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Acceptor binding energies are calculated using the full 6 &(6 effective-mass acceptor Hamiltonian for both
shallow and deep levels. It is found that for homopolar semiconductors (Si and Ge) the method is valid for
both shallow and deep acceptors, in agreement with a similar result obtained previously by Pantelides and Sah
for donors in Si. Screening the impurity potential by the dielectric function e(q) is again found to be very

important. The point-charge model is found to be adequate for shallow single acceptors and the relatively

shallow double acceptors in Ge, but completely inadequate for the deep double acceptors in Si and triple

acceptors in Ge. Use of model potentials, however, which reflect the chemical nature of individual impurities,

is shown to be capable of reproducing the observed values. When model potentials from the literature are
used, agreement with experiment is only modest, due to a sensitivity of the calculation on the core part of the

impurity potential. Similar calculations in heteropolar semiconductors (GaP, GaAs, etc.) show that good
agreement is obtained only for very shallow levels. For deeper levels, effects due to differences in the anion
and cation sites are dominant. It is argued that these effects lie outside the effective-mass theory.

I. INTRODUCTION

Shallow impurities have long been described by
the well-known effective-mass theory (EMT).' In

the case of levels associated with a single non-
degenerate parabolic-band extremum of the form

E(k) =Eo+ Sk'/2m*,

where m* is the effective mass, the localized en-
ergy levels are determined by the Schr5dinger-
like equation

[ -(S'/2m *)V' + U (r )]F(r ) = EF(r ) . (2)

If the band extremum is degenerate, which is the
case for acceptors in cubic semiconductors, a set
of coupled differential equations is obtained. "

In Eq. (2), U(r) is the perturbation potential
arising from the presence of an impurity in an
otherwise perfect crystal. In the early applica-
tions of the EMT, U(r} was taken to be

U(r) = Us(r) = -e'/er,

where e is the dielectric constant of the host crys-
tal. This potential corresponds to that of a point
charge in a dielectric medium and, as such, could
be justified only at distances outside the central
cell occupied by the impurity ate m. It was, never-
theless, used for all values of r in the expectation
that for shallow impurities, where the localized
wave function is spread over hundreds of unit
cells, the contribution of the "central-cell region"
would be small ~ This choice makes (2) and its so-
lutions isomorphic to those of the hydrogen atom,
whereby the model may appropriately be called

4me'
& q. -,

U„,(r) =n d'q, e"
&(q) q

(4)

where n is the number of point charges.
The problem of acceptors has recently been con-

the hydrogenic model.
Effective-mass theory is often identified with

the hydrogenic model to the extent that the well-
known breakdown of UH(r} in the central cell is
described as a breakdown of the EMT itself in that
region. Deviations from the hydrogenic values,
often called chemical shifts, are then thought to
lie outside the EMT. Recently, however, Pante-
lides and Sah' ' have shown that the EMT is in fact
valid for a variety of potentials U(r), including po-
tentials constructed from first principles, not
only for shallow levels, but for many deep levels
as well. They introduced the distinction between
isocoric impurities, namely those whose cores
are isoelectronic with the cores of the host atoms,
for which the potentials U(r) may be constructed
from true ionic potentials, and nonisocoric im-
purities, for which U(r) must be constructed from
appropriately chosen pseudopotentials. In the work
of Refs. 3-5, it was found instructive to compare
the binding energies obtained from first-principles
potentials with the hydrogenic binding energy E„
obtained with the potential U„(r), and also with the
binding energy E,, obtained with a potential U„„(r)
defined by screening the potential of one or more
point charges by the diagonal part of the dielectric
function e{q). U (r), which will be referred to as
the Point-charge model, is defined by the expres-
sion
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sidered by Baldereschi and Lipari." These au-
thors rewrote the acceptor Hamiltonian in a manner
that allowed a systematic classification of the ex-
cited states. Their study of binding energies, how-
ever, was limited to the use of the hydrogenic po-
tential U„(r). Furthermore, binding-energy cal-
culations were carried out only within the "spheri-
cal" approximation to the acceptor Hamiltonian. "

The purpose of this work is to provide a com-
prehensive study of binding energies of acceptors
in tetrahedral semiconductors. In this paper, we
will mainly concentrate on the hydrogenic and
point-charge models, but we will also employ
model potentials and indicate the prospects of a
more complete theory of acceptors.

II. ACCEPTOR HAMILTONIAN

A. Kinetic energy

As noted earlier, Eq. (2) is the effective-mass
equation for a simple parabolic band extremum of
the form (I). The top of the valence bands in the
tetrahedral semiconductors, however, is both de-
generate, anisotropic and spin-orbit split. A plot
of these bands for silicon along high-symmetry
directions is shown in Fig. 1. At the center of the
Brillouin zone, the top of the valence bands is
four-fold degenerate and of l", symmetry. Away
from the center of the zone, the four states split
into two bands, the so-called heavy-hole band at
higher energies, and the so-called light-hole band
at lower energies. Finally, at an energy A. below
the top, lies the spin-orbit split band, which at the
center of the zone has 1", symmetry. The precise
form of the valence bands near the top is obtained
from k .p theory' by diagonalizing a 6x 6 matrix
D(kj. From symmetry arguments, one can show
that the matrix D(k) can be expressed in terms of
three parameters y„y„and y, analogous to in-
verse effective masses. Accurate measurements
of y„y2, and y, are available only for Si and
Ge.'" Parameters for other materials have been

estimated by Lawaetz. " Given the matrix D(k),
the effective-mass equation, analogous to (2), be-
comes

[D( i-V)+U(r)I]E(r) =EF(r), (5)

o here I is the unit matrix of the same order as
D E(.r) is now a column vector.

