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e have calculated the ultrasonic attenuation by donors and acceptors in semiconductors by solving the

equation of motion for one-particle density matrix and the equation of sound. Explicit expressions of the

attenuation coefficient are given for n-Ge and p-Si. The crucial point in our theory is to take account of the

relaxation of the system into an instantaneous local thermal equilibrium. In contrast to the theories for n-Ge

by Kwok and for p-Si by Suzuki and Mikoshiba, who calculated the attenuation from the self-energy function

in the Green's-function method, our formula is written as the sum of three terms: the classical Zener

relaxation term and the usual resonance and antiresonance terms with the Lorentzian line shape. It is pointed
out that the diagram technique used by Kowk is not justified for the impurity system. Our theory seems to be
valid when the angular frequency of ultrasonic waves is smaller than the inverse of the relaxation time of the
system.

I. INTRODUCTION

Ultrasonic attenuations by isolated, neutral do-
nors and acceptors in Ge and Si have been experi-
mentally investigated at low temperatures by many
workers. They have measured (i) the temperature
dependence of the attenuation in n-Ge, ' ' n-Si, '
p-si, ' ' and p-Ge, ' (ii) the uniaxial stress depen-
dence of the attenuation in p-Si, ' and (iii) the mag-
netic-field dependence of the attenuation in n-Ge, "'
p Si s Ot and P Ge i

The experimental results have been analyzed
fairly well by using the following two types of theo-
ries. The first theory"'" was developed based on
the classical consideration that the ultrasonic at-
tenuation by neutral donors and acceptors is caused
by the relaxation of the system into an instantan-
eous, local thermal equilibrium when the impurity
levels are modulated by strains associated with
ultrasonic waves. The theoretical formula has the
form of a classical Zener relaxation attenuation.
The second theory, which takes into account quan-
tum mechanically not only the relaxation attenua-
tion but also the resonance and antiresonance at-
tenuation, has been developed by Kwok" for n-Ge
and by Suzuki and Mikoshiba" (hereafter referred
to as SM) for p-Si. They have calculated the at-
tenuation from the self-energy function in the
Green's -function method.

Recently, Schad and Lassmann" criticized the
calculation by SM in the sense that the SM formula
for P-Si does not agree with the classical Zener
relaxation formula in the low-frequency limit.
Here, we remark also that the resonance and anti-
resonance terms in the SM model do not have the
same form as the usual resonance absorption with
the Lorentzian line shape. We believe that the re-
laxation of the system into the instantaneous, local

equilibrium is essentially important in the low-fre-
quency range as is shown in the theories of ultra-
sonic attenuation by conduction electrons in me-
tals"'" and by thermal phonons in dielectrics, "
and it is not properly taken into account in the theo-
ries by Kwok'4 and SM.

The purpose of this paper is to give a theory
which might be valid in the low-frequency range.
In Sec. II, we solve, up to first order in the am-
plitude of the ultrasonic waves, the dynamical equa-
tion for the one-particle density matrix for donor
electrons (acceptor holes) by introducing phenome-
nologically a term which represents the relaxation
to the instantaneous, local thermal equilibrium.
General expressions for the change in elastic con-
stants due to impurities and for attenuation coef-
ficients are derived in Sec. III.

In Sec. IV, explicit expressions for the attenua-
tion coefficients in n-Ge are given for shear and
longitudinal waves propagated along the [100]di-
rection. It is pointed out that the attenuation coef-
ficient for shear waves has a relaxation attenua-
tion term which is proportional to the upper-level
population in the donor ground states and is the
same as that derived classically by Suzuki and Mi-
koshiba" and by Pomerantz. "' In Sec. V, the at-
tenuation coefficients in p-Si, where internal ran-
dom strains give rise to the level splitting of ac-
ceptor ground states, are calcu1ated for shear and
longitudinal waves propagated along the [100]di-
rection. Explicit expressions are given for parti-
cular cases of the internal uniaxial strain along the
[111]direction. It is shown that our relaxation at-
tenuation term is proportional to the product of the
upper-level and lower-level population and is the
same as that derived classically by Ishiguro et al. '

In Sec. VI, we compare our results for p-Si with
those in the SM model. First, it is pointed out that
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the diagram technique in the Green's-function
method used by Kwok and SM is not justified for the
impurity problem. In fact, the relaxation attenua-
tion in the SM model is given by the sum of two
terms proportional to the upper-level and lower-
level population in contrast to our result. It seems
at first sight that the relaxation attenuation for n-
Ge derived by Kwok is the same as that"*" de-
rived classically. However, this agreement is an
accidental coincidence which is caused by the par-
ticular form of the deformation-potential matrix.
elements in n-Ge.

II. INTERACTION BETWEEN ULTRASONIC WAVES AND

DONOR ELECTRONS (ACCEPTOR HOLES)

Let us consider the interaction of ultrasonic
waves with donor electrons (acceptor holes). The
total Hamiltonian is given by

H=H, +H'=g H, =g (H„+H', ).

In the notation of the second quantization, we have
the expressions

Since a,~ is a c number in our treatment, H, and

H& commute. Therefore, we get the following dy-
namical equation for the one-particle density ma-
trix for the ith donor electron (acceptor hole):

'I '=[H„p;] N-( ~'
relax

Bpg 1 e t'0&

et i, sv Tr(e BH«)
(5)

relax, gv g v

where P-=I/kRT and 7„„(=r„„) is the relaxation time
between the p, and v states caused by the interaction
with thermal phonons. A method to obtain explicit
expressions for 7„„in the two-level system is given
in Appendix B. In Eq. (4) we have introduced phe-
nomologically the term by which p, relaxes not into
the complete thermal equilibrium, p«o= exp(-PH„)/
Tr[exp(-PH„)], but into the instantaneous, local
thermal equilibrium, exp(-PH«)/Tr[exp(-PH«)]. It
is noted that Eqs. (4) and (5) cannot be justified in
the case of ~v'&1, and we have neglected the change
in local temperature caused by ultrasonic waves.

