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We have studied the electronic energy structure of silicon and silicon dioxide using the extended tight-binding

method. For silicon, we found that the basis set in terms of single Gaussian-type orbitals is able to reproduce

the band structure which is in good agreement with the experimental data. However, simple linear

combination of atomic orbitals failed to describe the band order of the lower conduction bands. For silicon

dioxide, we calculated the energy band, total and orbital densities of states of P-cristobalite. In terms of these,

we obtained a consistent interpretation of various experimental measurements on amorphous silicon dioxide.

Furthermore, by examining the orbital character and the calculated charge densities of various states, we

determined the origin of the bonding in silicon dioxide.

I. INTRODUCTION

The paper presents our results for the elec-
tronic structure of silicon and p -cristobalite (or-
dered Si02) using the extended tight-binding (ETB)
method. '~ Even though silicon is one of the most
studied materials by solid-state physicists, there
are several reasons for us starting with the band-
structure calculation of silicon. Although previ-
ous energy-band models have been successful in
interpreting experimental data, there have been
serious discrepancies at some crucial points.
One such discrepancy has been the ordering of the
lower conduction bands at the center of the Bril-
louin zone. The linear combination of atomic or-
bitals (LCAO) calculation of Chancy et al.' (which
is practically similar to the present one) and the
self-consistent orthogonalized-plane-wave (OPW)
calculation of Stukel and Euwema' predicted the
reverse order for I',. and I'», although it is well
accepted that I',, lies above I'„.' ' To gain confi-
dence in our method for further studies of oxides
of Si, we calculate the band structure of Si and try
to understand why a previous LCAO calculation
failed to obtain the proper band ordering. Conse-
quently, this work represents an effort to resolve
the discrepancy between the LCAO' and the other
band -structure calculations. ' Furthermore, a
converged basis set which is able to accurately
represent the electronic structure of silicon can
be used in the study of the oxides of silicon.

For the oxides of silicon, which are the essen-
tial ingredients in metal-oxide-semiconductor
devices, there is little known theoretically. In
this paper, we have also studied the electronic
structure of p -cristobalite (which is a highly or-
dered form of Si02) as a next step in understanding
the oxides of silicon. Silicon dioxide has been
investigated using photoemission and other optical

experiments. ' ' Recently, extensive interest in
the electronic properties of the clean and adatom-
adsorbed silicon surfaces has brought SiO, into
focus. For the identification of the surface states,
Wagner and Spicer" measured the photoemission
from the oxygen-adsorbed cleaved silicon sur-
face. They observed spectra quite similar to the
ultraviolet photoemission spectra (UPS) obtained
from amorphous Si02." Lately, Auger electron
spectroscopy, ellipsometry, and electron spectro-
scopy of surface vibrations by Ibach et al."and
electron-energy-loss spectra by Ibach and Howe"
clearly revealed differences between the oxidation
state of silicon and the oxygen adsorption on sili-
con surface. In the former, the spectra have been
found to be quite similar to the spectrum of amor-
phous SiO, . On the other hand, photoemission
spectra from the oxygen-adsorbed silicon surface
does not show any similarity to the UPS spectra
of amorphous SiO,. From this point of view, we
believe that the spectral analysis of SiO, is im-
portant for an understanding of the oxidation of
Si. Apart from the interest in the oxygen adsorp-
tion on silicon surfaces, the study of the electron-
ic structure of p -cristobalite is important for the
foQowing reasons. The similarity of the reflec-
tivity spectra of amorphous SiO, and n-quartz"
indicates that the overall features of the valence-
band distribution for various allotropic forms of
SiO, should be quite similar. Therefore, one ex-
pects that our calculated state distribution should
be comparable to the ultraviolet and x-ray photo-
emission (UPS and XPS) spectra for amorphous
SiO,." Any deviations might be attributed to the
amorphousness of the experimental samples.
While some of the information we report is speci-
fic to p -cristobalite, many of our conclusions
concerning the state distribution, bonding, etc. ,
are likely to be of general applicability to other
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allotropic forms of SiO, .
Previously Bennett and Both" and Yip and Fow-

ler" carried out the cluster model calculations
for the energy-level structure of SiO, . Recently,
Pantelides and Harrison" carried out empirical
calculations for crystalline SiO, based on the
bond-orbital model, "where the bond orbitals of
SiO, mere constructed from silicon sp' hybrid a,nd

oxygen atomic orbitals. A similar basis set was
also previously used by Reilly. '4 Work by Schnei-
der and Fowler" reported first detailed band-
structure calculations where the basis set con-
sisting of nonoverlapping atomlike functions and
plane waves mere used. Our mozk is carried out
from first principles without any a priori knom-

ledge of either the energy bands or the experi-
mentally determined spectrum. We set up a one-
electron Hamiltonian using the crystal potential
constructed by a superposition of atomic potentials
and employ the Kohn-Sham exchange parameter
(a =-', ). The resulting equation is then solved using
an appropriate atomic basis set without introducing
any adjustable parameters.