Two approximations to the full 6x6 matrix for
D have been used in the past. The first corre-
sponds to zero spin-orbit splitting, whereby Q re-
duces to a 3x3 matrix. This limit would be ap-
propriate for impurities whose binding energies
are much larger than the band spin-orbit splitting
at I', most of which would be classified as deep.
The second approximation corresponds to infinite
spin-orbit splitting, whereby D reduces to a 4 x 4

matrix. This limit would be appropriate for very
shallow impurities, whose binding energies are
much smaller than the band spin-orbit splitting at
I'. For single acceptors, however, which are the
only ones that have been studied theoretically thus
far, only in a few mater ials is the 4 x 4 approxi-
mation acceptable (see below). In most cases, on

the other hand, the 4x4 approximation is adequate
for the study of higher excited states.

The matrix D may be written in a variety of
forms, ""'" which are related by unitary trans-
formation to each other. In the case of the 4x4
approximation, a very elegant form was obtained
recently by Baldereschi and Lipari. " In this form
one can separate out terms with full spherical
symmetry and a term with strictly cubic sym-
metry. ' They later' included the cubic terms by
first-order perturbation theory, but the contribu-
tion was nonzero only for certain excited states.
In that way they obtained an elegant and systematic
class ification of the exc ited s tates. For quantita-
tive calculations of binding energies, however, the
method, as has been used thus far, is accurate
only for cases for which the "infinite spin-orbit"
approximation is adequate. '

O.C

O. I

I

(Ioo)

0.2

(g 0.3
lL

0.4

0.5
l I I (

0 0.05 0, IO 0 15 0 20 0 0.05 O.c O, I5 0 20
k (2'/o) k(2~/0)

0 0.05 0 IO 0 I5 0 20
k(2m/0)

FIG. 1. Valence energy bands of Si near I along high symmetry directions.
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B. Impurity potentials

Most previous effective-mass work on acceptors
has been in terms of the hydrogenic potential
U„(r). For example, Schechter" first solved the

hydrogenic acceptor problem for Si and Ge using
the "zero" and "infinite" spin-orbit splitting ap-
proximations, and treated the intermediate case by
perturbation theory. Subsequently, more accurate
hydrogenic solutions for Ge mere obtained by Men-
delson and James" but still using "infinite" spin-
orbit splitting. Suzuki, Qkazaki, and Hasegawa"
(SOH) first solved the full 6x6 hydrogenic prob-
lem for Si and Ge, and, more recently, Mendelson
and Schultz" obtained a still more accurate so-
lution of this problem in Si (see Sec. III). In more
recent work, Baldereschi and Lipari6'7 used the
4&4 matrix which is less accurate for binding
energies, especially for cases where the binding

energy is of the same order of magnitude as the
spin-orbit splitting. These various results are
summarized in Table I. For completeness we
included the values obtained in the present work,
which were carried out as a test of the accuracy
of our method, to be described in Sec. III.

In the recent work by Pantelides and Sah' ' it
was found that the inclusion of the proper dielec-
tric screening e(q), instead of simply the dielec-
tric constant «, leads to significant changes in the
binding energies of donors in Si. This result will
be further confirmed here for acceptors in differ-
ent materials. Pantelides and Sah introduced also
a, Point-chm ge mode), that is, a point-charge po-
tential screened by the diagonal part of the dielec-
tric function e(q). In the case of partially ionic
compounds, we will find that differences between
binding energies of holes described by the point-
charge model and the hydrogenic model are even
more drastic, sometimes by an order of magnitude
(see below).

For the zinc-blende type compounds, such as
GaP, GaAs, etc. , the situation is complicated

1 1 2

«(q) «(0) q'+ ~'+A.

+ I-A) q' 1 q'
q'+P' e(0) q'+y' ' (6)

The parameters A, cy, P, y mere fitted to the nu-
merical points.

For III-V and H-VI compounds the difficulty of
including lattice polarizability in an appropriate
way arises once more. Theoretical calculations
are available" for the electronic e(q) [for which
e(0) =e„], and the numerical results were once
more fitted with the analytical expression (6). In
order to include lattice polarizability, we scaled
the calculated results according to the formula

further by the fact that these crystals are partially
ionic whereby the lattice itself may distort to
screen a foreign charge embedded in the crystal.
This distortion of the lattice, often referred to as
lattice polarizability, contributes to the dieleetrie
constant and raises its value from e„(the elec-
tronic or high-frequency dielectric constant) to
e, (the static dielectric constant). In general,
classical considerations suggest that «, should be
used for shallom levels for which binding energies
are smaller than the typical phonon energies, and
«„ for deeper levels with binding energies larger
than typical phonon energies. In many cases, how-
ever, single acceptor binding energies are of the
same order of magnitude as typical phonon ener-
gies, but no theory is available for such intermed-
iate cases. The calculations, therefore, at this
point, can only be carried out at the two limits.

In calculating the point-charge potential U„,(r)
from Eq. (4) one needs to know the full e(q) for
every crystal. These functions are not obtainable
from experiment, but theoretical calculations are
available for Si and Ge." For our present pur-
poses we fitted numerical results for e(q) to the
following analytical expression, first used by
Nara':

TABLE I. Hydrogenic binding energy E„for acceptors in Si and Ge as obtained by various
authors in the past. The value of e listed is that used by the respective authors.

Authors Year
Si

gH (meV)
Ge

Z„(meV)

Schechter
Mendelson and James
Suzuki et al.
Mendelson and Schultz
Baldereschi and Lipari
Present'
Present

1962
1964
1964
1969
1973
1976
1976

12.0

12.0
12 ~ 0
11.4
12.0
11.4

36.0

35.7
37.1

31.6
37.1

37.8

16.0
16.0
16.0

15.36
16.0
15.36

9.4
9.28

10.0

9.8
11.2
10.3

'Using values of y, , y2, and y& from Suzuki et al.
Using values of y&, y2, and y& from Table II.
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TABLE II Band-structure parameters and dielectric functions of the semiconductors stud-

ied, y&, y2, y3 are the inverse masses in atomic units, A. is the spin-orbit splitting in eV, e is
the dielectric constant, subscript ~ denotes e„.A, z, g, y are those appearing in Eq. t'6). A is
dimensionless, ~, g, and y are expressed in atomic units. y&, y2, y3, and Rare taken from
Lawaetz (Ref. 1 1), eo from Baldereschi and Lipari {Ref. 6), and e„ from Van Vechten (Ref. 20).