In order to satisfy the normalization condition

Tr(p«) = 1,

Hp Hp] 6~ C ~ Cv
j

(2a) we take, for simplicity, all the diagonal relaxation
times to be equal, i.e. , &,„=v'. We now expand p,.
as

H'=~~ SP =
2pp ~vq )t

x C;„«"«e«' "«f(q)(a,„+a*„)c«,c„,

p» = p~p+ p&x~

where p„ is the term proportional to the amplitude
of ultrasonic waves. Using the well-known formu-
la

(2b)

[see Appendix A for the derivation of Eq. (2)],
where c „and c'„are the annihilation and creation
operators for the electron (hole} on the level l««

with energy e„at the ith donor (acceptor), a ~ is
qX

the amplitude of ultrasonic waves in the X branch
with wave vector q, sound velocity v,„, and the an-
gular frequency ~,~= qv, ~, p, is the mass density,
V is the volume of the sample, f(q) is the cutoff
function" which characterizes the spread of donor
(acceptor) wave functions, C,"~«"« is the deformation
potential matrix element given by

8
e p&+ & e ~Hp& 1 ds estop& H e s+p&+ ~ ~ ~

7
0

(a)

we obtain the expression for p„:

p, (f)=g [p, ( „) '""' p'( „) *" ']

)] ~ (Il«d„/2p, Vv', ~)' f(q)
h(«d, „+&d„, +i/r, „)

x (n„—n ) 1+ C,"„"
llv Vg»

C,"~«"« =
2 2 [(&,~).(q}«+ (4)8(q}.l =.s«) a."«'o",'.

eel

Here, e,„ is the polarization vector of the ultrason-
ic wave in the (q, X) mode, q is the unit vector along
the direction of q, -" z(l) is the (c«, P) component of
the deformation potential, a„"' is the quantity" in-
troduced to represent the symmetry of the band
structure, and R« is the position vector of the ith
impurity.

+ KP5,„+n, .C,"„" a@e«'«R«,

(10)
where the sum in Eq. (10} represents the sum over
the direction of q and we used the relations



15 ULTRASONIC ATTENUATION BY IMPURITIES IN. . .

III. DERIVATION OF ULTRASONIC ATTENUATION

COEFFICIENT

Iq3qaCu()a()(q) K) po& 03I (14)

In the case of ultrasonic waves propagated along the
[100] direction in cubic crystals, the solution of
Eq. (14) is given for the transverse wave by

Let us denote the (q, (0) components of stress and

strain tensor by o 3(q, (d) and e,2(q, (d), respectively.
Then, the elastic constants are defined by the equa-
tion

& &(q, (d)= C.()„(q,(d)&„,(q, (d), (12)

(13}

where c'2)„3(q, (d) is the elastic constant of semi-
conductors with no impurity and c"~)3(q, (0) is the
change in elastic constants caused by impurities.

Using the dynamical equation of sound, "we ob-
tain the determinantal equation,

..(a, 0=»( a&
' *Z )(-a)=.,0)

f l u)vg

e,(q)(, i) = (zi)(ff(d,„/2p0V2„)'/'

x [(e,l).(q)2+ (s,x)8(q}.](s,x+ s-*,l). (2o)

Inserting the expression for the density matrix
N

P=Q(P o+P( )

(N: total number of impurities) into Eq. (19), we
obtain

(21)

o.2(q)(, (d, 1)

x e g ~, ~fr)a&i)ct c"j

(1~)

Qn the other hand, the (q, X} component of the
strain tensor associated with ultrasonic waves is
given by

q = (P0(d2/c„)'+, l = 5, 6,

and for the longitudinal wave by

(p %2/C )1/

(15)

(16)

= V-'" g f(-q)=-.,(1)

where c„and c» = c«(l = 5, 6) are the well-known
matrix notation for the elastic constants. " Since
the ultrasonic (amplitude} attenuation coefficient o(

is given by the imaginary part of q, we obtain for
the transverse wave

(2 pl/2~ Im(c(0) ~ c(1))-)/2
0 lt gg

—pl/2( (c(0)) 3/2 Im(c(1))

and for the longitudinal wave

(2 —pl /2(0(c (0)) 3/2 Im(c ( 1 )) (18)

As is shown in Appendix C, the contribution of im-
purities to the stress tensor is given by

It should be noted that in addition to Eq. (22) there
is a static component of stress tensor given by

o 3(q, 0)= Q f( q)I/' ' /„,2)-"-,(l)(2„",)(2,",), (23)

which is irrelevant to the present problem and is
neglected hereafter.

We now assume that the distribution of impurities
is at random so that

N

P exp[i(q —q') R(]=N5;;, ,

and the energy levels E„are equal for all impuri-
ties. Then, inserting Eq. (10) into Eq. (22), we
obtain

( )( ~ ) NI1/ /+2f ( )
aa ( al P0 aX) f(q)

()2 )2 ) I + Qaa+ )6
6 g )2

Ca'M'
(2 (24)

uv
CO X+ (duv+1 7'uv T v+uv 7 uv u2

where

(25)
aa g (l}(2(l)(2(l)

With the help of Eqs. (3) and (20), we obtain the final expression for the contribution of impurities to the
elastic constant:

(22 —)2 )((d +2 r ) P)2
( )( )

uAV

(26)

The effects of the relaxation into the instantaneous, local equilibrium appear in the termi/T„„ in the nu-
merator of the first term and in the second term of Eq. (26). Inserting Eq. (26) into Eqs. (17) and (18), we
obtain the formulas for attenuation coefficients of ultrasonic waves propagated along the [100]direction in
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cubic crystals:

(q ((&( 2p lf (~ + ~ ~f/~ ) &.'k 2(1 f~ r) mk m (27a)

n =N/V, v',„=c,", '/p, (27b)

for transverse waves, where (m, k) = (1, 3) for l
= 5 (&( = 3) and (m, k) = (1, 2) for l = 6 (X = 2). The at-
tenuation coefficient n, (q, (d„) for longitudinal
wave is obtained by replacing ~ „e,",', ~„by ~„,
c,",&, v„and taking (m, k) = (1,1} in Eq. (27}.

IV. ULTRASONIC ATTENUATION BY NEUTRAL

DONORS IN Ge

Let us now derive the explicit expressions for
the attenuation coefficients in n-Ge. In Fig. 1 is

shown the schematic diagram of energy levels of
donor ground states in n-Ge.

