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The effective-mass Hamiltonian for indirect excitons in cubic semiconductors is solved. The approach used

allows a physical interpretation of the various terms in the Hamiltonian thus making possible the introduction

of simpler but equally accurate models. In particular, the "axial model" is described, which is very suitable for

the investigation of various problems. The validity of this model is discussed and shown to depend on the

relative strength of the electron anisotropy and of the hole anisotropy. By using rotation-group techniques the

angular and the radial part in the exciton Hamiltonian are separated and the problem is reduced to a system

of radial differential equations. All the experimentally observed exciton levels are calculated. A comparison

with the results obtained by the perturbative approach is given and analytical expressions for the most

relevant exciton states are obtained in the perturbative limit. Recent experimental data for Ge are analyzed

and excellent agreement with our calculations is obtained. Comparison is also made for Si and Gap. The

usefulness of the present approach for the treatment of other problems is discussed.

I. INTRODUCTION

Excitons constitute the lowest electronic excited
states of semiconductors and therefore play a
fundamental role in their optical properties. ' The
discovery of the electron-hole condensation in in-
direct semiconductors' and the advances in modu-
lation spectroscopy' have led to an increasing in-
terest in the understanding of indirect excitons.
The first observation of indirect excitons was
made in Si and Ge. ' Since then, structure due to
exciton formation has been observed by many in-
vestigators. ' Modulation spectroscopy at indirect
edges has provided new and accurate data on ex-
citon binding energies, and, very recently Frova
equal. ' have reported the first experimental ob-
servation of the "mass-reversal" effect, which is
due to the strong nonparabolicity of the two 1s ex-
citon bands in Ge, split by the anisotropy of the
conduction-band minima. In addition, measure-
ments in a region corresponding to the exciton
binding energy, i.e. , in the far-infrared region,
have provided more detailed information on the
structure of the excitons. After the first measure. —

ments which were performed by Gershezon et al. ,
'

more accurate investigations have been performed
by several investigators. " ' The most recent of
these studies is that by Buchanan and Timusk. "
These spectra reveal a wealth of resolved fine
structure which has been attributed to transitions
from the anisotropy split ground state to higher
excited states of the exciton.

Excitons are usually visualized by the familiar
analogy to the hydrogen atom. This picture is
quantitatively accurate only for a model semicon-

ductor with nondegenerate isotropic and parabolic
valence and conduction bands. All crystals with
the diamond and zinc-blende structure have a de-
generate valence band at the center of the Brillouin
zone. " In addition, the absolute minimum of the
conduction band is sometimes at the same point of
the Brillouin zone, while in other cases such mini-
mum is at Kc 0, and its location depends on the
particular substance under consideration. For
germanium, "the minimum is at the point
L = (n/a}(111}and" Si is along the a -=(K, 0, 0} di-
rection. Other zinc-blende compounds such as
AlP, "A1Sb,"A1As, "and GaP,"have also indirect
gaps. For direct excitons, which have a parabolic
and isotropic conduction band, the perturbative
analysis, previously introduced by Baldereschi
and Lipari, ""describes accurately the excitonic
spectrum, since the only anisotropy present is that
in the valence band. Simpl. e analytical expressions
for the most important exciton states were obtained
which are very useful in the interpretation of the
experimental spectra. In contrast, for indirect
excitons there is an additional strong anisotropy in
the conduction-band masses. The ratio between
masses in different directions is as high as 20 in
germanium. Indeed, the variational calculation of
McLean and Loudon" are rather inaccurate and
the perturbation treatment previously used" is also
inadequate. In order to obtain a quantitative de-
scription of the problem one must incorporate the
strong anisotropies accurately.

Very recently, " "we have introduced a new
method for the analysis of indirect excitons. This
approach uses the same formalism as that pre-
viously employed for the description of impurity
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states in semiconductors. "'" The simplicity of
the formulation yields a physical interpretation of
the various terms present in the Hamiltonian and
allows an accurate evaluation of the energies of
the exciton levels. In this method one separates
the various terms in the exciton Hamiltonian ac-
cording to their symmetry, thus revealing the im-
portance of the various terms and suggesting sim-
pler models which, while simplifying considerably
the analysis, maintain the main features of the
problem, thus providing also accurate solutions.