Crystal

Si

Ge

GaAs

GaP

GaSb

AlSb

InA s

InP

InSb

ZnS

ZnSe

ZnTe

4 ~ 28 0.375

13.35 4.25

7.65 2.4f

4.20 0.98

4.03

4.15 1.01

19.67

6.28 2.08

2.54 0.75

3.77 1.24

3.74 1.07

5.29

35.08 15.64

5.69 0.29
11.4
15.36

3.28 0.34 12.56

10.9

1.66 0.082 10.75
9.1

15.7
14.4
12.0
10.2
f4.6
12.3
12.4
9.6

17.9
15.7„
8.1

5.2
9.1

5.26 0.77

1.75 0.75

9.29 0.38

2.76 0.13

16.91 0.81

1.09 0.068

1.67 0.43

1.64 0.92

2.46 0.91

10.1
7-3
9.7
72

1.45 0.044 11.4 1 104
1.133'
1.175
1.1O1 ~

i.io4 b

1.1O5 ~

1.136"
1.138
1.1OV"

1.144 b

1.132
1.090
1.084 b

1.1 13b
f.102b
1.OS9b

1.219b
1.1O2 b

1.O9Ob

1.085b
1.198 b

1.159'
1.203
1.162 b

1.170
1.139 b

1.245
1.102
1.136'
1.106

0 710
0.798
0 757
0.706
0.762
0.717
O.V94 b

0.762
0 771
0.855"
0.829
0 730b
0.716
0.796"
0.762 b

0.735
o.viob
O.V2V'
o.v6v"
0.708
0.698 b

0.951 b

0.889
O. SS2'
0.893 b

0.832
0.84 1.

o.vov b

0-.778 b

O.S13'
0.760 b

0.288
0.440
0.312
0.295
Q.422 b

0.292
0.470"
0.376
0.432
0.448 b

0.442 b

0.403
0.399
0.425
0.388 b

0.367
O.362 b

0.518 b

O.43O'
0.349
0.346
o.54o b

O.496 b

o.4v6 ~

O.459 b

Q.478
o.451 b

0.508
0.457 "
0.444 b

O.4O9b

2.645
2.645
2.044
2.645
2.645
0.390
2.635"
2.642
2.645 b

2.643
2.638
2 ~ 636
2.646 b

2.642 b

2.64O'
2.645'
0.519 b

2.646 b

2.642 b

2.641
2.643 b

2.644 b

2.646
2.642
2.634
2.645
o 515b
2.645
2.645
2.635

Fitted to results by Walter and Cohen (Ref. 17).
b Fitted to results by Vinsome and Richardson (Ref. 19).

Fitted to results by Nara (Ref. 18).

e(q) =[a ~ (q) —1] '*" +1e,„,(0) —1

calc

so that e(0) =e, and fitted anew. Since e„„(0)was
different from e „„(0)for both Si, Ge, and the
compounds, we used (7) in order to reproduce the
experimental values. All our fitting parameters
for dielectric functions together with band struc-
ture parameters used here are listed in Table II.
In Fig. 2 we show the three different functions
c(q) employed in the calculations.

F(r) =PP f, (r)G, „(8,Q),

l2

IO

I

S RICHARDSON

COHEN

where f, (r) are simple radial functions to be de-
termined variationally and Q, (6), P) are column

III. METHOD OF CALCULATION

Equation (5) has been solved only variationally
thus far. The column vectors F(r) are expressed
in terms of spherical harmonics and may be writ-
ten as follows.

I

l5
I

050
IO

q (au)

FIG. 2. e(q) for Si from various references as used in
the calculations. See Table II for the parameters used.
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vectors determined entirely from symmetry con-
siderations. " Since the effective-mass equations
have inversion symmetry, only even l will contri-
bute to the ground-state wave function. Following
previous workers, we assume that the ground
state has the same symmetry as the top of the val-
ence bands, i.e., I', . This has been proved ex-
perimentally by Onton et al." We use the same
representation as SOH" and include only s and d
waves. This leaves us with one s and five d angu-
lar trial functions. The form of f, (r) used by
Schechter" and SOH is

f, ,(r) =e " "'

f, ,(r) =r'e " "2,
(9)

where r, and r, are variational parameters. In
order to enhance the flexibility of the trial form
of E(r) we expanded f, (r) as

f,„(r)=Q Q c, ir" e "i" .
n

(10)

For / =0, n was taken to be 0 and 1, and for l =2,
n was taken to be 1 and 2. The r; were taken to
be the same for each I, and n. Thus, for N differ-
ent r;, the number of independent basis functions
(and hence the size of the secular matrix) is 12¹
In this scheme, by solving the generalized eigen-
value problemHX =ESX only once, the binding
energy is determined as the highest eigenvalue.

The r; were chosen to cover a broad range. The
starting point was five r;, namely the inverses of
0.01, 0.05, 0.1, 0.2, and 0.4 a.u. These values
correspond to orbits of 100, 20, 10, 5, and 2.5
a.u. The set was then extended to include addition-

al intermediate values, but the calculated binding

energy changed only by about 1f~ in all materials.
In any case, all calculations were finally perform-
ed with an expanded set, namely the inverses of
0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, and 0.4
a.u. , which correspond to orbits of 100, 50, 33.3,
25, 20, 10, 5, and 2.5 a.u. The size of the secu-
lar matrix was 96x 96. It was concluded that the
binding energies quoted are converged to at least
0.2% (within our angular expansion). As an ad-
ditional test for the accuracy of our method of cal-
culation we used the same Hamiltonian parameters
and hydrogenic potential for Si and Ge as used by
SOH and Mendelson and James" (e = 12 and 16 for
Si and Ge, respectively). For Si we obtained 3't. l
meV, compared with SOH's 35.7 meV and Mendel-
son and James's 37.1 meV, indicating that our
method is better than that of SQH and as good as
that of Mendelson and James. Similarly, for Ge
we obtained 11.2 meV as compared with SQH's
10.0 meV.