The remainder of this paper is organized as
follows: In Sec. II, the major steps of the ETB
method are discussed. In Sec. III, we discuss the
electronic band-structure of silicon calculated
by the present method. In particular, we show
that the Bloch sums based on the single Gaussian-
type orbitals (GTO), rather than the atomic orbi-
tals (AO), are more appropriate for describing
the energy states of silicon. Also, we show that
the basis set consisting of the sp' hybrid orbitals
is nearly as bad as the atomic orbitals in repre-
sentingthe conductionband. The resultsforP-cris-
tobalite are presented in Sec. IV. The energy-band
structure, total and orbital densities of states,
and charge density are discussed and compared
with the available experimental data and with pre-
vious theoretical works. In particular, our results
using the AO basis set agree with the band struc-
ture calculated by Schneider and Fomler. " In Sec.
V, a new parametrization scheme is suggested,
which may be useful for the investigation of solids
containing many atoms per unit cell. This scheme
is put in perspective by examining the extended
Huckel method at the same time. Finally, in the
last section main results are summarized. The
electronic properties of the oxygen adsorbed on
the Si(111) surface and silicon-SiO, interface will
be the subject of a future publication.

II. EXTENDED TIGHT-BINDING METHOD

The tight-binding method" is one of the earliest
models in the energy band theory. The earlier
applications of the tight-binding method had not
been successful because of the immense difficul-

Here 8, and w,- denote the primitive and non-
primitive translation vectors. &, (k) is the factor
which normalized the Bloch sums X,.(k, r). P,.(r)
stands for the Gaussian-type orbitals (or the
atomic orbitals as in the LCAO method). In our
calculations, the crystal potential was constructed
by over&apping atomic potentials" which were
"nearly self-consistent" for tetrahedrally coordi-
nated semiconductors. ' In the ETB method, the
crystal potential is treated similar to the Ewald
procedure where the slow convergent core poten-
tial V,(r) is expressed in terms of Gaussians cen-
tered at each atomic site."

V( ) P —2Z; —Q!g g,
1, f res

+ ' e ~2«r ~+ g e"~«"t&
Q 2

r« t
t=3

where r„=|r -R, —7, ~, an.d Z is the nuclear
charge. The coefficients o,', q, and the exponents
P in Eq. (2) are carefully chosen such that the
remaining smooth potential V,(r), including the
local exchange potential, can be expanded in a
rapidly convergent Fourier series, i.e. ,

(2)

V,(r)= Q V,(G)e" '".

Here G denotes the reciprocal-lattice vectors.

ties in the evaluation of the multicenter integrals.
Therefore, the empirical version of the method
has been preferably used as an interpolation
scheme for the energy-band structure, where the
matrix elements have been determined from
experiments or other band calculations. " Not
long ago, Lafon and Lin' shomed that the tight-
binding method can be used as a first-principles
method if the multicenter integrals are properly
calculated. By now, the method has been applied
to a wide range of bulk related problems. ' ' Re-
cently, Ciraci and Batra4 for the first time used
the method self-consistently in studying the sur-
face electronic structure of diamond. It should
be noted that the name "tight-binding" method
has been used in the literature for caLculations
performed at various levels of sophistications
(from the simple empirical version to the calcu-
lations including self-consistency). Our purpose
in adding the word "extended" in front of the
"tight binding" is to indicate the level of sophisti-
cation implied in the present work.

In the ETB method one expresses the wave func-
tion as a linear combination of the Bloch sums,

X.(k, p) = [lVQ. (k)] ' ~g e'f'~&'"& 'p, (r —R, —r;)
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FIG. 1. {a)Valence charge density of P-cristobalite
along the Si-0-Si chain (unit is electron/'unit cell). (b)
The core potential V, (r) for P-cristobaiite. (c) The
smooth potential V, (r).

Note that such a decomposition of the total poten-
tial into core and smooth potential is only a corn-
putational convenience. The final potential V,(r)
+ V,(r) is independent of the constants in Eq. (2).
Figure 1 illustrates the core and smooth compo-
nents of the SiO, total potential treated in mixed
space. One can easily observe the smoothness of
V,(r) by comparing the energy scale in Figs. 1(b)
and 1(c). In Table I, the coefficients and expo-
nents used in describing the core potential are
listed.

To form the secular equation [H(k) —E(k)S(k))a(k)
= 0 the overlap matrix elements and the matrix

elements of the smooth potential are calculated
from the generalized overlap matrix'

W(~(G, k) = [A((k) ' Q)(k)]

x g e'"'"&' & "(g,(r r, )—
~

e' '
x

I ts(r —R, —r, )) (4)

The matrix elements of W', kinetic energy, and the
core potential are calculated analytically.

For a better understanding of the present meth-
od, it may be useful to compare it with a method
which uses a nearly-free-electron model. For this
purpose the OPW method' may be most convenient
because both methods (ETB and OPW) determine
the band structure from variational principles and
there is a close relationship between them, as
established by Parmenter. " A major difference,
however, lies in the choice of "basis set." In
OPW, the basis set is expressed in the mixed

space, whereas the crystal potential is treated
completely in the reciprocal space. In the ETB
method (as used in the present study), the basis
set is expressed completely in the direct space,
whereas the crystal potential is treated in the
mixed space. The size of the secular matrix in
the OPW method determines to what extent the
crystal potential, and consequently the basis set
in the reciprocal space, is sampled. The con-
vergence problem may arise if the size of the unit
cell is large. In the ETB method, the basis set
and the crystal potential are independent of each
other. By treating the core potential in the direct
space, one can achieve a high degree of accuracy
in calculating the matrix elements of highly local-
ized GTO's. In both OPW and ETB methods,
valence-state wave functions are practically simi-
lar at the core region. This is achieved in OPW
by orthogonalizing the plane waves to the core
states. In the ETB method, the variational prin-
ciple determines the wave function in the core

TABLE I. Coefficients and exponents representing the core potential of silicon and oxygen
atoms,