The purpose of the present paper is to describe
in detail this method and to give a general investi-
gation of indirect exciton spectra in diamond and
zinc-blende crystals. The analogies and similari-
ties with the direct excitons and acceptor impurity
states are pointed out and connections with the
perturbative approach are discussed. Indeed the
indirect-exciton problem represents the bridge
between direct excitons and acceptor states. In
fact the direct excitons show hydrogenlike spectra
while the acceptor impurities have much more
complicated spectra. This is understood in terms
of the strength of the spherical "spin-orbit" cou-
pling term in the Hamiltonian which is small (-0.2)
for direct excitons and large (-0.8) for acceptor
impurities. For indirect excitons this term is
-0.4-0.5 and the anisotropy of the conduction elec-
trons introduces a splitting of the fourfold de-
generate exciton ground state rendering this cou-
pling larger for the lower state and smaller for
the upper state. This produces two series of spec-
tra, one of which is much less hydrogeniclike than
the second.

In Sec. II we give the general formulation of the
problem. The radial Hamiltonians which describe
the exciton states of various symmetries are dis-
cussed for the most relevant exciton states. The
Hamiltonians are written out explicitly for the
(100) and the (111)directions, even though the
method can be applied in the case of a general
position of the conduction-band minima. The rele-
vance of the various parameters involved in the
Hamiltonian are discussed. In Sec. III we classify,
using group theory, all relevant exciton states,
determine the phonons which assist optical transi-
tions, and discuss the selection rules for transi-
tions in the far-infrared experiments. In Sec. IV
the method of solution is presented and compari-
son with the prediction of the perturbation method
is presented. The convergence of the computed
eigenvalues is tested and discussed. Extensive
comparison with the available experimental data
in Ge is shown in Sec. V. We also present results
for Si and GaP. The agreement between theory
and experiment is good for Si but not for GaP. The
difficulties present in the interpretation of GaP

are discussed and shown to be consistent with the
suggestion that the minimum of the conduction
band is not at the X point but very close to it.
Finally, in Sec. VI we summarize the main results
of the present investigation.

II. FORMULATION OF THE PROBLEM

The band structure of crystals with the diamond
and zinc-blende lattice have been studied exten-
sively and are very similar. " The valence-band
maximum is at K= 0 and is threefold degenerate,
neglecting spin. The inclusion of spin and spin-
orbit coupling alters the bands by splitting the
sixfold-degenerate valence band into an upper
fourfold (J = -,') and a lower twofold (J = -,') state
separated by a spin-orbit splitting h. The ab-
sence of inversion symmetry for zinc-blende cry-
stals leads also to the presence of very small
linear terms in K in the energy versus momentum
expression. " These terms, which are generally
very small and only rarely lead to observable ef-
fects, slightly displace the valence-band maxi-
mum for K=0 and will be neglected here. In the
effective-mass approximation, the kinetic energy
of the hole in the upper band near K = 0 is de-
scribed by the well-known Kohn-Luttinger Hamil-
tonian. "

2

-ff, (P) = (r, + l r,), ——'(P.'~.'+P,'~,'+P,'~.')
mp mp

where labj = ~(ab+ ba), m, is the free-electron
mass, y„y„and y, are the parameters intro-
duced by Luttinger" for the description of the hole
dispersion relation near K = 0, p is the hole linear
momentum operator, and S is the angular momen-
tum operator corresponding to spin —', . Hamil-
tonian (1) is valid in the limit of strong spin-orbit
coupling, i.e. , when the valence-band spin-orbit
splitting b, at the center of the Brillouin zone is
much larger than the exciton binding energy. This
is true for most materials except silicon where
this contribution is largest because of the small
value of a in this substance. This effect could be
incorporated in our analysis but would make it
much more complicated. Therefore, in order to
keep the analysis simple, and also since the con-
tribution from the split-off band to the main exciton
series can be incorporated by perturbation theory
using the same procedure described previously, "
we will neglect this effect here.