IV. SINGLE ACCEPTORS

A. Hydrogenic model

Using the full 6x6 Hamiltonian, as described
earlier, we carried out calculations for single ac-
ceptors employing the hydrogenic potential. The
dielectric constants were the same as those used
by Baldereschi and Lipari" (BL). In Table III
we list the results of the present calculations and
compare them with those of BL. In the same table
we also listed the results of a 4x4 Hamiltonian and
our basis. Differences between these results and

TABLE III. Hydrogenic binding energies EH in meV as calculated in this paper by full spin-
dependent Hamiltonian, in infinite spin-orbit approximation and as calculated by BL in the same
approximationusing the spherical model. For our 6x6 calculations we also list the percent of s-
like envelope (%ps), the percent of d-like envelope Pg d), the expectation value of r (average
radius) for the s envelope ((rs) ), the average d-envelope radius ((r&) ), and the total average
radius ((r)). r is in atomic units.

Material Ep fps 7p d
Present 6 x 6

(r ) (r ) (r) EH

Present
4 &&4

EH

BL

Si
Ge
GaAs
GaP
GaSb
AlSb
InAs
InP
InSb
ZnS
ZnSe
ZnTe
CdTe

1 f .4
15.36
12.56
10.75
f 5.7
12.0
14.6
12.4
17.9
8.1

9.1

10.1
9.7

87 13
73 27
74 26
83 17
70 30
77 23
62 38
75 25
58 42
79 21
75 25
75 25
67 31

43.6
110
49.9
29.7
82.4
31.7
60.7
33.8
93.4
9.69

14.7
19.8
17.3

83 ~ 2

229
106
61.5

176
64.6

145
75.f

231
21.5
32.6
41.9
39.4

48.6
142
64.4
35.3

iff
39.2
92.8
44 ~ 1

151
12.2
19.2
25.4
24.2

f 0.3
27.5
56.3
13.1
46.7
17.3
40.3
8.81

224
126
86.5
96.6

38 ~ 3
10.0
26.3
49.5
12.9
44.9
16.8
36.3
8.73

183
114
81.8
90.7

31.56
9.73

25.67
47.40
12.55
42.45
16.31
35.20
8.55

175.6
110.2
77.84
87.26
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% s % d (r~) (r&) (r)

GaAs
GaP
GaSb
A1Sb
InA s
InP
InSb
ZnS
ZnSe
ZnTe
CdTe

10.9 75
9.1 83

14.4 70
10.2 78
12.3 63
9.6 76

15.7 58
5.2 79
5.9 77
7.3 76
7.2 70

25 42.8 91.3 55.1 36.9
17 24.8 51.6 29.5 7S.7
30 75.4 161.3 101.5 15.6
22 26 6 54 6 32 8 65 4
37 50.6 122 77.2 24.6
24 25.5 57.0 33.0 69 ~ 2

42 81.9 202 132 11.5
21 6.16 13.8 7.81 552
23 9.10 20.5 11.8 315
24 13.8 29.7 17.7 170
30 12.5 28.8 17.3 181

TABLE IV. Hydrogenic binding energies EH in meV

for compound semiconductors using «„ instead of «0.

The quantities listed are as in Table III.

those of BL are to be attributed strictly to the
neglect of the cubic terms by BL. The differences
between the present 6 x 6 results and those of BL
are to be attributed to the neglect of both cubic
terms and the split-off band by BL. We note that
the differences are largest for materials with
small spin-orbit splitting like Si, GaAs, and ZnS.
For Si, neglecting the cubic terms within the "in-
finite spin-orbit coupling" approximation is an er-
ror of about 5%. Neglecting both the cubic terms
and the split-off band is an error of about 20gp.
As we shall see later, for other potentials the er-
ror is even larger. Finally, in Table IV we list
the results of calculations using the full 6x6 EMT
Hamiltonian and e„ for the compound semiconduc-
tors instead of ~, .

B. Point-charge model

We have carried out calculations using the point-
charge potential as defined by (4) using the func-

TABLE V. Point-charge binding energies E~ in meV for single acceptors. The references
identify the «(q) used (the analytical form parameters are listed in Table II), The labeling by

or «p indica~~s whether «(0) = «„ or «0 as discussed in Sec. II B. For comparison we also
list E~ obtained within "infinite" and "zero" spin-orbit splitting, respectively. We also give
the experimental values (Ref. 5). All other quantities are as in Table III.

«(q) Full 6&&6

Material Reference % s % d &r,)
4 x 4 3 && 3 Experiment

E, E8 Impurity

Si

Ge

GaAs

GaP

GaSb

Alsb

InA s

InP

InSb

ZnS

ZnSe

ZnTe

CdTe

«a
0

b
0

C
0

«a
0

b

0
b

a

b«~
b

b«~
b

b

b
0

b«~
b

0
b

b
0

b«~
b

0
b«~

b
0

b«~
«a

0
b

0
a
b«~

b

b

b
0

b

86 14
86 14
87 13
73 27
73 27
74 26
74 26
75 25
75 25
81 19
81 19
69 31
69 31
78 22
78 22
63 37
64 36
76 24
76 24
58 42
58 42
77 23
77 23
76 24
76 24
76 24
76 24
77 23
77 23
74 26
74 26