According to Hasegawa, "the relation
~gv 1 ~ yv
~off 3 u ag ft VV eg (28)

holds in n-Ge, where the tensor D"" is defined by

Dvv p n(l &n(! &f/(l & (29)

We can choose the following set of values" for &„"'
and U&r)

n, = 2(1, 1,1, 1) (s-like), A, (singlet),

n, = ~g(1, 1, -1, -1)

n, = ~(1, -1,1, -1}
@3= 2(1, -1, -1, I)

(p„ like)

(p„ like) 7, (triplet),

(p, -like)

(30)

1 1 1 1 -1 -1~ 1 1 -17
U"'= 1 1 1, U"'= -1 1 1, U"'= -1 1 -1, U' '= 1 1 -1 (31)

-1 1 1 1 -1 1 -1 -1 1

100 000
DOO Dl 1 D22 D33 0 1 0 D01 D23 0 0

001
001

010
010

(32)

D =D = 0 0 0, D =D = 1 0 0, D~=D~ .
100' 000

Thus, we obtain the following explicit expressions for the attenuation coefficients:

(i) Shear wave; qll [100],3,11[010]:

18p,v', (3+ e'~~) 4n ((d+ 4n/8)'+ 1/r,', ((d —4h/f()'+ 1/~', , (v'+ 1/r~»
(33)

n, (q, (d) =0. (34)

We note that the set of values in Eqs. (30)-(32)

The last term is the same as that derived classi-
cally by Suzuki and Mikoshiba" and by Pom-
erantz"' when

~
f(q}

~

=1.
(ii) Shear wave; qII [100], e, ll [001]: The expres-

sion for n, (q, (d) is the same as Eq. (33) except
that v'» is replaced by v/3.

(iii) Longitudinal wave; qll [100], 3, II [100]:

is different from that used by Kwok. '4 The atten-
uation coefficients, when Kwok's matrix elements
are used, are discussed in Appendix D.

V. ULTRASONIC ATTENUATION BY NEUTRAL
ACCEPTORS IN Sj

The ground state of acceptor holes in p-Si is
fourfold degenerate when there is no strain in
crystals. We denote these degenerate states by
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4h 4h

~~g =uK„»,
Here, C~@»"» can be expressed in terms of C ~~ by

using the units. ry transformation v from the n)
states to the 4„states:

C,»,

" = Q iC,~v~~ v~v»
fill

where

(37)

FIG. 1. Schematic diagram of ground-state energy
levels of a donor electron in n-Ge. When there is no

strain (e.g. , ~» =0), the upper levels are threefold de-
generate (triplet). The separation between the singlet
and the triplet is denoted by 4b, and is called the valley-
orbit splitting. To first order in ~„~, the triplet states
split into three different energy levels of equal spacing,
(1/3) "„e»,with the center level unshifted, while the
singlet remains unchanged.

v=4„.,]

[g(e)]»/2

b ~ -a ~ —6»

c» 0

c*

C» 0

C»

-a» —e» -b

-b» a»+ E»

(38)

~n) (n=1, 2, 3, 4) corresponding to the quantum
number Mz(= 2 2 2 2) SM first pointed out
that the fourfold-degenerate ground states split
into two energy levels by the interaction of accep-
tor holes with an internal random strain e'"', and
this splitting is essentially important to explain the
experiments of ultrasonic attenuation. The sche-
matic diagram of energy levels of acceptor ground
state in p-Si is shown in Fig. 2. The hole-strain
interaction"" is given by

a'"'= —'.D' [(J„'-—,'Z')~'"'+ c.p. )

is an hermitian unitary matrix and a, b, c, e, A(e)
are given in Appendix E.

Let us define -"~ by

C",„=-' P [(D,„),(q)»»+(&,„)~(q) ]:""e, (39}

where the explicit expressions of ""~~ are given in

Appendix F. From Eqs. (37) and (39), we obtain

C;,"»=p
2

[(",„).(q), +(e,„),(q).]=-.", v„*„v,„,.

flirt

(40)

+ ,'Dz[(J, J,+ J,—J,)e„'",'+c.p. ], (35) Let -""~ be the quantity given by

Hr ~ "~a)
2p P'v2

»A

/2
f(q) C;x» "»e""(aux+ a-*,x) c'. ',

ITIC, IZ. IC

p(TQp

FIG. 2. Schematic diagram of ground-state energy
levels of an acceptor hole in p-Si. When there is no
strain (e " =0), the ground state are fourfold degenerate.
When there is a strain e", the ground states split into
two levels with the energy splitting 6.

where J is the o,'th component of angular momen-
tum J= & and c.p. denotes cyclic permutation.

Let us calculate the ultrasonic attenuation by ac-
ceptor holes when the internal strain e'"' exists.
The unperturbed state 4'„and energy splittings
when &'"'c0 are calculated in Appendix E. The
interaction Hamiltonian with ultrasonic waves is
given by

(41)

l.e. y

w f
0'tt a8 (42)

in the matrix notation. Then we obtain the formula

C;"=g 2[(e,„) (q) +(e, ) (q),]:", (43)

which has the same form as Eq. (3) [see also Eq.
(25)], so that the elastic constant c "~'„6(q, »d,„) due
to acceptor holes under the random strain is given
by the general expression (26) with " 'e in Eq. (41).

General expressions for ""~and the attenuation
coefficients in p-Si under the arbitrary strain are
rather complicated and are given in Appendix G.
Here, we shall confine ourselves to the case con-
sidered by SM, i.e. , the case where the uniaxial
stress exists along the [111]direction. In this
case we have the relations

Im(c) = Im(b) = —Re(b), Re(c) = 0, (44)

so that the effect of the strain appears only through
the level splitting h. The explicit expressions for
the attenuation coefficients are given as follows:
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(i) Shear wave; q 11 [100],e, II [010]:

n(n, —n, )D~ If(q}I'(d' 1/ n 1/res / a4 + c2

((d p n/g)'+ 1/g ' ((d —g/g)'+ 1/7",, ((d + n/g)'+ 1/T24 ((I) —&/0)'+ 1/r4,

~ a/Ir)* ~ 1/*,, ( —f/f')' ~ 1/,*, ( III/ll* 1/f,', (rf —a/11)* 1/f'„)