The explicit expression for the electron kinetic
operator depends on the position of the conduction-
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band minima. Since these minima occur always on

high-symmetry direction for which the electron
has cylindrical symmetry, we can write

H. = (P', +P', )/2m„+P', /2m„, ,

where m, ~ and m,
~~

are the transverse and longi-
tudinal electron masses, respectively. The Hamil-
tonian (2) is written with respect to the electron
ellipsoidal axes 1, 2, and 3 which are, in general,
different from the crystal cubic axes x,Y, and z
used for the hole. Since the operators H„and H,
must be written in the same coordinate systems,
one of the two Hamiltonians must be rotated. Even
though the expression for H, is much simpler than
the expression for H„, it turns out, as we shall
see, that it is better to rotate the hole Hamiltonian.
The total motion of the electron-hole system is
described by the following Hamiltonian

a,„=H, (p, ) —ff„(p„)—e'/(e, '(r, —r„~),
where eo is the static dielectric constant. In
writing Hamiltonian (1) we neglect many effects
such as electron-hole exchange interaction, wave

vector, and frequency dependence of the dielectric
constant, which are in general small but could be
of some importance in some cases. In the pre-
sent paper, we also restrict our considerations
to states with total crystal momentum equal to
K„ the difference in K space between the valence-
and conduction-band extrerna. The problem which
deals with the investigation of excitons of various
K's is treated elsewhere. " For the case discussed
in the present paper, it is possible t;o make a
transformation to the relative coordinate and re-
place p, and p„ in Eq. (3) with p.

Using the formalism applied for the case of ac-
ceptor impurities which allows us to solve the
Hamiltonian for any values of the anisotropies,
we can rewrite Eq. (3} in a fashion in which the
Hamiltonian is separated into parts of different
symmetry. We start with the case in which the
minima of the conduction band are in the (100) di-
rection. In this case the ellipsoidal axes coincide
with the cubic axes and no rotation of the valence-
or conduction-band Hamiltonian is required.
Equation (3) can be written as

(p) p
2 (2)1/2p(2) Y3 Y2 (p(2) g(2))1 1 3 +2

2p 3 o 45

p(') xp') ' ~ P ' x J(') ' p&') &&,), e'v'VO
-4 5 o + X

0

with

P,.I
— A~„—5;„P
'(~{~&+~a~{)—~w J ' . - (6)

The definition of scalar and vector products of
irreducible spherical tensor operators is the
standard one and has been given previously. ""
With the exception of the term proportional to P',",
all terms in Eq. (4) appear also in the effective-
mass treatment of direct excitons and acceptor
impurities and their symmetry and physical mean-
ing were discussed at length elsewhere. ' '"'" The
term in P,", which represents the anisotropy of
the conduction-band minima, has a symmetry low-

1 1 2
+

l" oe me4

1 1 1 1

mg j lpga t)

ln Hamiltonian (4) we have replaced the represen-
tation in terms of p and J with a new representa-
tion in terms of the irreducible components P,'
and J~' of the second-rank Cartesian tensor op-
erators P, , and J,, which are defined in the same
manner as in the case of acceptor impurities, "
l.e. )

and the effective Bohr radius

a, = 8'e, /p, e' (7b)

as units of energy and length, respectively, as
we write Hamiltonian (4) as follows:

H P2 (2)&/2)/ P(2) ~ (P(2) .g {2))
Ii'

+ 6((f""«'")' +9k' —4 0

+ [g{')x z")]') (6)

where

1/p, o
= 1jp, o +')/'1

)) =
5 (6)'3+ 4)'2))).o,

6= (r r.)3{ .
/~os. =P o/Wie-

(9)

(1o)

(11}

(»)

er than cubic and is responsible for the splitting
of the fourfold-degenerate ground state into a doub-
let of twofold-degenerate states. The first term
in p.„in Eq (4) repr.esents the isotropic contribu-
tion of the conduction electron. All other terms
in p in Eq. (4) describe the valence band. We now
use the effective Rydberg

ft, = e')), ,/2h''c ',
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N' =-4
(13)

where D „', „is the matrix representing the
(o(, P, y) rotation in the j = 4 representation and is
given by

DJ eicvi('ll 7 (P)ei)'M
I I

with

(14)

( J M (J —
M)EZ-M' —o \ o

~ X J-N'-a~ 2a+ ht'+ k! 2Z-2a-Af'-Af

(15)