30.2
32.7
36.5

105
106
41.7
37.5
31.1
29.1

15.7
11.4
73.0
65.2
8.82
6.49

48.8
36.4
13.2
8.26

86.1

73.9
3.88
3.68
3.82
3.78
3 ~ 19
3.19
3.81
3.28
3.60
3.16

58.4
63.2
70.1

220
220
90.3
82.1

68.9
65.0
33.7
24.8

158
141
19.6
14.3

121
92.2
31.4
19.9

215
185

4.56
3.91
6.83
6,78
5.22
5 ~ 22
7.66
6.17
7.11
5.82

34.2
37.0
41.0

136
136
54.3
49.0
40.6
38.1

19.1
14.0
99.1
88.6
11.2
8.19

75.7
56.7
17.6
11.1

140
120

4.04
3.73
4.55
4.52
3.68
3.69
4.71
3.95
4.53
3.85

54;4
50.2
44.8
10.7
10.7
32.6
36.3
50.2
53.7

110
185

14 ~ 7
17.9

198
353
21.3
33.8

112
256

9.54
12.7

2386
4076
1205
1229
2438
2431
986
1708
1231
2065

39.9
38.8
36.4
10.3
10.3
28.9
30.8
41.3
42.8
67.7

105
14.0
16.9
86.5

147
18.9
27.9
55.3

112
9.3

12.2
1175
2472
497
492
1299
1257
397
813
472
964

57.1

52.7
47.2
13.3
13.3
40.4
45 ~ 6
62.0
66.4

116
192
19.4
23.8

248
411

28.9
45.5

124
269
13.1
17.5

2393
3973
1233
1278
2450
2443
1078
1786
1335
2145

68.9 Al

10.8 Ga

31.0 Zn

64.0 Zn

56.3 Cd

-10 Cd

114 Li

13-15 Si
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tions e(q) of Table II. The results are listed in
Table V. Note that the three available e(q) for Si
give binding energies which differ by more than
10%. Since it is not possible to assess the ac-
curacy of the three available e(q), this variation
may be viewed as a limit of how accurately the
binding energy of the point-charge model may be
calculated at this point. The results also show
that a very careful treatment of the dielectric re-
sponse is necessary for any calculation of binding
energies. A comparison with Table III shows that
the p-dependent dielectric screening is very im-
portant indeed. The differences between E„and
E„for very shallow levels like those of Ge, GaAs,
GaSb, and InSb are only (4-23}%, but in Si, GaP,
AlSb, and InP the increase in binding energy is
47, 95, 326, and 178%, respectively. The most
dramatic effect is observed in II-VI compounds
where the binding energy increases by an order
of magnitude t

The values obtained using & in the case of com-
pounds show similar trends. Since & is less than
e„ the impurity radius becomes smaller. There-
fore, the effect of e(q) is even greater,

In Table IV we list also values obtained with "in-
finite" and "zero" spin-orbit splitting. The in-
finite-splitting" approximation is expected to
work well when E~ « ~. Direct comparison shows
that this approximation is justified for Ge, QaSb,
InSb (error less than 4%) and maybe for GaAs and
InAs (error = 14%}. The "zero splitting" approxi-
mation should be valid when E~»&. Direct com-
parison shows that this approximation works well
in Si, GaP, InP, ZnS, ZnSe, ZnTe, and t dTe
(error& 10%). For Si, GaP, and InP these results

are somewhat surprising since the binding energies
of the point-charge model are comparable to the
spin-orbit splitting. One should therefore be very
careful in using this approximation for these ma-
terials, especially since the above results were
derived using the point-charge model.

V. DOUBLE AND TRIPLE ACCEPTORS

The work of Pantelides and Sah' has shown that
double donors may be treated by the EMT as long
as the impurity potentials are appropriately con-
structed. It is thus natural to compare with a two-
charge hydrogenic potential and the two-point-
charge potential screened with e(q). In some ma-
terials, such as Ge, where the effective masses
are very small, the EMT may be adequate even
for triple acceptors where one would compare with
three-charge models. We have carried out these
model calculations for double and triple acceptors,
and the results are listed in Tables VI-VIII. Com-
paring the results for double acceptors we see
that the binding energies derived from the hydro-
genic model and point-charge model differ by an
order of magnitude in all cases except Ge. We
also notice that for the point-charge model the
zero spin-orbit splitting approximation works well
in Si, GaAs, GaP, AlSb, InAs, and InP, whereas
the "infinite" spin-orbit approximation does not
work in any case. We have not listed the II-VI
compounds since the binding energies in the point-
charge model become more than 5 eV. For the
same reason we only list Ge in the triple acceptor
case. The three-point-charges model gives a very
deep level and consequently may be well described

TABLE VI. Hydrogenic calculations for double acceptors. All quantities are defined in the
text and previous tables.

Material %s
Full 6x6

E2H

4x4
E2H

3x3
E2H

Si
Ge
GaA s

GaP

AlSb

InA s

InP

InSb

11.4
15.36
12.56
10.9
10.75
9.1

15.7
14.4
12.0
10.2
14.6
12.3
12.4
9.6

17.9
15.7

86
75
77
78
82
82
71
71
79
80
66
67
77
77
59
60

14
25
23
22
18
18
29
29
21
20
34
33
23
23
41
40

21.0
52.3
23.3
20.0
14.3
12.0
39.8
36.2
14 ~ 8
12.4
28.7
23.7
15.9
12.1
45.8
39.8

41.2 23.9
112 67.1

50 9 29.7
43 7 25.3
301

14.4
53.5

79.3 48.7
31.0 18.2

15.1

7p.7 43.1

59.p 35.3
35.8 20.4
27.6 15.6

114 73.7
100 64.0

157
42.9

117
158
236
332
53.8
64.3

198
279
73.3

105
174
296
36.1

47.3

133
40.2

105
140
198
277
51.5
61.3

180
249
67.1

95
145
242
34.9
45.5

160
50.5

133
176
243
339

66
78.4

226
313
88.4

125
185
308
46.6
60.5
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TABLE VII ~ Point-charge calculations for double acceptors. All quantities are defined in

the text and previous tables.