8nPn, n,D~ If(q) I
'(d'7'

9p,v,'(1+ (d'r') (45)

where

n, = 1/2(1+ e8~), n, = e~~/2(l + e ~}. (46)

We note that the relaxation term (last term} is of the same form as that derived classically by lshiguro
et al. '

(ii) Shear wave; qII [100],e, II[001]:

54Pov,'& ((d+n/8)'+1/r', , ((d —~/&)'+1/7. ,', ((d+n/g)'+1/v'„((o —n/h)'+1/r, ',

t f/II)* ~ 1/f,*, t —II/11)* 1/,*, ( ~ a/If)* 1/f'„( —I/if) 1/,*, ')

BnPn, n+~2 If(q) I
'(g'v

9p,v', (1+ (v'v') (47)

(iii) Longitudinal wave; q II [100],e, II [100]:

n(n, —n, )D'„'If(q) I'~'
l 27pov3lb ( ~ 6/Ill' ~ 1/f', , irf —4/If)' 1,', (rf ~ 6/lf)' ~ 1/f', , t —f/Ir)' 1/,', )

~ 5/1) ~ 1/f'„ t —rf/If)' 1/f', t I/If)' \/f' , ( —5/lf)'+I/f, ', )
'

(48)

VI. COMPARISON WITH THE RESULTS OF SM

n ~]C~" ~2
a)I I jf2((d ~ )2+ (ff + f' }2

V QX Vg P V

where I'„ is the level width of the p, state.

(49)

SM applied the attenuation formula obtained by
Kwok" for n-Ge to p-Si assuming that the internal
strain exists along the [111]direction and showed
a good agreement with experiments. In terms of
tHe notations used in this paper, the SM formula is
given by

( )
g(v',„pn

& gq (dqg
pong)t

We shall now point out that the diagram technique
of the Green's-function method used by Kwok is not
justified for the impurity problem for the following
reasons. The condition that one impurity has nec-
cessarily one and only one electron (hole) in the
discrete energy levels, i.e. , Z, c„'c,=1, is not
taken into account in deriving Eq. (49). As shown
in Appendix H, a recalculation of the contribution
of impurities to the elastic constant by the Green's-
function method does not lead to Kwok's result.

However, since many experiments were analyzed
by using the SM formula (49), we shall compare in
more detail the attenuation coefficient &»„obtained
in this paper with as„obtained by SM. The SM for-
mulas corresponding to Eqs. (45), (47), and (48)
are written as follows:

(i) Shear wave; q II [100],e, II [010]:
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9p,v', ' (n(d)'+(2r, )' (n'(d)'+(2r, )' ' (ntd)'+(2r, )' (ntd)'+(2r, )'

r +r, 2(r +r ) 2(r+r ) r +r,*'tr ~ &l*(r, r.)* ta+&)*(r, r,)* (r ~)*(r, r, )* (r ~ &)*(r, r, )*)

I,+r, 2(r, +r,} 2(r, +r,} r, +r,''"*(r o)* (r, r)*'tr -~)* (r, r)"(r.-~)*~ (r, r)''(r ')* tr, , r)')
(50}

(ii) Shear wave; qll[100], e II[001]: The expression for n, is not identical with Eq. (50} but becomes
identical when we put I', = 1,, and I', =.I,

(iii} Longitudinal wave; qll[100], e, 11[100]:

27@v,',"' (n-+~)'+(r', + r,)' '(n-+~)'+(r+ r,)' '(n-+ n)'+(r, + r )''(n-+~)'+(r, + r,)'

r, +r, r, +r, 5(r, +r, ) 5(r, +r,}'
'"'(n- n)'+(r, +r,)"(n- ~)'+(r, +r,)''(n- ~)'+(r', +r,}''(n& ~)'+(r, +r,)'

(51)

Let us now discuss the difference between a,TM and AM.

A. Resonance and antiresonance terms

We have the relations

n -n nlrb„ n/'„
(nu) —a)'+(n/v„)' (htd+n)'+(~/~„)'

I",+r, r, + I',
(h(d —a)'+(I', +I',)' ' (htd+a)'+(I;+I;)' (53}

where n, and n, are given in Eq. (46}. When Ph «1,
a»„becomes of the same form as ~sM except for
a numerical factor, if we assume

ment is an accidental coincidence because Eq. (49)
in p-Si does not give th classical relaxation at-
tenuation.

a/, r=r, .+ r, . (54)
VII. CONCLUSION

On the other hand, when Pb, »1, the resonance
term of &»„becomes much smaller than that of
n». It is noted that n, TM is proportional to n, -n,
as in the usual resonance term.

B. Relaxation term

If we assume

r, =r, =n/2',

we obtain the relations

nor M (-'r/[I+((ur)'gn, n„
o,M" (u)'r/[I+((uv)'g(n, +n,).

(56}

(57}

When Pb, «1, a.»„has the same form as O', M
ex-

cept for a numerical factor. When Pb, »1, a»„ is
much smaller than ns„.

It is important tonote that Eq. (49) in n-Ge gives
the same formula for the relaxation attenuation as
that" "derived classically. However, this agree-

We have calculated the ultrasonic attenuation by
impurities in semiconductors by solving the dynam-
ical equation for the one-particle density matrix
with the phenomenologically introduced term which
represents the relaxation to the instantaneous, lo-
cal thermal equilibrium. Our theory corresponds
in a sense to the Pippard theory""' for the ultra-
sonic attenuation by conduction electrons in metals
and to the Maris theory" for the ultrasonic attenua-
tion by thermal phonons in dielectrics.

Although the SM model for the attenuation by
holes has been successfully employed for the an-
alysis of experiments, the derivation of the SM for-
mula is not justified as shown in Sec. VI. We be-
lieve that our formula gives a better agreement
with experiments, especially in the temperature
dependence of attenuation.

There still remains one problem in the ultrason-
ic attenuation by acceptor holes even when co7 &1:



4914 ISA%A, TAKE UTI, AND MIKOSHIBA 15

In what circumstance does the relaxation-time ap-
proximation break down~ In this connection, we
shall make a. remark that the use of the relaxation-
time approximation is questioned for the ultrasonic
attenuation by conduction electrons in strong mag-
netic fields.