Silicon

—2Z-n =-1.78
n =-26.22

g3
——-17.41

q4
——-2,13

q5
———4.92

ge = —47.24
qv ——128.18

s
= -92.07

gs = —0.53

io = —0.16

P g =4538.08

Pg = 90.38
p3 =2.69
P4 =0.27
P~ =0.79
P6 =9.63
p7 = 153.60
Ps

——31.14

pe = 0.07
o =0.03

Oxygen

—2Z -n =-1.15
n =-14.85
q 3

= —15.35
g4 =-2.20
g 5

=—7.56
g 6

= —29.64
g 7

——70.16
s= —52 45
s = 0.72

g go=-0.16

Pg =4057.24

p2 = 95.54

ps =4.57
P4 = 0.60
P5= 1.68
P6 = 13.38
pv = 154.06

s =36
Ps=0.18

o=0 07
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region. Outside the core region, the limited num-

ber of plane waves are left to describe the wave
function in OPW. The limited number of OPW's
have been proven to describe adequately the wave
functions of metals and covalent semiconductors.
However, a convergent description of a wave func-
tion of highly ionic solids, or solids for which
there is no core state to orthogonalize to, may
require a large number of OPW's. " As a matter
of fact, the solution of the transition metals by
OPW represents an immense difficulty, although
this difficulty can be overcome by considering d
states as a core, and by appropriately calculating
their overlap integrals. In the ETB method, the
wave functions outside the core are described by a
limited number of GTO's. Although this has the
advantage because one is dealing with a small
size secular matrix, sometimes small basis set
may not appropriately describe the conduction-
band wave functions outside the core region. Cer-
tainly, the GTO basis set is' superior to the AO

basis set in describing the conduction band states
where the atomic origin may be lost. To overcome
this difficulty one uses GTO's corresponding to
excited states. Even the GTO's can be placed at
the interatomic sites for a better description of
the wave function (such as the bond charge in co-
valent solids). " On the other hand, the basis set
may have one or more GTO's with very small ex-
ponents, whose overlaps should be calculated up to
many distant neighbors to avoid spurious linear
dependency or the overlap catastrophe. " Since
the diffused GTO's can be easily expanded in the
momentum space, the above difficulty can also be
circumvented in mixed space, as suggested by
Parmenter. " At this point, one can even follow a
different route, where the basis set consisting of
GTO's and single plane waves, or plane waves
orthogonalized to GTO's, are used. Mixed
basis set has been used by Ciraci'4 by treating
the plane-wave part as a perturbation. He showed
that the addition of plane waves can further im-
prove the band structure obtained from LCAO cal-
culations. Hopefully, this extension, by using
additional basis set in the ETB method, brings us
to a point where the disadvantages of both methods
are minimized.

As to the computational aspects of the plane
waves used with the GTO's, the matrix elements
coupling two plane waves are easily calculated.
The matrix elements between a plane wave and a
GTO can be expressed as follows:

(X~(" r) I&Ik+ G) = Ik+ G I 'X;(k+ G)

+ Q V,(G")X,(k+G -G")

+ (X,(k, r}
I
V, (r)

I
k+ G&. (5)

Here

X,(k+G) = [Q, (k)U]'~'e' '&g,.(k+G}.

This is the Fourier component of the Bloch sum

X,(r). In Eg. (5) the third term on the right-hand
side, i.e. , the matrix elements of the core poten-
tial can be calculated analytically by using multi-
plication properties of two Gaussians. In the
present calculation, the basis set for Si and 0
does not contain very diffused Gaussians. There-
fore, the augmentation of the basis set by plane
is not necessary.

We finish this section with a few final remarks
about the ETB method. Since the basis set con-
sistsof s, p, andd typeof GTO's, theETBmethod
offers a conceptual simplicity in understanding
the nature of the bands and bonds. As a computa-
tional advantage in the ETB method, the wave vec-
tor-k dependency can be extracted from the Bloch
states and then the overlap integrals over the
orbital part are calculated once for all.

III. ENERGY BAND STRUCTURE OF SILICON

As mentioned earlier, the ordering of the con-
duction bands of silicon has been subject of some
controversy. Recently, low-field electroreflec-
tance measurements of Aspnes and Studna' and
pseudopotential calculations of Chelikowsky and
Cohen' proved that the I',, lies above I'», contrary
to the previous LCAO calculations. ' To reexa-
mine the electronic structure of silicon, we start
with the Bloch sums constructed from single'
GTO's, rather than AO's. In this way, the co-
efficients of the GTO's have full variational free-
dom. Thus, wave functions of Si are expressed
as a linear combination of 70 s-, p-, and d-type
GTO's. " The interactions between GTO's up to 20
a.u. apart are included. The core potential [as
defined in Etl. (2)] is expanded in terms of 10 s-
and p-type Gaussians, each centered at the atomic
sites (see Table I). The remaining part, which
was called the smooth potential, is expanded in
the reciprocal space to convergence. Note that
by using a larger number of Gaussians in Eq. (2),
one may treat the total crystal potential in the
direct space. However, the higher the number
of Gaussians in V, (r), the more diffuse are some
of the Gaussians and, naturally, more time is
spent in the computation of three center integrals.
On the other hand, the core potential defined in
terms of a very few Gaussians requires many
terms in the smooth potential. Therefore, one
has to find an optimum representation of the poten-
tial in the mixed space.

In Fig. 2(a), we present the band structure of Si,
which is obtained from the basis set described
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TABLE H. Comparison of symmetry-point energies {in eV) for Si as calculated by the ETB,
OPW, and pseudopotential methods and as measured by photoemission experiments.