Material Ip s Pod (r,)
Full 6x6 4x4

E2p

3x3
E2

Si

Ge

GaAs

Gap

GaSb

Alsb

InAs

Inp

InSb

ep 83
83
83

cp 76

cp 76

77
ep 80

80
ep 75

75
ep 79
e 79
ep 71

71
76
76
6S
68

17
17
17
24
24
24
24
23
23
20
20
25
25
21
21
29
29
24
24
32
32

3.65
4.23
4.45

29 ~ 0
30.8
4.25
4.00
3.68
3.57
3 ~ 70
3.36
6.64
5.87
4.19
3.77
4.02
3.55
3.66
3.40
8.62
V. f 8

6.6f
7.86
8.30

66.0
69.8
8.98
8 ~ 24
7.66
7.43
4.73
4.47

16.2
14.3
3.85
3.80

10.4
9.12
4.74
4,36

25.6
21.0

4.15
4.84
5.11

37.9
40.2

5.37
5.00
4 ~ 62
4.48
3.91
3.58
9.06
7.99
4.11
3.78
5.89
5.16
3.92
3.63

14.1
11.6

2351
1638
1409

76.9
72.4

1389
1713
2057
2229
4162
5027
515
670

6763
7668
1303
1821
4672
6173

263
387

1018
662
569
51.0
50.8

430
581
835
941

2036
2920

141
209

3707
4875

324
611

2153
3509

68.5
109

2354
1641
139S

92.9
87.4

1427
175f
2096
2268
4170
5036

592
750

6S41
7746
1356
1874
4688
6189
344
475

in terms of the "zero" spin-orbit splitting approxi-
mation. For further discussion see Sec. VI.

VI. SCRUTINY OF THE HYDROGENIC AND POINT-CHARGE
MODELS: COMPARISON WITH EXPERIMENT

In Secs. I-V we presented an assortment of cal-
culations of acceptor binding energies using the
effective-mass equations, the hydrogenic poten-
tial, and the point-charge potential. In this sec-
tion we turn to examine the question of what all
these calculations mean and how relevant they are
to real situations. The discussion is distinctly
different for homopolar and heteropolar semicon-
ductors, so we treat the two classes separately.

A. Homopolar semiconductors

The homopolar semiconductors (Si, Ge} are sim-
pler because there is no distinction between the
static and the high-frequency dielectric constant.
Let us start with Ge. For the single acceptors we
use two theoretical binding energies, the hydrogen-
ic E„=10.3 meV and the point-charge E~=10.7
meV. This latter value compares very well with
the experimental value of Ge:Ga (10.97 meVP'
which is the isocoric acceptor. On the other hand,
the two calculations show that the precise nature
of the impurity potential in the central cell can
easily produce changes in the binding energy of
order 0.5 meV. This may be compared with the
observed binding energies for B, Al, Ga, and In

TABLE VIII ~ Triple-acceptor calculations for Ge. All quantities are defined in the text and
previous tables.

Material %os Ip d (r,)
Full 6x6 4x4

E
3x3
E

Hydrogenic model

Ge 15.36 23 33.4 72.9 42.5 100.4 90 113.6

Ge &(q)
'

e (q)

76
76

24
24

Point-charge model

4.90 11.3
5.49 12.7

6.42 f442
7.21 1152

373
310

1475
1185
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in Ge, i.e., 10.47, 10.80, 10.97, and 11.61 meV, "
respectively, which shows that individual binding
energies might be reproducible if individual po-
tentials were to be calculated for each impurity.
The smallness of these chemical shifts, however,
would call for an extremely accurate calculation
of these potentials. In contrast, potentials such
as those used by Pantelides and Sah cannot be ex-
pected to yield binding energies which are accurate
by better than 1 meV. It appears then, that w'e can
conclude that the effective-mass theory is entirely
adequate for the shallow acceptor s in Ge.

Turning to the double acceptors, we note that
E» =42.9 meV and E, , = 72.4 or 76.9 meV depend-
ing on whose e(q) we use. When we compare with
the experimental binding energy of the isocaric
Ge:Zn (95 meV), 2' we see that the point-charge
model again does very well, whereas the hydrogen-
ic model does very poorly. Again, one would ex-
pect that individual binding energies should be ob-
tainable within the EMT, when appropriate im-
purity potentials are constructed (see Sec. VIII).
[ An interesting observation is in order here:
Note that E,„is found to be 92.9 meV (Table VII)
when a 3 ~ 3 Hamiltonian matrix is employed,
namely when spin-orbit interaction is excluded.
This is in excellent agreement with the observed
value of 95 rneV for Ge:Zn. This agreement is,
however, misleading because the full 6 x 6 matrix
is an improved Hamiltonian, which, nevertheless,
does not do as well. ]

Finally, we turn to the calculations for triple
acceptors. E» is found to be 100.4 meV and E3p,
soars to 1152 and 1442 meV for the two ~(q). Since
the experimental binding energy for the isocoric
Ge:Cu is 530 meV, "it is clear that the point-
charge model overestimates it, Substantially. The
use of realistic impurity potentials is thus im-
perative. (See Sec. VII.)

We turn now to Si. The hydrogenic binding ener-
gy E„ is 378 meV, whereas E, ranges from 44.8
to 54.4 meV. The observed value for the isocoric
Si:Al is 68.9 meV, " i.e., about 30% larger. This
is not entirely satisfactory and does not lead to a
definite conclusion. One might argue that these
results show how well the point-charge model can
do. However, one might also argue that the val-
ence bands of Si are strongly anisotropic, "hence
the inclusion of l = 4 terms in the trial function
might increase the binding energy substantially.
In any case, the new point-charge binding energy
of about 50 meV is substantially larger than the
best previous value of 37.1 meV. " If one were
to measure "chemical shifts" from the new value,
the chemical shift for Si:B (Es =44 meV) would be
negative.