Finally, we shall make a brief comment on the
interaction of phonons with donor electrons (ac-
ceptor holes) when the condition vq &1 is satisfied.
In this situation the Kwok formulation for the elas-
tic scattering of phonons based on the Born approx-
imation" is valid. In fact, Suzuki and Mikoshiba
applied this formulation to calculate the thermal
conductivity of n-Ge, "and p-Ge and p-Si,"and ob-
tained quantitative agreements with experiments.
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operators for the p. , state and satisfy the relation

+ Cv. Ct

When the overlap of different donor electron (ac-
ceptor hole} wave functions can be neglected, the
following relations hold:

(A2)

g c'. c, =l, (A3)

c„' c„=c„.ct, c„.c„=c„,c„(i4 j).Vj Vy giP tt i Vj Vj (A4)

The interaction Hamiltonian between electrons
(holes) and ultrasonic waves takes the form of

(A8)

{A6)

Z'=g =-: q(r„ t),

where " is the deformation potential and &(r„t) is
the strain tensor at the position of the ith electron
(hole). In the notation of the second quantization,
H' can be written

APPENDIX A: DERIVATION OF INTERACTION

HAMILTONIAN H'

We denote the wave function of the p, state of the
ith donor electron (acceptor hole) by cp„(r,.). If the
set of functions {(}),(r,.)] are orthonormal and com-
plete, the field operators 4(r() a,nd 4)(r,.) of the
electron (hole) are given by

v = E f d-. v(;-. x};(-. ti ;, (v-. c}c, , .', .{A„7}
itt ivi

The strain tensor is written by the normal-mode
expansion as

Z/2

q ,{r,, t) = Q 2
'", —,'i[(e„),(q), (e„),(q) )

P0 Vqg

e{r,.) =g c, .q „,(r,.), 4'(r,.) =Q c', 9)v* (r,.),
tt i

x(a,~+ a*,~)e" ' 'i

(A8)
(A1)

where c„.and c~ are the annihilation and creation
I

(see the text for the meaning of notations). Insert-
ing Eq. (A8) into Eq. (A7), we obtain

H'=
is i"i

OtB

q)t

X/2 r
at[(e,~) (q)q+ (e,„)8(q),](a,~+ a*,~)c, c„}dr(rp*. (r()e"' '(. zq)„(r,.).2p0Vv', )t i

(A9)

The wave function for the ground state of a donor
electron {acceptor hole) can be written"

(r } Q o(l )((}(l)(r R )

I g('d
)

Z/2

gv iv(f(q) e(q ' Rii' p0 qX"i"i

(A12)

" p"'(r, —Ri) =:"(l)y"'(r,. —R,), (A11)

where "(l) is the lth valley deforma, tion potential.
Following the procedure similar to that employed
by Hasegawa, "we obtain the final form of H'.

where the superscript {l) represents the location of
an energy valley in the conduction (valence) band.
Now we assume the relation

where

(-;."=g —,[{e;).(q}8+«:)R(q}.l =-.,(I)a."'a!".
o8l

(A13)

At sufficiently low frequencies where 1/q
»asq [a~R is the effective Bohr radius of electrons
(holes)], we can put f(q) = 1 and Eq. (A12} can be
rewritten
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H'=g:"'&"ie h(R;, t)c', .c„,
ie8

where

(A15)

where a@ and a~, are the annihilation and creation
operators for the (q, &() mode of thermal phonons
and other notations have the same meanings as
those in the text. In the dynamical equation for the
density matrix

APPENDIX B: A METHOD TO OBTAIN EXPLKIT
EXPRESSIONS FOR 7.„,

N =[—H, p]
Bp
BI,

(84}

Explicit expressions for ~„„canbe obtained by
assuming that the relaxation time r, „ in Eq. (5} is
equal to that of donor electrons (acceptor holes)
due to the interaction with thermal phonons in the
absence of external ultrasonic waves. Th~ Ham-
iltonian for one donor electron (acceptor hole) in
teracting with thermal phonons can be written

e f H0t / h ~e $ H0t / h (B5)

Then, Eq. (B4} ca.n be rewritten

we introduce p in the interaction representation

H=H +H',

H, =g e,c',c, +P h&u„a',„a„,
q )t

i/2

P0 Vq}t

(B1)

(B2)

N —= [H'(t), p],
Bp

Hp(t) e& Hot/hHpc-&00&/h

The solution of Eq. (B6) is given by

(B6}

(B7)

t 1 t
p((l P(o) —r=d [tl't ), ptdl] — p dT d '[)t'(P), [)d'( lptp )]].'' (B8)

Up to the second-order approximation, the density matrix p~ for the donor (acceptor) is then given by

0,(t) = »(,h...,&P(t)

1= Tr& „„,„&p(0}—— dr Tr&,h„„&[H'(r))p(0) ] —~ dv dr' Tr&,h„„&[H'(v},[H'(w'), p(0) ] ], (B9)
0 0 0

where Tr„„„„&means to take the trace over the phonon system. If we assume that at 1=0 there is no cor-
relation between the donor (acceptor) and the phonon system and the phonon system is in thermal equilib-
rium, i.e. ,

p(0) = p&&(0) (-"& p,"„', (B10)

p,"„'=exp P her„a,',a„ r exp -P A(d ),Q },0 } (B11)

then the second term in Eq. (B9) vanishes. By using the formula"

r
t 1dv d~' e'"i'q'"'"""'= 6 iP i +&&5((u ( -)) tcd&(q)+Cd2(q)y0 ( )

+ ~ 2 ~
0 0 (812)

when ~&(q)+ &u, (q} is q independent,

we can rewrite Eq. (B9) as
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AVE V

+
zP

+ 'F -(d~)t + —»~,V, 'Plug Q~ CV &~2 CV,PP( )-&,„+(1 b»,„,

iP
(D,), + (1/h) e, ,„

iP
(D,„+{1/h)&, ,„,

iP

~ c „~—c„,„, (,„~l)I c', , c„f) (D)c' c

1+~ ~a~+»~ V

n,1 1/(e=""((&—1), (815)
For simplicity, we consider the two-level system (e2 e,) where the simple explicit expressions for r„

are obtained. Neglecting the energy shift [the imaginary parts in Eq. (814)] and assuming the time f to be
sufficiently small, we obtain