Energy level ETB OPW ~
Pseudopotential
Local Nonlocal Experiment

r2s
res

rg2i
L2i
Lg

L3~
L&
L3
L2t
x,
X4
x,

~ 1 niin

-11.7

0.0
3.1
3.7
8.6

-9.5
—6.7

-1.2
2.1
4.0

12.0
—7.6
~2+7

1.4
4.3

-11,7

0.0
3.0
3.6

—9.4
—6.7

-1.1
1,9
3.9
8.0

-7.6
—2.7

1.3

-12.53

0.0
3.43
4.17
7.82

-10.17
-7.24

—1.22
2.15
4.00

-8.27
-2.99

1.22
-4.48

-12.36

0.0
3.42
4.10
8.19

-9.55
—6.96

—1.23
2.23
4.34

—7.69
-2.86

1.17
-4.47

—12,4 + 0.6
-12.5+ 0.6

4.15+ 0.05 '

93+04
-6.4 + 0.4
—6.8 + 0.2d
-1.2+ 0.2 '

3.9+ 0.1

-2.9, —2.5 + 0.3

-4.4, '-4.7+ 0.3"
'See Ref. 8.

See Ref. 9.
c See Ref. 36.

d See Ref 37
~See Ref. 38.

above. In this model, we observe that the band
order for I,. and I'„is in agreement with what
has been concluded lately. ' Furthermore, the in-
direct gap is found to be 1.2 eV, whereas the ex-
perimentally determined value is 1.14 eV. In
Tables II and ID, we list all the relevant energy
eigenvalues and the transition energies at the
symmetry points of the Brillouin zone (BZ). The
same table also includes the experimental"~' as
well as OPW' and pseudopotential' values. The
agreement obtained is gratifying.

To conclude the adequacy of the basis set, we
repeated similar calculations with a smaller basis
set where 68 and 62 GTO's are used, and observed
practically no change in the energy eigenvalues.
However, the inclusion of d-type orbitals did affect
the band structure. For example, the inclusion of
d-type GTO's lowers the energies of I'». and I'»

states. Therefore, the width of the valence band
and the indirect gap (which is overestimated by
using only s- and P-type orbitals) becomes small-
er, but the intraband gap I",, —I'„becomes larger.

After this brief presentation of the Si band struc-
ture calculated by the ET9 method, let us try to
answer the question why a similar LCAO calcula-
tion' predicted reverse band order. Noting that
the present calculation and the calculations of
Chancy et al.' start from the same atomic charge
density, one can speculate that different basis
sets (Chancy et al.' used AO basis set) are re-
sponsible for different results. In order to justify
this speculation, we simulated their calculation
by contracting the supersecular matrix (in which
each matrix element corresponds to the interac-
tion between two GTO's) toa smaller secular ma-
trix corresponding to the AO basis set. Formally,

TABLE DI. Comparison of transition energies {in eV) for Si as calculated by the ETB,
OPW, and pseudopotential methods and as measured by experiment.

Transition ETB OI W ~
Pseudopotential b

Local Nonlocal Experiment

—Lg
125~ —I (5
L g~ -L3
X4 —X)

3.3
3.1
5.2
4.9

3.0
3.0
5.0
4.9

3.37
3.43
5.25
5.28

3.46
3.42
5.57
4.83

3 40 c3 50d
3.45, '3.41 d

48 c

'See Ref. 8.
See Ref. 9. d See Ref. 40.
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FIG. 2. Electronic band structure of silicon calculated using various basis sets in the ETB method. (a) GTO basis
set, (b) AO basis set, and (c) atomic sp hybrid orbital basis set. The zero of energy is taken at the edge of the valence
band.

one expresses the contraction scheme, which is well
known in quantum chemistry, 4' as follows:

(e» Iff
I
@»&=g cr»c.r«r I HI &.&

In this equation, c„arecoefficients determined
from the Hartree-Fock calculations, "such that

0»= 2 cr» l~r& (8)

where the AO, Q, is constructed from the elemen-
tary GTO's, G, . In Fig. 2(b), the band structure
of silicon obtained from the basis set consisting
of Si ls to 3p atomic orbitals (i.e. , by solving
18 && 18 secular equation) is presented. By com-
paring this band structure with one obtained from
s- and p-type GTO's (which is not presented here)
or with the one presented in Fig. 2(a), we imme-
diately observe that most of the features of the
electronic energy structure can be reproduced by
the AO basis set. However, a reverse order for
the lower conduction-bands at I' is found. There-
fore, we conclude that the restriction imposed on
the basis set by the use of AO's is too severe for
the conduction-band states of Si. The valence
band is practically unchanged upon contraction
from the supersecular equation to the AO secular
equation, as pointed out earlier. 4' As a closing
remark, we also note that GTO basis set in the
ETB method enables us to do various contraction
schemes. For example, sp' hybrid can be easily
generated without redoing the computations. In
Fig. 2(c), the band model of Si is generated from

an sp'-type contraction over the supersecular ma-
trix. As one expects, the band structures in Fig.
2(b) and Fig. 2(c) are almost identical.

(a)

311] [1y1j

FIG. 3. Crystal struc-
ture of P-cristobalite. (a)
Top view along the [111]
direction. (b) Atoxns in the
unit cell and fundamental
lattice parameters.