The parameters p, and 5 have definition which is
the same as in the case of direct excitons and ac-
ceptors, ""with the difference that quantity 1/p pe

+yy for indirect excitons must be replaced with

1/vl +y, for direct excitons and with y, for ac-
ceptor impurities. Hamiltonian (8) contains 5

different terms. The first two represent the hy-
drogen atom. The fourth and the fifth constitute
the spherical and cubic "spin-orbit" terms, re-
spectively. The third term, which is present only
for the case of indirect excitons, has the lowest
symmetry, d-like, and introduces new splittings
in the exciton spectrum.

We now consider the case where the minimum of
the conduction band is a, long the (111) direction,
such as in germanium. In this case, one must
rotate either the hole or the electron part of the
Hamiltonian in order to write them in the same
reference systems. It would seem that the sim-
plest thing to do would be to write the electron
Hamiltonian in the cubic reference system, be-
cause the electron Hamiltonian is very simple
while the hole Hamiltonian is a 4x 4 matrix. Our
approach shows, however, that the latter is actual-
ly simpler since it has higher symmetry. We,
therefore, rewrite the exciton Hamiltonian using
the electron ellipsoidal reference system. The
valence-band Hamiltonian consists of two parts,
one of spherical symmetry and one of cubic sym-
metry. The first part clearly is not affected. To
rotate the cubic part, we see that the operators
appearing in the cubic part transform like spheri-
cal harmonic Y ',"i.e., like the j =4 representa-
tion of the rotation group. If we denote the Euler
angles of the rotation between the (100) and the
(111) directionby o, !1, andy [n= ,'((, -
(3=cos '(1((~3), y =-,v] the tensor operator 7„' is
expressed in terms of operators Y~, quantized
along the new z axis, according to

and

$ = cos-,'P; q = san-,'-P . (16)

The exciton Hamiltonian for the case for which
the conduction-band minimum is in the (111) di-
rection is given by

1
+ 5 (

~ &[g(2)x Z(~)] 4 2
~yp [p(2)&& Z(&)] 4

4 ~ [~(2) )( g (2) ] 4) (17)

Hamiltonian (17) is very similar to expression
(8). The only difference lies in the cubic term
which has now different operator components and
different coefficients. To treat any other case
where the conduction-band minima lie in different
directions, the only thing to do is to apply the
transformation (13) to the cubic term for the ap-
propriate Euler angles.

In order to solve the Schrodinger equations cor-
responding to the Hamiltonians (8) and (17), we

resort to the same method already used for the
acceptors. We write the wave function for the ex-
citon states following the L-S coupling scheme
used for atomic systems. We use the F, I', rep-
resentation, where F = L+ J, the sum of angular
momentum of the envelope function (I) and of the
spin —,'(J) corresponding to the valence-band de-
generacy. We write

(18)

The expansion in (18), in terms of products of an
a.ngular part and of a ra,dial part, is generally in-
finite. If the cubic and conduction-band anisotropy
terms were ignored, I and F, would be good quan-
tum numbers and the expansion would be finite and
very limited. This actually is the case for direct
excitons and for acceptor impurities in the "spher-
ical model'*" approximation. This model is in-
deed quite good in these cases because the only
anisotropy is that of the cubic term and generally
p. is much larger than 6." For indirect excitons,
in addition to the cubic anisotropy we also have
the conduction-band anisotropy and both effects
combine to produce a large effect. In Table I the
band parameters for indirect materials are given
and they are used to calculate the parameters p, ,
6, and p.„, which are shown in Table II. In the
same table we give, for comparison, the corre-
sponding values of p. and 5 for aeceptors and for
direct excitons. The values of p, and 5 for indirect
excitons fall in the intermediate region between
the small values for direct excitons and the large
values for acceptors. The size of the expansion
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TABLE I. Band parameters for Ge, Si, GaP, and AlSb. &0 is the static dielectric constant;
me* is the conduction-electron effective mass for direct excitons; meH and mei are the longi-
tudinal and transversal effective masses, respectively, for indirect excitons; p&, y2, and y3

are the Luttinger valence-band parameters.