@co g

2, )Clf( l 'eq')ll*(((.,*() tc i. ( „.))f,c'c.. .„cc(.
qX

+21,1pDc,c, —2n,1c,c,pDc, c2 —2{n,„+1)c1tc2pDc22c,].
(816)

The matrix elements of pD are then given by Using the normalization condition

8t 2 qual, g 21 2 V 2 (pD)11+ {pD)2.—1 (Bla)

we obtain the final expressions for SpD/Bt in the
Schrodinger representation:

QPq) —
@

»21
(819a.)

pD ' e21 f ') {pD)12 (819e)

(817c) PD ' 21 f ) {PD)21
( {819d)

(81Vd)
where the relaxation times 2 and 212 (= 2») are
given by
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(B20a)

Using the expression (A12} for H', o ~(q) is now

given by

e ~(q) = Tr[p(t, (q)],

where

x iC',„'i'(2 „+1)=—,, (B20b)

)
BH'

s&,8(-ql()

f( q) „(I)e-(&( R(o(l ) o&(()c( c I&
OB Vj Vj ttj

jj
tt jVj

q)t

(B20c) p e-8 H/T re-B H

(C8)

(CO)

x )C'„'i'n„. (B20 d)

APPENDIX C: DERIVATION OF MICROSCOPIC EXPRESSION
FOR STRESS TENSOR

Let us first derive the microscopic expression
for the stress tensor in thermal equilibrium.
From the thermodynamical formula, the free ener-
gy is given by

dF = S dT+ (Pr o,(r) de e(r)

Inserting the Fourier expansions

o,(r) =
( )„,Q e,e(q) e" ' ',

q

It is noted that r and r»(= r») correspond to the
longitudinal (T,) and transverse (T,) relaxationtime
in general relaxation phenomena.

Equation (C7) is the microscopic expression for
stress tensor in thermal equilibrium.

Even when the system is not in thermal equili-
brium, the dynamical stress tensor o ~(q, t) will be
given by

c,(q, t) = Tr[p(t)0 8(q)], (C10)

where p(t) is the solution of the dynamical equation
for density matrix. The justification of Eq. (C10}
is as follows. First, the operator in the Schroding-
er representation which is independent of the time
evolution has the identical expression irrespective
of whether the system is in thermal equilibrium or
not. Second, the expectation value of an arbitrary
observable is given by the trace of p(t) multiplied
by an operator corresponding to the observable in
the Schrodinger representation. It is noted that
this justification is not necessarily valid for a
quantity which is not observable. For example, the
correlation function cannot be expressed by the
method described above.

f~(((r) = ~(~ Q e (((ql()e
qX

(C2)
APPENDIX D: ATTENUATION COEFFICIENT IN n-Ge WHEN

KWOK'S MATRIX ELEMENTS ARE USED

into Eq. (Cl), we obtain

dF= SdT+Q o,(q)d-e, (-q&).

Thus, we get

o,(q) = (-ei)), «. , ,

(C4)

F= P'In(Tre 8"}, H=H, +H'. (C5)

On the other hand, the free energy in statistical
mechanics is given by

We discuss the attenuation coefficients in n-Ge
when we use the matrix elements D'8 of Table II
in Kwok's paper'4:

(i} Shear wave; q II [100),e, ll [010]: The attenua-
tion coefficient is the same as Eq. (33) except that

is replaced by v'.

(ii) Shear wave; q II [100],0, II [001]: The attenua-
tion coefficient is the same as Eq. (33} except that
the terms incfuding Tp3 are replaced by the terms
including Tpy and 7'p2.

APPENDIX E: ENERGY-LEVEL SPLITTING OF ACCEPTOR-
HOLE GROUND STATE CAUSED BY INTERNAL STRAINS

Inserting Eq. (C5) into Eq. (C4), we obtain

aH'

ef g( gX)
(C6)

Let the (qX) component of the internal strain in
the normal-mode expansion be a,'"„', The matrix
elements of Hh"', between the [n) states are given
by 26
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1/2

&n I
If Jn &

~ A if (q)Cnn'(a( ) a4 )n)
h ~ 2~ y&2 @ q)t -qX

&,
0 q)i

where

C",~=C,~= -C'~= -C~@' ——nD'„[2(q),(e ~), —(q)„(e „)„—(q) (e „) ],
L'„'= -C,„=(1/&3)D'„,((q),(e,~)„+(q),(e@), i[(q),(P „) + (q), (e ) ]].,

C',„'= -Cg=(1/&3)Dn[(q), (e,„)„—(q),(0,„),] -(i/v3 )D„', [(q)„(e ),+(q) (e „) ],
0 Cnn Cn n f(q) (l + alllqn) 1/2

The eigenvalue e and the eigenfunction 4, of H„'"', are easily calculated:

~ = +(la I'+ lb I'+ lc I'&'",

where

a -=&1 lffl"'. ll& = &4
I if.'".'.14& = -&2 IHh"-'.

I 2& = -&3 lffh"-'. I 3&

b =—&1, I
ffn~" ~,

1
2) = (31H„'"',

I 4),
c=- &118h"-'.

I » = &210h"-'.14& « IHh"-'. 14& = &2IHh"-'.
I » = 0

(E1)

(E4)

1
A(e)

3

a+6
b* -a —e

c*

Therefore, the energy splitting

&= 2(la I'+ Ib I'+ lc I')'".

o

0 c 2)
A(e) =- [2e(c+a)]'I'.