(b)

IV. ELECTRONIC ENERGY STRUCTURE
OF P-CRISTOBALITE

For highly oxidized silicon surface, where oxy-
gen penetrates into the lattice, the spectrum is
quite similar to the UPS spectra for the amorphous
SiO, . SiO, is found in various crystalline and

amorphous forms. The crystal structure of p-
cristobalite can be visualized as an extended Si
crystal where one oxygen atom is located at the
middle of each Si-Si bond ( or at sites of DM sym-
metry), and each Si atom is surrounded by four
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this has been justified by separate study of ours,
where the amorphous SiO, has been simulated by
bending Si-0-Si chain, and a smaller energy gap
was obtained. The UPS measurements" (with a
photon energy, h(0= 40.8 eV) determine the val-
ence-band width as 11.2 eV, to be compared with

our calculated value of 10.8 eV.
We now discuss the orbital composition of the

states at the center of the BZ. The orbital com-
position of an orbital i in the state n, k is defined
as

oxygen atoms at the tetrahedral sites. According-
ly, p - cristobalite has the 0„'space group. In Fig.
2, the top view along the [111]direction and the
basic crystal parameters are given. For the
structure of other allotropic forms of SiO, (where
the straight Si-0-Si chain is bent, and Si-0 bond
distances vary), the reader may refer to Wyckoff."

A. Band structure

Similar to the procedure discussed in the previ-
ous sections we carried out the band-structure
calculations of p -cristobalite from the first prin-
ciples. The wave functions are constructed from
the linear combination of 142 s- and p-type GTO's.
Here, we do not use d-type GTO's because previ-
ous calculations indicate that these are not im-
portant for the valence and lower conduction
bands. The band structure is presented in Fig.
4(a), where the zero of the energy is taken at the
edge of the valence band. 44 According to this band
model, a S.8-eV direct interband energy gap is
obtained. The width of the valence band is found
to be 10.8 eV. The photoinjection measurements"
which are insensitive to band-edge selection rules
indicated a 8.S +0.2 eV band gap for amorphous
SiO, . Note that the energy-gap value of tetrahe-
drally coordinated solids decreases when the
crystalline solid becomes amorphous. In fact,

8,„(k)= a,2„(k)

+ke I, ;„(k)k,„(k)k'„(G=D,k)). (9)
j(0f)

Here, we start with the lower-lying bands in Fig.
4(a). These bands (which are singly and triply
degenerate according to the symmetry of diamond
structure) are derived primarily from the s-type
orbitals located at four different oxygen atoms, as
pointed out by Nagel. " The lowest band I', (at
about —20 eV) has 9%-silicon s-orbital and 20.5%-
oxygen s-orbital character, and is a bonding com-
bination of these orbitals. The triply degenerate
state I'». (at - -17.5 eV) has again primarily oxy-
gen s-orbital character with a slight mixing of
silicon p-type orbitals. The XPS,"as well as
silicon Kj3 and silicon 1,2, spectral" measure-
ments on amorphous SiO, place these lower-lying
bands at —20.2 eV. The bands 7 eV above the oxy-
gen s bands constitute the lower part of the valence
band of p -cristobalite. The singlet I,, is the
bonding combination of silicon s orbitals and oxy-
gen p orbitals directed along the Si-0-Si chain.
The triplet state I'» has similar orbital charac-
ter as the singlet. Although the combination of
these states varies with k wave vector, they can
practically be identified as the bonding orbitals
between Si and oxygen atoms as pointed out earlier
by DiStefano and Eastman. " The predicted width,
4.5 eV, for this lower valence band seems to be
about an eV smaller than the value determined by
the UPS measurements. "

The bands at the edge of the valence band are
2.5 eV wide. They are recognized by two over-
lapping peaks at -1.3 and -2.4 eV in the UPS spec-
trum of amorphous Si0,. The interesting feature
of these bands is that the oxygen p„,p„andp,
orbitals are combined to give maximum charge
perpendicular to the Si-0-Si chain. Because of
small overlap among these orbitals (especially
along the I'-I. direction), the bands are almost
dispersionless. For these reason they are called
nonbonding oxygen p bands. The 5-eV energy dif-
ference" between the peak in silicon fg (which
corresponds to the top of the lower valence band)"

t:A

2 J25 25

12'

2 2
~2

3I

1
12'

4

C5

-6—
LLI 15

8 -2

15'«15

-12—

25'3' 25'

~2'
1

43' 25'
-18~

~2'
2O-

r

25'

1

x K z rxK z rLA r

FIG. 4. Electronic band structure of P-cristobalite
calculated by using the ETB method with: (a) GTO basis
set, (b) AO basis set. The zero of energy is taken at the
edge of the valence band.

ELECTRONIC-EN ERG Y-STRUCTURE CALCULATIONS OF. . .



4930 S. CIRACI A%0 I. P. BATRA

and the peak in oxygen Ko (which corresponds to
the top of the upper valence band)" is overesti-
mated by - 1 eV in our calculations. In view of
this and 1 eV difference between the calculated
and measured widths of the lower valence band

(as noted above), one can argue that in the amor-
phous structure, the widths of upper and lower
valence bands increase to make the gap smaller.
Note that Schneider and Fowler" shifted their
upper valence band to consistently interpret vari-
ous x-ray emission spectra.

The first conduction band is primarily derived
from theSis orbitals with a small mixing from
oxygen s orbitals. The next triplet state, on the
other hand, has primarily silicon P-orbital char-
acter. The shape of the lower conduction bands
and their symmetries are reminiscent of silicon
valence band with a smaller width due to the
stretched Si-Si bond.