Substance

Ge
Si
GaP
A18b

15.36
11.4 ~

10.75 ~

10.2'

me

0.038 b

~ ~ ~

0 13"
0.011"

meH

1.588 c

0.9163'
1.7 '
1.5 '

mei

0.081 52
0.1905
0.191
0.214'

13.38
4.22'

4.15

4.24
0.39
0.98
1.01

5.69
1.44
1.66
1.75

'R. A. Fau1.kner, Phys. Rev. 184, 713 (1969).
"R.G. Aggarwal, Phys. Rev. B 2, 458 (1970).
'B. W. Levinger and D. R. Frankl, J. Phys. Chem. Solids 20, 281 (1961).
"E.O. Kane, Phys. Rev. B 11, 3850 (1975).' J. C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev. 138, A225 (1965).
f P. Lawaetz, Phys. Rev. B 4, 3460 (1971).
~M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).
"M. Cardona [unpublished results cited in Bowers and Mahan, Phys. Rev. 185, 1073 (1969)).
'A. Onton, Phys. Rev. 186, 786 (1969).
' R. J. Stirn and W. M. Becker, Phys. Rev. 141, 261 (1966).

must therefore be truncated by successive approx-
imations, i.e. , by showing that terms of I.& I.
do not appreciably affect the eigensolutions. The
functions

l L, ,J,F„F„)are eigenfunctions of the
total angular momentum in the I.-J coupled scheme
and the f,. (r) are general radial functions which are
defined by the condition that (18) must be an eigen-
function of the Hamiltonians (8) or (1t). The f,. (r)
satisfy a system of linear differential equations of

size N&N, where N is the number of functions in-
volved in the expression (18). The advantage of
this approach is that the angular part can be eli-
minated exactly and analytically from the problem
by the use of the "reduced- matrix- element" tec h-

nique. " In the indirect exciton case we have three
different type of operators, i.e. , (P~'~ ~ J~'i),
[Pi'&x J'~'i]', and P(D'). Their matrix element with

respect to the basis set (18) can be written as

(L' ~, F' F.'l(P" -I'")IL,~, F,F.) = (-1)'"" (J!lP'l!Z)(L'!!P'~l!L)8„,8,
2r. J

«', &, F', F.'I 9"'«"]:IL, &,F, F.)

= 8(-1)" '[(2F'+ 1)(2F + 1)]" L' L 2 (L'l!P'&!
l L)(J!!J"Il!g), (20)

... (', ''i
F F

TABLE II. The parameters p, 6, and go& are calculated using the band parameters given in
Table I. The direct exciton, indirect exciton, and acceptor cases are considered. Equations
(10)-(12) are used for indirect excitons. For direct excitons and acceptors the corresponding
expressions for p and (5 are obtained using the procedure given in the text and pa& is zero.

Substance
Direct excitons

p

Indirect excitons
&ot

Acceptor s

Ge
Si
GaP
AlSb

0.257
~ ~ ~

0.233
0.031

0.037
~ ~ ~

0.057
0.008

0.469
0.252
0.352
0.388

0.067
0.130
0.086
0.099

0.178
0.171
0.196
0.178

0.764
0.483
0.661
0.701

0.108
0.249
0.162
0.178
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from 21 to two systems of order 10 and 8, re-
spectively. In the (111) direction the number of
basis functions is reduced, in the axial model, to
the same number of states as in the (100) direc-
tion from the original number of 28 for both the

E, =a-,', +-,' and the I', =+-,' states. Within the axial
model, one has the same number of basis states
for any direction of the conduction-band minima,
since that same Hamiltonian applies with the
proper factor a for any given direction. The ad-

vantages of the axial model are therefore evident.
The validity of this model depends on the relative
strength of cubic anisotropy 5 with respect to the
strength of the electron anisotropy parameter p, ,
and of the spherical term p,. Its validity depends
also, as we shall see in Sec. IV, on the direction
of the conduction-band minima. In practice we

will see that the axial model provides an excellent
description of the indirect exciton states.

III. GROUP-THEORETICAL ANALYSIS

Even L states
L F F~ L F

Odd L states
Fg L F F~ L F F

TABLE IV. Basis functions entering in the expansion
of indirect exciton wave functions for (111)direction
conduction-band minima. All quantities are the same
as those defined in Table III.