13&

'

-b a+ e 14)

6 between iwo twofold-degenerate states (1,4; 2, 3) is given by

(E5)

(E6)

APPENDIX F: EXPRESSIONS FOR:-"p IN p-Si

-1 0 v3 0

0 1 0 v3

~3 0 1 0

0 v3 0 -1

00-10
000-1
100 0

0 1 0 0

0 1 0 0

Da 1 0 0 0

o o o

00-10

Da
22 3

0 -~3 0 0 -1 0 0

33

1 0 0 0

1 0

0 -v3 0

0 0 0 1

00-10
00-10
0 0 0 1

APPENDIX G: GENERAL EXPRESSION OF ATTENUATION COEFFECIENT IN p-Si UNDER ARBITRARY STRAIN

(i) Shear wave; q II [100],B,ll [010]:

gDa

v3 A(e)'

(a+ e)(c —c*)

S*(c c*)

(a+ e)'
I
b

I

' c*'

S(c c*)

-(c —c*)(a+ e)

0

-(a+ &)' —
I
b

I

' —c"

(a+ e)'+ lb I

'+ c'

-(c —c*)(a+&)

-b*(c —cn)

(a+ ~)'+
I
b

I
'+c', (Gl)

-b(c —cn)

(a + e)(c —c*)
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( )
n(n, -n, )D~ If(q) I'{d'

6p, BdA( }'

~ I{~~ ~{*~ I'I*"*I*{.,~/{{*,"{/,*„"{~ ~/{{',{/r*„'{ ~/{/*. {/"„'{.~/{{.{/;„)

({d+ 6/0)'+ 1/v» ({d —a/5)'+ 1/~', , ({c+6/b)'+ 1/7,'4 ({d —d /b)'+ 1/r43

BnPn, n2D& (a+ e) I c —c* I
'

If(q) I '{d'v

Sp,+4(e)'(1+ (u'r')

(ii) Shear wave; q II [100],e, II [001]:

(G2)

(a+ &)(b+ be}
lI

j3—~3+(q)2 (a + ~}'+b*' —
I c I

c*(b+ b~)

-(a+ e}(b+b*)

ce(b+ b*)

c(b+ b~)

0 c(b+ be)

-(a+a)(b+b~) (a+&}' b'+ [c)'
(a+&)' —b '+ ~c~' (a+c)(b+b )

(GS)

({d+&/I)'+ 1/&,', ((o —&/b)'+ 1/7",, ({d+n/b)'+ 1/r32, ({d —a/8)'+1/r, ',

1/r, ~ 1/7'~, { BnlSn, n+'„,'(a+a) (b+b )'Igq) I'{d 7'

({d+a/)f)'+1/v'„((o —a/5)'+1/~, ',
I

Sp,v3+(e)'(1+ {d'v')

(iii} Longitudinal wave; g II [100],e, II [100]:

(G4)

-(a+a) + Ib I'+ Ic I'+W(a+a)(c+c~)
D'a

b'[&3(c +c*)—2(a+ e) j3W(e)'
-&3[(a + c) +

I b Ia —c~'] -2c'(a + ~)

b[&3(c+c')—2(a+ f) j

(a+a)'-
I b I'-

I
cIa —v3 (a+a)(c+c*)

-~[(a+g)'+ Ib I'- c*'j-2c*(a+a)

-v3 [(a+a) +
I b I'- c']-2c(a+a)

(a + e}a —
I
b la I c I' - v3 (a+ a)(c ~ c')

-b'[&3(c+c")—2(a + ~)]

- v 3 [(a + c)2 +
I b I

' —c2 j —2c (a + e)

-b &3(c+c~) -2(a+a) j

-(a+~)'+ Ib I'+
I c I'+ v3 (a+a)(c+ c*)

( )
n(n —n )D„pq) {d

I
b

I I
~S( ill} 2(a+ q}

I16p,c,'m(~)'

( g/g)' 1/P, ( +I)' 1/r„( 6/8)'+ 1/r' ({d —4/ff)'+ 1/7',

1/v'„ I/v „+ I&3[(a+a)'+
I

Ib'- ]c+S(ca+}
I ( g/@) 1/~ +( g/@)2+1/~2

1/7„1/7„
{ ~ 6/I{)' ~ {/r',, {v —6/{I{'~ {/r,', )

, 6 ~ ~ f«} ~'I(a+&) IbI2 IcI v3(a+a)(c+c )I9p,v',&(e)'(1+ {d'&') (G6)

APPENDIX H: CALCULATION OF THE CONTRIBUTION OF
IMPURITIES TO THE ELASTIC CONSTANT BY THE

GREEN'S FUNCTION METHOD

Q = Q (Hl)

A method given in a standard textbook" on the
Green's function cannot be used for spin and im-
purity systems where one atom has one and only
one electron (hole). The reason is that c„,and

defined in Appendix A are not the Fermion op-
erators because of the condition (AS). To avoid
this difficulty, we impose the constraint on the
state

I
&):

regarding c„& and ct to be the Fermion operators.
Hence, the trace in Eq. (1S) must be taken over
the states

I &) which satisfy Eq. (Hl) and are not
the complete set of states for Fermion operators.
We denote such a trace by Tr'.

The component of the stress tensor o"~'(q, f) pro-
portional to the amplitude of ultrasonic waves is
then given by
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FIG. 3. (a) Lowest-order diagrams for n. The directional line is the complete one-particle Green's function.
(b) Lowest-order diagram for self-energy part of the one-particle Green's function. The dashed line is the free phonon
Green's function, the directional line is the free one-particle Green's function.

o'"( t) = g—f(-q)f(q')=-'("( =-'Pie" "~ (&."-( u'I ",&, ,(i —I')e, (q')(, i')1
r5

f jPgvg
w 'v'w5

(H2a)

where

~) (e(&l(t-t')c& c e-(&((t t &-c&'& )p(R) (t t&} v& t vj vj

0 t&t',

p(-~) =- e '"/Tr'e '".

(H2b)

(H2c}

The notations used have the same meanings as
those in the text except for k~= 8 = 1 in this Ap-
pendix.