Regarding the conduction band, the experimental
data of interest are the peaks (at 10.3, 12.0, 14.4
eV, etc.) of the optical ref lectivity spectrum. "
Similar to the interpretation made by Schneider
and Fowler, "these peaks involve the transitions
between the lower conduction and nonbonding oxy-
gen p bands. The first peak may arise from the
transition between the lowest conduction band and
the second-highest valence band, i.e. , I-,, —I.3.
For the second peak at 12.0 eV, one may suggest
the transition L,. -L, (where the initial state L, is
at the lower part of the nonbonding oxygen p band).
The transition L, L, (where L—, is 1 eV above the

L,. in the conduction band) may be responsible for
the third peak.

In concluding the discussion of the energy bands,
it is appropriate to comment on the previous band-
structure calculations of p -cristobalite. The
semiempirical work on p-cristobalite by Pante-
lides and Harrison" does not include the conduc-
tion bands. Also the lower-lying oxygen 2s bands
are not included in their band model. Therefore,
our comparison here is confined to the valence
band. Our lower valence band is in good agree-
ment with that obtained by Pantelides and Harri-
son." In the upper valence band, the agreement
is not too good. Contrary to their band model,
we find that I'» is very close to I'„,. Further-
more, the doubly degenerate band which arises
from the triplet I']5 does not join X, to make a
fourfold degenerate state at X. Our band model
given in Fig. 4(a) is in good overall agreement
with that reported by Schneider and Fowler. " The
agreement becomes even better for the upper val-
ence band when we apply the contraction from GTO
basis set to the AO basis set. The band structure
obtained as a result of this contraction is shown in
Fig. 4(b). Note that the gap between I'» and I'„,
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FIG. 5. State distribution analysis of P-cristobalite.
(a) Total densities of states and O'PS (8+=40.8 eV),
XPS (Ace=1486 eV), and SXS measurements for amor-
phous Si02. (b) —(g) Orbital densities of states. All the
state distributions are normalized according to the total
density of states. (The UPS and XPS spectra is repro-
duced from Ref. 16. The SXS spectra is taken from
Fisher's work in Ref. 14.)

becomes larger here. Similar splitting (between
I'» and I'». ) obtained by Schneider and Fowler"
may well be due to the similar basis set (i.e. , non-

overlapping atomiclike functions} used in their
calculation. Note, however, that the AO-type
basis set was shown to be inappropriate for the
band structure of silicon. The comparison between
Figs. 4(a) and 4(b} indicates this point once again,
such that the gap between conduction and valence
band is overestimated by 0.7 eV in the AO basis.
The inclusion of the plane waves in the work of
Schneider and Fowler" seems to fix the short-
comings of the AO basis set in representing the
conduction band.
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B. Total and orbital densities of states

In Fig. 5, a thorough analysis of the state dis-
tribution is presented in terms of the orbital den-
sities of states (ODOS)'"'"

0(E,i) = (o v 2w) 'Q e~-[E„(k)—Ej'/2o'j8;„(k).
nyk

at —20 eV are primarily derived from the oxygen
s orbitals, whereas Fig. 5(e) shows that the oxy-
gen p orbitals are responsible for the distribution
of the valence band. Finally, in Figs. 5(f) and

5(g), we do the same projection for silicon s and

p orbitals, and show that silicon s and p orbitals
appear primarily in the conduction band.

This is a useful tool which projects the total den-
sities of states into a required orbital character,
or onto a particular angular direction. Therefore,
it provides a systematic interpretation of the XPS,
UPS data. In this study, we used the histogram
technique with the Gaussian broadening o = 0.1 eV.

Figure 5(a) shows our calculated total density
of states (TDOS) for p -cristobalite. In the same
panel we reproduce the UPS, XPS, and soft-x-
ray (SXS}intensities. " At this point we would
like to point out that caution should be exercised
in comparing spectra of amorphous SiO, with the
state distribution of perfect crystalline SiO, . As
pointed out earlier, the interband energy gap de-
creases because of the broadening of the band
edges. To compare the major peaks of the experi-
mental spectra with our total density of states,
we aligned the Fermi levels. In Fig. 5(a), the
energy positions of two overlapping peaks, in the
40.8 eV photon energy, UPS spectra, "lie on the
two major peaks of our total densities of states.
These two peaks, which are not resolved by Ibach
and Rowe,"are characteristic features of the
oxidized silicon surfaces. " At the lower part of
the valence band, the peak and the lower shoulder
at - -10 eV line up with the two peaks of bonding
oxygen p bands. For the lower-lying oxygen s
band, the SXS spectra resolves one peak, though
our density of states shows two additional peaks
arising from the states at the L-symmetry point
of the BZ. Although fine structures at the upper
portion of the valence band are not resolved in the
experimental spectra, the overall agreement is
good. This suggests that in SiO, the local order
of the atoms plays primary role in determining
the general features of the state distribution.

In Figs. 5(b)-5(g) the orbital analyses of the
state distribution are shown. The distribution in
Fig. 5(b), clearly indicates that the lower lying
bands below the valence band and the lower con-
duction band are derived from the s-type orbitals,
as pointed out before. Figure 5(c) projects the
p-type orbital character of the total densities of
states and shows that the valence-band and upper-
conduction-band states of SiO, have p-orbital
character. To find the atomic origins of the
states, we examine the rest of the panels. Figure
5(d) indicates that the narrow lower-lying bands

~t ~t ~ty (12)

where Zt is the nuclear charge of the free atom.
Using Eq. (11), our calculation yields 1.5 elec-
trons for the net charge on oxygen in p-cristo-
balite. In the context of the bond-orbital model,
Pantelides and Harrison calculated the static ef-
fective charge of p -cristobalite and found 1.3 extra
electrons on oxygen.