Before discussing the solution of the problem
formulated in the previous section, it is useful to
classify, using group theory, all relevant exciton
states and to shorn the connection between crystal
symmetry and rotation-group symmetry.

The exciton wave function can be written as"

g(r, , r„)= g y~'„~(r, —r„)P~'~(r„}p,(r,), (24)

0
2 P 03 1 3

01 1 3
2 2

2 Y T 23 1 3

2 p ~ 25 1 5
2 2

2 7 1 7

2 2
2

2

2 —, -Y 2 T
5 5 3

7 5 52 — -T 2
2 2

7 7 ?
2 2 2 2

5 1 54
2 2

4
9 1 9
2 2 2

4 4ii 1 11
2 2 2

5 5 54 ~ 4
2 2

7 5 74 + 4
2 2

4 47 7 9

9 5 9

4 — — 49 7 9

ii ii 114
2 2 2

ii 114
2 2 2

4 ii 7 4 ii

13 1

2 2

13 3
2 2

3 5

13 5
2 2

33 3
2 2

3 53
2 2

3 7
2 2

3 9
Y Y

3

3 Y
3 7

33 7

3 9
2 2

3 9
2 2

3 75
2

59 9
2 2

53 11
2

9 135
2 2

9 75

3 75
2

9 95

5
2

5

5

5

5
2

5

5
5

5
2

1

2

1

2

5

2

2

1

2

1
2

1

2

5
2

7
2

5

2

7

1

2

1

2

1

2

1

2

5

2

7

Y

11
2

5

2

7

2

ii
2

5
Y
7
Y
13

1 3 3
2 2

1
2 2

3 31
2 2

5 31
2 2

3 3 3

2 2

3
2 2

3 7 3
2 2

3 9 3
2 2

3
2 2

5 3

7 33 — -Y
3 9 9

9 33
2 2

9 93
2 2

5 7 3
2 2

5
2 2

5

5 13 3

5 7 3
2 2

9 9

9 35
2

5 9 9

11 95
2

11 35
2

ii +9
2 2

13 95
2

5 13 3
2 2

5
2 2

where p, and f~ are the Bloch functions for the
electron and the hole, y' is the envelope function
which describes the relative electron-hole motion,
and i runs over the degenerate valence-band
states. The symmetry of the exciton wave function
is determined by the direct product of the repre-
sentations for the envelope, hole, and electron
functions. We first consider the diamond crystal
case." In this case, the point group is O„and the
symmetry of the valence band at K=O is I",. The
conduction-band minimum is 6, for silicon and L,
for germanium. Since in the present analysis the
exchange between electron and the hole is ne-
glected, we mill use the single group rotation for
the conduction band. For s-like states, the en-
velope function can be dropped from the direct
product while, for p-like states, the envelope
function has I'„symmetry for the point group 0„.
For indirect excitons the symmetry group of the
electron is a subgroup of that of the hole, so that
the symmetry group for the exciton is just the
electron symmetry group itself. The results of
the symmetry analysis are given in Table V and
VI for the (100) and the (111) cases, respectively.
Since the representations L,'and L, are degenerate
because of time reversal we see that, apart from
accidental degeneracy, the exciton states always
split into twofold-degenerate levels. The sym-
metry analysis for the III-V compounds, whose
point group is 7'„, is easily obtained.

Optical transitions, from the crystal ground state
to the exciton states, must be assisted by phonons
in order to conserve the total crystal momentum.
The analysis for the determination of which pho-
nons assist optical transitions has been discussed
previously" and one sees that phonons of any sym-
metry can assist transitions to both s-like exciton
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Atomic
species

Direct
excitons

and
acceptor s

Indirect
excitons

Correspondence
with ~L, E,E', )
representation

s like r'
8

L6

p like 2I 8

+ I'7

+ I'6

4L6

states for III-V compounds and Si, while for Ge
only TO(L,') and LA(L,') phonons are allowed.