For double acceptors in Si, we find E» = 157

meV and E, , ranging from 1409 to 2351 meV.
Since the observed value for Si:Zn is 617 rneV, '4

it is clear that the model is inadequate. In fact,
the situation is similar to that of triple acceptors
in Ge. The use of realistic potentials is thus again
imperative in order to check the viability of the
EMT for such deep impurities. Needless to say,
the study of triple acceptor s in Si by the point-
charge model is out of the question.

B. Heteropolar semiconductors

The discussion of the results for the heteropolar
semiconductors is a far more complicated task.
First we single out two semiconductors, namely
GaSb and InSb. For GaSb we obtained E„(e,) =13.1
meV, E„(e„)=15.6, E (eo) =14.7, and E (e„)
= 17.9 meV. The differences are not that great
but in view of the fact that optical phonon frequen-
cies in this material are -28 meV, the approxima-
tion E (e,) should be the most appropriate. In-
deed, it compares very well with the observed val-
ues of 13-15 meV. " Similar results apply for
InSb for which E„( e) = 9.54 meV and the experi-
mental value is -10 meV. '6 These two materials
behave like Ge, whereby the values E„, (Table
VII) may also be viewed as substantially correct
for double acceptors. For these deep levels, how-
ever, the values E, (e„) would be more appropri-
ate. No experimental numbers are available for
corn par i son.

For the other materials listed in the tables, the
situation is more complicated. First, the single
acceptor binding energies are of the same order
of magnitude as the optical-phonon frequencies.
This fact makes both limits (co or e ) inappropri-
ate approximations. Besides, other cons ide ra-
tions enter which limit the usefulness of effective-
mass calculations. The situation can be best il-
lustrated by an example. Let us take single ac-
ceptors in GaP. BL used e, and calculated a hy-
drogenic binding energy of 47.4 meV, which they
cornpared with the observed value for GaP: Zn~,
(this notation stands for Zn at a Ga site in GaP),
i.e., 64 meV." The agreement was encouraging
in view of the spherical approximation and the
4 ~ 4 Harniltonian matrix used. Our present cal-
culations show that E„(e,) =56.3 meV which is a
definite improvement. Note, however, what hap-
pens when we turn to the point-charge model. If
we use a 4X 4 Hamiltonian matrix, we get E„(e )
=67.'7 meV, which is in excellent agreement with
the experimental value of 64 meV. If, however,
we use the full 6 & 6 Hamiltonian matrix, we get
E,( )=e110 meV which is in strong disagreement
with the experimental value. Even worse, if we
use e (q) instead of ~,(q), we get an even larger
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binding energy, E (e„)=185 meV. What are we to
conclude from all this'P First we should note that
comparison with the experimental binding energy
of GaP:Zn~, is not an adequate test. GaP:Si, is
also an isocoric acceptor, and its observed binding
energy is 204 meV. mc Now, it is clear that E,(e ),
i.e., 185 meV, agrees very well with 204 meV,
and it would appear that we have something for
everything. In fact, a more fundamental scrutiny
is in order. It turns out that the most important
consideration, which we left out so far, is the
nature of the two different substitutional sites, the
anion and the cation, an effect discussed recently
by Phillips" and by Pantelides. ' The experimental
values, 64 meV for GaP:Zno, (and similar num-
bers for other single acceptors at the Ga site) and

204 meV for GaP:Sip (and similar numbers for
other single acceptors at the P site} suggest im-
mediately that no single point-charge calculation
can agree well with both. Clearly the site must be
built into the calculation; it would enter in two
places: First, in screening; this is expected from
the fact that the valence-electron cloud is concen-
trated more on the anion than on the cation. For
holes, therefore, screening would be more ef-
fective at the cation site, whereby one would ex-
pect smaller binding energies for cation-site ac-
ceptors, as is observed. In principle, this site-
dependent screening can be included by using the
full dielectric function e(q, q+G), where G are
reciprocal-lattice vectors. Reciprocal-lattice
vectors are, however, outside the realm of the
EMT. The second place the site-dependence would
enter is in the evaluation of the impurity-potential
matrix element (P(U( g). Here P is the total im-
purity wave function. In the EMT, $ is expanded
in terms of the Bloch functions g„„, which, iy turn,
are expanded in terms of the plane waves e' "'
In the end, all the nonzero G's are dropped, which
amounts to essentially a plane-wave approximation
for P„». When this approximation is made, any
site-dependence of the g„» is dropped. However,
it is well known that the Bloch functions near the
top of the valence bands have amplitude mainly on
the anions. This means that if nonzero G's were
retained in the expression of the f„,, the matrix
element (g~ U~f) would be larger when U is centered
at an anion site than when it is centered at a ca-
tion site. Once more, therefore, the site depen-
dence would result: in larger binding energies for
anion-site acceptors. As before, however, this
site dependence can be built in by including non-
zero G's, which are outside the realm of the EMT.
We are therefore led to conclude that a proper
description of impurities is heteropolar semicon-
ductors must go beyond the EMT. This conclusion
is further supported by the numbers we calculated

thus far. Recall that we found E„(e,) =110 meV
and E (e„}=185 meV. A more correct theory
which would use an e (q) intermediate between
~,(q) and ~ (q) should give a well-defined E„of
order 150 meV. Building in the site dependence
would then bring that number down to less than
100 meV for cation acceptors and up to over 200
meV for anion acceptors, in agreement with ex-
periment. Similar considerations apply for the
other heteropolar semiconductors. Notice that
for II-VI compounds the site dependence is even
more pronounced. For example, in CdS, P, at a
S site has E~ - 1000 meV and Na at a Cd site has
E -170 meV. "