Realizing the ambiguity in relating the static
effective charge to the crystal potential, in the
present work we use the overlapping atomic po-
tentials rather than the ionic potentials. Certain-
ly, the self-consistent solution of the problem
would wipe out all the uncertainties in the choice
of the potential, but the overlapping atomic poten-
tial as used in the present work is known' to be a
good approximation.

D. State charge density

To appreciate bonding in SiO, in a pictorial fash-
ion, we calculate the charge densities of the states
along Si-0-Si chain. The results4' are shown in
Figs. 6 and 7. Figure 6, presents the charge den-
sity of several states at the center of the BZ. In

C. Static effective charge

Having seen the orbital contribution and the
orbital densities of states, one can go one step
further and define the total electronic occupancy
of an atom in the unit cell. This can be achieved
by summing over the orbitals (GTO or AO} located
at a given atom t.

OCC

&~= ~ Z 2 s;.(k). (11)
i=t nyj7

In Eq. 11, the number of points sampled in the BZ,
which is denoted by N, is needed to normalize the
occupancy. At this point, it would be appropriate
to discuss the static effective charge. " Ambigui-
ties in associating effective charges with ions
arise from the fact that there is no absolute way of
dividing the charge among the ions in the unit cell.
The bond charge in tetrahedrally coordinated
semiconductors makes the definition of the static
effective charge even more difficult. Here, we
use the definition of the total occupancy and try
to determine the net charge on an atom t by using
the following expression:
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H(~(k) = I;~ S(~(k), (14)

where I,, are to be determined from the ETB
secular equation for a "smaller" system. Accord-
ing to this equation, the wave vector and the geo-
metry dependence of H, &

is then determined from
the overlap matrix element S,&(k). The latter,

this section, we attempt to test the validity of Eq.
(13) by using our Hamiltonian and overlap matrices
calculated for p -cristobalite. Our objective is to
explore the following points: (i) Can one choose
one single empirical parameter K? (ii) Is this
parameter dispersionless 7

In order to answer these questions, we param-
etrized the ETB Hamiltonian according to the rela-
tion given by Eq. (13). In Fig. 8 we present the
values of K along the I'-X direction. By examining
this figure and the results for other symmetry
directions, one reaches the following conclusion.
The value of K depends on the type of orbital, but
it is a real quantity. Therefore, the use of a
single K for entire Hamiltonian matrix may not
be appropriate. Furthermore, K is practically
dispersionless. In view of these conclusions, we
propose the following parametrization scheme:

however, can be calculated easily for different
geometries and k vectors.

VI. CONCLUSIONS

We have shown that the ETB method can be
successfully used for investigating band structure
of solids from first principles. The choice of the
basis set is an important aspect because for an
inappropriate choice one may end up with improp-
er ordering of bands, as we found for silicon. The
implementation of the contraction scheme from
quantum chemistry into the ETB method makes it
a very flexible tool in the studies of the electronic
structure.

Our results for p -cristobalite have revealed
that the state distributions of regular and amor-
phous SiO, have similar features. However, the
widths of nonbonding and bonding oxygen p bands
increase due to the increasing overlaps in dis-
torted tetrahedra of amorphous SiO,. Bonds in
SiO, develop between the bonding combination of
silicon s, p, and oxygen P orbitals along the Si-0-
Si chain.

%e acknowledge helpful discussions with Dr. P.
S. Bagus, Dr. F. Herman, and Dr. %. E. Rudge.

~Present Address: Turkiye Bilimselve Teknik Arastir-
ma Kurumu Marmara Scientific and Industrial Re-
search Institute, Gebze-Kocaeli, Turkey.

~E. E. Lafon and C. C. Lin, Phys. Rev. 152, 579 (1966);
B. C. Chancy, T. K. Tung, C. C. Lin, and E. E. Lafon,
J. Chem. Phys. 52, 361 {1970).
J. C. Callaway ar~d J. L. Fry, Computational Methods
in Band Theory (Plenum, New York, 1974), p. 512;
J. Callaway and C. S. Wang, Phys. Rev. 87, 1096 (1973).

3J. E. Simmons, C. C. Lin, D. F. Fouquet, E. E. Lafon,
and B. C. Chancy, J. Phys. C 8, 1549 (1975).

4S. Ciraci and I.P.Batr a, Phys. Rev. 8 15, 3254 (1977);
I. P. Batra and S.Ciraci, Bull. Am. Phys. Soc. 21, 7
(1976); S. Ciraci and I. P. Batra, ibid. 21, 322 (1976).

R. C. Chancy, C. C. Lin, and E. E. Lafon, Phys. Bev.
8 3, 459 {1971).

6D. J. Stukel and B. N. Euwema, Phys. Rev. 8 4, 1635
(1g70) .

D. E. Aspnes and A. A. Studna, Solid State Commun.
11, 1375 (1972).
F. Herman, R. L. Kortum, C. D. Kuglin, and J. P.
Van Dyke, Methods in Computational Physics (Aca-
demic, New York, 1968), Vol. 8, p. 193.

~J. Chelikowsky and M. L. Cohen, Phys. Bev. 8 10,
5095 (1974).
H. R. Philipp, Solid State Commun. 4, 73 (1966).