We now introduce a thermal Green's function
(P „.„.(& r') in order to calculate E(I. (H2b):0

g V& P .'Vj

= -Tr'p(-~) Tr(e"'ct c„e "'—(c& c„))

we obtain

1 Tr(e-(&H (8)
)

6'v v.v 'v'()~n) dz( il -6&(}

g v g 'v ' (i +n)i j j
+ P~((d„)g„,„,(&= -0)g„„(&=-0),

(H5a.)

where

x(e""ct,c„a "'—(c'„.c„,)), (H3a)"j

(ct c„,) = Tr'p( ~}ct,c„. (H3b)

Then, we obtain the elastic constant c "~&„,((I, (I', &((d):

H(z) =H+ P ' P (lnz, ) c & c„
4v~

Tr'(e'")=( . d, )T (e' "'),
27(f C

K„„,~.(i(d„)t

(H5b)

(H5c)

casI5((l~q s~~~)

= —g f( q)f(q')-1

B Tre BH(a)+&H(g&ct cp zd7 e'"~'--- u.r

Tr~ fsH(g J
0

(H5d)

v jvj

x =. ( (-. ~&s((a.&(rq'&((po)) ( )~e P&v~g .'v'

(H4a)
&„.„(&)

(H5e)

where

(I p. p (((&) (yg p g p (i(0& (0+5)i
B

Pgv)P jVj

(H4b)

((d„= 2n&(T) . (H4c}

In order to apply the diagram technique to cal-
culate (P„„„.„,(i(d„), we eliminate the constraint& gvgP 'V '
E(I. (Hl) by usmg the relation f dz (I/2&(iz") = 5„,
(n is an integer; C is any closed path encircling
z = 0 counterclockwise}. Thus, using the relations

Tre 88(g) Tr(evH(g) c s-&z(g)ct )/Trs-(&H(g)
Vg

(H5f)

The trace (Tr) in E(ls. (H5a)-(H5b) must be taken
over the complete set of states for the Fermion
operators.

In order to calculate ((iP„(df}or donors (accep-
tors) interacting with thermal phonons, we use
the following approximations. First, we approxi-
mate E by ~ which is the irreducible part of dia-
grams for E and calculate m by its lowest-order
diagrams shown in Fig. 3(a). Moreover, for the
self-energy part of one-particle Green's functions
we use the lowest-order diagram in Fig. 3(b).
Thus, we obtain



ULTRASONIC ATTENUATION BY IMPURITIES IN. . . 4921

w, .(i(d -(d+i5) = a5(-&5„,„5,„. A, ((d,)A„.((d, )
P»V»N ~V~ fI

tanh((d, /2T) —tanh((d&/2T) t}5((d„)5R(R(5R&R,

(d+(d, —(d, +i5 (evr&(+1)(evrRj+ I}' (H6a)

A ( ) (
) g II I II

)
I g R2 ) ( g j

)III
)

F„,= Q (x,„)„„ (x ,p)„,, '" v[(n„ + 1)5(~„—e„;—(d,„)+ n„5(~„ —e„ + (d,„)],
q)iV'

(H6b}

(H6c)

(dq 1 j.
2 E —I ~ — '2 E —I ~ 2)'

E)X V» qX V» q)L

(H6d)

7„=&„+J3 'in@„Z„=Z, — +„,Rev, „»,V»
v»

(H6e)
x/a

CR(R(e(q ' K(gq
q)L(*.,). . = (,. (H6f)

Po~&q)

n ~
= I/(ev" a& —1), n„=1/(ev'R(+ 1),. (H6g }

G„, (7'= -0) = R5 „[1—tanh(i„ /2T)], (H7)

where we assume the condition that T= P ' is much
greater than the width of the spectral weight A ((d}.

Second, we calculate ln Tr exp[-PH{z)] up to the
second-order perturbation neglecting the self-en-
ergy shift and taking the integral over z into ac-
count. It is concluded that Tr exp[-PH(z)]/
Tr' exp(-PH) can be replaced by one in this approx-
imation.

In order to obtain explicit expressions for the
elastic constant, we use the following two different
approximations:

(a) We rewrite v",)„„„[thefirst term in Eq.
(H6a) ] in the form

(, ) . . 2 d(d, d(d, (dA, ,((d,)A, ,((d,}[tanh((d, /2T) -tanh((d, /2T)]

" d(d, d(d, , tanh((d, /2T) —tanh((d, /2T)
7r2 i'» 1 V» 2 —(d1, 2

and replace

[tanh((d, /2T) —tanh((d, /2T)]/((d2 —(d,) by [tanh(e„/2T) —tanh(e„ /2T)]/(i„, i„).
Then, we obtain

[tanh(e „,/2T) —tanh(e„,./2T) ][i„~—Z„+i(F, + FR, ) + iZRf nR( Im(m)g, , y n)„&„,) ]
2(&„,—&„,) [(d+ &„,—&„,+i(F„+F„,)+i+ „.n„. Im(n)„;„+I)„.„,) ]

(HB)

(Hto)
V, V

The first term in Eq. (H10} is the same as the first term in Eq. (26) m the text if we put F + I' = ]./z, ,
while the second term in Eq. (H10) is not identical with the relaxation (second) term in Eq. (26). It should
be remarked, however, that the approximation to derive Eq. (H10) is different from the usual calculation
of the Green's function in the treatment of 6 function.

(b) We calculate the real and imaginary parts of n" independently by using the usual treatment of &

function. Then, we obtain

tanh(e„(/2T) —tanh{e„(/2T)
TER(R R, R((l(dR (d+'( = 2(- )

V»

p„»+1„,
((d + i„„,) + (I', + I'„,)' (1

where

(d((d + ER()I()

(e-jj~ —1)e-j)2R(

+e 'vR)((l e+v(~+'R(') (H11)
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+ p&((u)n, n„-"'," "„"",, (H12)

where

e(x) = Il, x&0,
'Io, ~ 0.

Equation (H11) with e, ., I', replaced by &, ., I'„
should be compared with Eq. (52) in Kwok's paper. "
It is noted that Eq. (Hll} becomes identical with
Eg. (52) in Kwok's paper if we can replace e 8 ~/

(1+e ~"&)(I+e~'"'""}by f„(T}=Re"~~, where
A is the normalization constant and is independent
of ~, co,. However, this replacement is not pos-
sible and therefore Kwok's result cannot be justi-
fied. It is seen from Eq. (811) that the both real

and imaginary parts of c"' calculated in this ap-
proximation are different from those in Eq. (26) in
the text. In particular, the imaginary part of c"'
in Eq. (H12) is not proportional to n„n„. Th-is

type of discrepancy between the results by the ki-
netic equation method and those by the Green's-
function method appears in other problems, for ex-
ample, in the ultrasonic attenuation by conduction
electrons in metals in strong magnetic fields. "

At present, it is not clear whether the calculation
of the Green's function up to higher orders by using
the method of (b) gives the same result as Eq.
(H10) or Eq. (26}.
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