VII. USE OF MODEL POTENTIALS

As discussed in Sec. VI, effective-mass calcula-
tions are not very promising for heteropolar
semiconductors. We therefore concentrate on Si
and Ge where the use of the point-charge model
was encouraging. The next step is to construct
impurity potentials which reflect the chemical na-
ture of individual impurities. This was first done
successfully by Pantelides and Sah' ' who con-
structed first-principles pseudopotentials for
donors in Si, and showed that these could be used
with effective-mass equations for relatively ac-
curate calculations of binding energies. Agree-
ment with experiment for individual donors was
very good for both shallow and deeP levels, and
overall trends were reproduced. It was also shown
that in the case of isocoric impurities, the im-
purity pseudopotential reduces to the "true" im-
purity potential, i.e, the difference between the
true potentials of the impurity and host ions. Sub-
sequently, Pantelides" employed Abarenkov-
Heine-type model potentials from the tables of
Appapillai and Heine. " Each ion is then described
by a potential of the form

y(r)» r rc~
-n, /r, r &r„

where A is an energy (depth of a square well) and
&, is a radius. The calculated binding energies
were, in general, in good agreement with the ex-
per imental values.

For acceptors, we have thus far carried out a
limited study the results of which are interesting.
W'e used the model potentials of Appapillai and
Heine, but the experimental trends were not cor-
rectly reproduced (Table IX~). Agreement with
experiment for individual cases was very good for
single acceptors in Ge but only modest in all other
cases. Note, however, that even though the two-
point-charges model discussed in Sec. V is entire-
ly inadequate in Si (&1.5 eV compared with 620
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TABLE IX. Binding energies in meV of single and

double acceptors in Si and Ge using Appapillai-Heine
model potentials and corresponding experimental values.

1200

I000

I I I I I I I I I I I I I I

Impurity Theor.
Si

Expt. Theor.
Ge

Expt. 800—

B
Al
Ga
In
Be
Zn
Cd

Hg
Cu'

43.1

48.7
46.2
50.0

486
428
488
403

44 4
68.9
72.7 a

156.2
420 c

620 ~

7io
850

f 0.5
10.7
10.6
10.7
55.5
54.3
55.6
53.7

246.0

i0.4b
oob

to.s b

i&.2b
600
95'

i60
230
530
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200—

~Reference 2i.
Reference 22.

'Reference 23.
Reference 24.

'Model potential from J. Kollar and G. Solt, J. Phys.
Chem. Solids 35, 112k (1974).
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FIG. 4. Binding energy of double acceptors in Si as a
function of the depth of the potential well.

meV for Si:Zn), the model-potential calculation
gives 428 meV which is only -30% smaller than
the experimental value.

For illustration purposes, we carried out calcu-
lations using an impurity potential of the form (11)
(this would be the case if both host and impurity
ions had the same r, ) with r, =2.0 a.u. and a vari-
able depth A. The resulting binding energy is
plotted versus A in Figs. 3 and 4 for single and
double acceptors in Si and in Fig. 5 for acceptors
in Ge. For single acceptors the binding energy
depends only weakly on the potential up to A - -2.2
Ry. For larger negative values of A the binding
energy increases more and more rapidly. These

results may be understood in terms of the local-
ization of the impurity wave function as measured
by the average radius (Figs. 6-8). The former
situation corresponds to a hole well outside the
central cell and therefore insensitive to the
changes of the potential inside this region. As the
strength of the potential increases, however, the
hole becomes more and more localized, and small
changes in the impurity potential have large effects
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FIG. 3. Binding energy of the single acceptors in Si
as a function of the depth of the potential well.

FIG. 5. Binding energy of acceptors in Ge as a function
of the depth of the potential well.
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FIG. 6. Impurity radius as a function of binding energy
for single acceptors in Si using a model potential as de-
fined in text.

on the binding energy. An additional enhancement
is provided by the smallness of E(q) in this region.
This fact makes a calculation of the impurity state
with the binding energy in this range a very dif-
ficult task. For double acceptors the situation
is quite similar. Since the hole is rather well
localized also for small IAI values, the dependence
of the binding energy on the potential is greater.

Another source of inaccuracy is the dielectric
functions E(ef) and band-structure parameters y„
y and y . As pointed out before, the former

fresults in errors of the order of 10/p in the case o
single acceptors. The double acceptors are more
localized; consequently these discrepancies are
even larger. The three dielectric functions used
here for Si are plotted in Fig. 2. The differences
among them are almost of the same order of mag-
nitude as the differences between E(If) in different
directions. The E(lql) is usually obtained as an
average over a very few directions. As for the
y's they are known accurately only for Si and Ge.
The values used for the compounds were those
estimated by Lawaetz.

For heteropolar semiconductors, on the other
hand, the value of the EMT appears to be limited
by its inability to include effects that distinguish
the cation and anion site. Our calculations show
that good agreement with experiment is obtained
for very shallow levels but that work beyond the
EMT would be necessary to properly describe
deep levels.

VIII. CONCLUSIONS

RS
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We have shown that EMT provides an adequate
description of both shallow and deep acceptor
states in the homopolar semiconductors, Si and
Ge. For shallow levels the isocoric impurities
may be described by the "point-charge model. "
For deeper levels it is necessary to construct the
impurity potential from atomic pseudopotentials.
For both shallow and deep impurity states it is
essential to include the q dependence of the dielec-
tric screening into the calculation. The determina-
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FIG. 7. Impurity radius as a function of binding energy
for double acceptors in Si using a model potential as de-
fined in text.

FIG. 8. Impurity radius as a function of the binding
energy for acceptors in Ge.
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tion of the correct impurity potential and the ac-
curate form of the e (q} encounters considerable
difficulties. Finally, for heteropolar semiconduc-
tors, it was concluded that one has to go beyond
the EMT in order to properly account for the dif-
ferences in the two possible substitutional sites.
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