~'H. R. Philipp, J. Phys. Chem. Solids 32, 1935 (1971).
G. Klein and H-U Chun, Phys. Status Solidi 8 4g, 167
(1962).
A. O. Ershov, D. A. Goganov, and A. P. Lukirskii,
Fiz. Tverd. Tela 7, 2355 (1965) [Sov. Phys. -Solid
State 7, 1903 (1966)].

4G. Wiech, Soft X-Ray Band Spectra, edited by D. J.
Fabian (Academic, New York, 1968); D. W. Fisher,
J. Chem. Phys. 42, 3814 (1965);Advances in X-Ray
Analysis, edited by B. L. Henke, J. B. Newkirk, and
G. R. Mallett (Plenum, New York, 1970), Vol. 13,
p. 159; D. J. Nagel, in Advances in X-Ray Analysis,
edited by B. L. Henke, J. B. Kewkirk, and G. R.
Mallett (Plenum, New York, 1970), Vol. 13, p. 182.
T. H. DiStefano and D. E. Eastman, Solid State Com-
mun. 9, 2259 (1971).

'6T. H. DiStefano and D. E. Eastman, Phys. Rev. Lett.
25, 1560 (1971).

' H. Ibach and J. E. Rowe, Phys. Rev. 8 10, 710 (1974).' L. F. Wagner and W. E. Spicer, Phys. Bev. 8 4, 1512
(1974).

~~H. Ibach, K. Horn, D. Dorn, and H. Luth, Surf. Sci.
38, 433 (1973); and H. Ibach (private communication).

~ A. J. Bennett and L. M. Roth, J. Phys. Chem. Solids
32, 1951 {1971).

'K. L. Yip and W. B. Fowler, Phys. Rev. B 10, 1400
(1974).
S. T. Pantelides and W. A. Harrison, Phys. Rev. B 13,
2667 (1976); S. T. Pantelides, Phys. Lett. A 54, 401
(1975).
W. A. Harrison, Phys. Bev. 8 8, 4487 (1973); W. A.
Harrison and S. Ciraci, ibid. 10, 1516 (1974).
M. A. Reilly, J. Phys. Chem. Solids 31, 1041 (1970).
P. M. Schneider and W. B. Fowler, Phys. Rev. Lett.
36, 425 (1976).
F. Bloch, Z. Phys. 52, 555 (1928).
J. C. Slater and G. F. Koster, Phys. Bev. 94, 1498
(1954).



4934 S. CIRACI AND I. P. BA VRA 15

In order to start with the accurate charge densities
of atoms, we have used Hartree-Fock wave functions.
For details see C. Roetti and E. Clementi, J. Chem.
Phys. 45, 350 (1965).

9R. H. Parmenter, Phys. Rev. 86, 552 (1952};J. L.
Fry (private communication).
Private communications with Dr. W. E. Rudge, Dr.
I. B. Ortenburger, and Dr. F. Herman.
'R. N. Euwema and D. J. Stukel, Phys. Rev. B 12,
4692 (1970).
Note that the charge density obtained from the over-
lapping atomic charge densities fails to account ac-
curately the x-ray form factors of covalent solids.

33T. Ahlenius, J-L Calais, and P-0 Lowdin, J. Phys.
C 6, 1896 {1973).

34S. Ciraci, J. Phys. Chem. Solids 36, 557 (1975).
35We have used GTO's determined by S. Huzinaga. For

details see S. Huzinaga, J. Chem. Phys. 42, 1293
(1965).

6L. Ley, S. Kowalcyzk, R. Pollak, and D. A. Shirley,
Phys. Rev. Lett. 29, 1088 (1972).

3~W. D. Grobman and D. E. Eastman, Phys. Rev. Lett.
29, 1508 (1972).
W. E ~ Spicer and R. C. Eden, in Proceedings of the
¹inth International Conference of the Physics of Semi-
conductors, Moscow, 1968 (Nauka, Leningrad, 1968),
Vol. 1, p. 61.

9R. R. L. Zucca, J. P. Walter, Y. R. Shen, and M. L.
Cohen, Solid State Commun. 8, 627 (1970).

4 M. Welkowsky and R. Braunstein, Phys. Rev. B 5, 497
(1972).

4~For the contraction scheme see, for example,
E. Clementi, Proceedings of the International Sym-
posmm on Selected Topics in Molecular Physics
{Verlag Chemic, Ludwigsburg, Germany 1970}, p. 199.

~2S. Ciraci, Phys. Status Solidi B 70, 689 (1975).
R. W. G. Wyckoff, Crystal Stncctures {Interscience,
New York, 1963), Vol. I, p. 312.

44In order to be confident about the convergence of the
band structure, we repeated the calculations for (i)
different basis sets, (ii) different representation of the
crystal potential in mixed space, and (iii) different
number of neighboring atoms included in the calcula-
tions. The results presented in Sec. IV correspond to
converged band structure for all three possibilities.

45J. Friedel, Adv. Phys. 3, 446 (1954).
R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955); T. B.
Grimley, J. Phys. C 3, 1934 (1970); D. J. M. Fassaert
and A. Van Der Avoird, Surf. Sci. 55, 291 (1976); I. P.
Batra and C. R. Brundle, ibid. 57, 12 (1976).

4~For the sake of computational convenience, the state
charge densities presented in Figs. 6 and 7 are nor-
malized for each state. Therefore, one should not com-
pare the densities in different panels.
A. Baldereshi, Phys. Rev. B 7, 5212 (1970).

4~S. Ciraci and I. P. Batra, Solid State Commun. 18,
1149 (1976).

50R. Hoffman, J. Chem. Phys. 39, 1397 {1963).






