
atom (both ionized and neutral) scattering, and
carrier-carrier scattering. " For electrons in
bulk III-V compound semiconductors such as n-
type InSb and n-type GaAs, the predominant scat-
tering mechanism is thought to be scattering by
the polar optical phonons within room-temperature
range and down to about 30 K. A detailed fit of
experimental results to theory cannot, however,
be complete due to the lack of accurate informa-
tion on the values of the coupling constants, par-
ticularly the values for the intervalley and the
polar optical-phonon scattering. According to our
scheme. we should evaluate the relaxation time of
the electrons from the microscopic Hamiltonians
which cause the several scattering mechanisms
mentioned above. In this paper, however, we
wish only to discuss the general features of the
theory and the effect of the finite relaxation time
qualitatively, and then we incorporate the width
of the electronic states phenomenologically, that
is we replace, irrespective of energy levels, the
I"f by the constant h/~ where r is the relaxation
time obtained from Hall-mobility measurements.
The values of h/T are 5.28&& 10 "erg for case I
and 1.54& 10 "erg for case II, and both are of
order ~Mk~T. We also neglect the energy shifts
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FIG. 3. Amplification coefficients of Rayleigh waves
versus frequency at T = 77 K and x =v/c„- 1 = 10. For
case I (N=1.73 x10' cm ), both et& and nz reach maxi-
mum values at a frequency of about 15 GHz, a T)~= 49
(cm ') and @~~=43 (cm ). For case II (N=1.07x 10
cm ), G. continues to increase in this frequency range.

b, &, because they are of the same order of mag-
nitude as the broadening of the electronic states
and are incorporated into the shift of the chemical
potential which is of order kaT.

Under these approximations, the results are
shown in Figs. 3 and 4. Figure 3 shows the am-
plification coefficient o. versus frequency v as
given in Eq. (21) for two typical values of electron
concentration. The discrepancy between the am-
plification coefficient obtained in the Born approx-
imation (ns) and that obtained in the approximation
including the effect of finite relaxation time phe-
nomenologically (n~) varies with frequency as fol-
lows: the ratio o,s/o~ decreases from 2.'I8 to
1.20 for case I and from 5.94 to 1.37 for case II
as the frequency varies from 1 to 10 GHz. There-
fore, one finds that the effect of the finite relaxa-
tion time of the electronic state reduces the coef-
ficient o, considerably at relatively low frequency.
This may be qualitatively understood by the fact
that a t'reely propagating electron (T =~) can be
accelerated more easily than an interacting one
(7 finite). The amplification coefficient ~r for
case I has a maximum value of 43 cm at v= 15
GHz and for case II reaches its maximum at the
frequency beyond 20 GHz. Near a surface-pho-
non frequency of 1 GHz, +~ is approximately ex-

FIG. 4. Amplification coefficients vs drift parameter
x=v/c„—1 or applied electric field E for case I at y

= 3 GHz and T = 77 K.

pressed by the power formulas n~- +"for case
I and n~- cu" for case II. These frequency de-
pendences seem to be considerably different from
that of bulk phonons (os„~x- m'). ' Figure 4 shows
the amplification coefficient n versus the drift
parameter x or applied electric field E for case I
and at v =3 GHz. The amplification coefficients
a have linear dependence on x up to x =10 (cor-
responding to E =64 V/cm for case I) and then be-
gin to saturate.

Finally we estimate the magnitude of the ratio o
of the velocity shift to the unperturbed velocity of
Rayleigh waves. We may take ReII as approxi-
mately of the same order of magnitude as ImII
= I'~'i. Then a=Reli(q, -k~x)/Ic„q is of order 10 '
at v =1 GHz and 10 ' at v =10 GHz for case I with
x =10. Therefore the velocity shift is extremely
small in this example.

VII. SUMMARY AND DISCUSSIONS

We have developed a quantum-theoretical ap-
proach to the amplification of surface phonons in
piezoelectric semiconductor films. As a numeri-
cal example, the amplification coefficient n has
been calculated for an epitaxial layer of n-type
GaAs on a semi-insulating GaAs substrate. This
analysis has revealed that the frequency depen-
dence of a~ near v =1 GHz is well described by
the power formulas z~~™~" for case I and o.~- ~" for case II, which are considerably different
from that of bulk phonons (~~„„x- ~'). The effect
of the finite relaxation time of the electronic states
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is very important in the frequency region around 1
GHz and it reduces the coefficient about 64/p at v

= 1 GHz and about 17% at v = 10 GHz for case I.
This can be qualitatively understood by the fact
that freely propagating noninteracting electrons
can be accelerated more easily than interacting
ones, and that the effect of a proper phonon field
surrounding the drifted electrons becomes smal-
ler as the surface-phonon frequency becomes
higher. Consequently, the amplification coeff i-
cient n& approaches nI from upside as the sur-
face-phonon frequency v becomes higher.

Strictly speaking, the width and the energy shift
of the electronic state should be evaluated from
the basic Hamiltonian which causes several scat-
tering mechanisms. As we have taken the finite
width into account only phenomenologically, our
numerical estimate is not complete in a quantita-
tive sense. In addition, the electronic states we
have used hitherto are also valid approximately
due to the possible existence of depletion layers
at the film boundaries. However, we believe that
our results reflect the qualitatively correct fea-

tures of surface-phonon amplification.
Another interesting subject relevant to the am-

plification of surface phonons is the reflection of
very-high-frequency acoustic plane waves with
finite incident angle from the stress-free plane
boundary of a piezoelectric semiconductor layer.
If we consider the sufficiently high-frequency
phonons for which the relation &7 & 1 holds, we

may safely neglect the effect of the relaxation
time of the electronic states. %e can, therefore,
calculate the amplification coefficient for various
surface modes of phonons with no reference to the
relaxation time, and consequently obtain quantita-
tively reliable results using the Born approxima-
tion.
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