In the far-infrared experiments, transitions be-
tween the exciton ground state and excited exciton
states are observed. The dipole operator I'» de-
velops, in the indirect exciton symmetry group,
into L, + L, for the (111) direction case and into

TABLE V. Crystal symmetry classification for in-
direct exciton states in Ge. In the first column the
atomic symmetry is reported; in the second column the
symmetry for the corresponding states in the direct ex-
citon and acceptor cases is shown; in the third column
the crystal symmetry for indirect excitons is given; in
the last column the correspondence between crystal sym-
metry and the ~L, J,F, F, ) representation is given.

d,, + d, , for the (100) direction case. As a result all
transitions between the s like and the p like are al-
lowed.

IV. METHOD OF SOLUTION

Before discussing the method employed for the
solution of the radial equations for the various ex-
citon states, we will present the solution of these
equations in the perturbative limit, that is, in the
limit in which p, , 5, and p, can be treated as small
effects. Even though we have previously seen" that
this is not the case in practice, this procedure is
still quite useful because it gives insight into the
problem and provides simple analytical solutions
for the energies of the most important exciton
states. These analytical expressions are not quan-
titatively accurate, for the comparison with experi-
mental data; however, they represent a useful sin-
gle qualitative tool for the assignment of the vari-
ous states.

For s-like exciton states we have previously car-
ried out the perturbative analysis. " However, it
is useful to treat it here because the present ap-
proach is quite different and provides new insight
and helps the understanding of the axial model.

In the perturbative limit, the s-like states can
couple only with d-like states. For the (100) di-
rection we write

(25)

where the f„,(r) represent the radial functions for
the hydrogen atom. The g„",actually means sum-
mation for discrete states and integration over
continuum states. The matrix elements in (25) are
performed exactly and using expressions (19)-(21).
After straightforward calculations one gets

E,",'(n, ) =1+ [p.'+', , 5'+-,'4 ,' p„(p —--'-, 5) j 4S,(0)

(26)

when S,(0) is the same as defined previously. "
Analogous procedure for the 6, state shows that
we can write

TABLE VI. Crystal symmetry classification for in-
direct exciton state in silicon. All quantities are the
same as those defined in Table V.

Correspondence
Atomic Direct excitons Indirect with ~L, +,+8)
species and acceptors excitons representation

s like

(27)

where the (+) sign applies to the n, states and the
(-) sign to the n, states. If we restrict ourselves
to the axial model, the summation in expression
(25) for i contains now 5 terms for the F, =+-,' state
and 4 terms for the E, =+-,' state, and we obtain

P like 2I 8

+r-,

+ I'6

3b,6

3b, p

(28)

By comparing expression (28) with expression (27)
we see that, within the perturbation limit, the
axial model approximation does not alter the split-
ting between the anistropy split ground-state com-
ponents and affect only the term in O'. From Table



THEORY OF INDIRECT EE XCITON S IN SEMICONDUCTORS 4891

( )

an '30) with ex-By comparing expressions (29} and '3
pressions (27) and (28} we see that there is a sim-

100} and the (ll )
ip e ween the results obtained ' thpie relationshi betw

1& direction. In fact the only dif-
i in e

ference between the two di tf o rec ions consist in
changing 5 into ——'ch g g into 3 6 in going from the (100) to the
(ill) direction in the term linea. r in

i or any direction of the conduction-
band minima, that is on
or say the (100} direction, a, simple factor sub-

stitution which is related to the rot
given rection to a different one gives the solu-

e conduction-band minimation for the case of the
ying in this direction.

gy expression for the 2s-likTo obtain the ener e
states, the onl ch

s-* e

states the
y change is with respect to th

radial integrals and one gets

1 1Ios=4+ el.p + o' oo~ + oo(12 —» )6
4+ o P oi+ o P ox(V —

o &~)]So(0)

with o. given by Eq. (23) and S (0)
'is the same

q n i y as defined previously " In expression
(31) we have separated the
14 2 2

para e the axial contribution
»o. 6) fromthe ' ' '

etotal contribution in the ub
ani sotr opy.

ec ic

For p-likee indirect exciton states the e
tive expressions ar d

es, e perturba-
ions are derived here for the first

ry, e energies of the p-like exciton states
are obtained, for the (100)e case, by solving a

determinant for the b. d, an another 3 x 3 for
the 6, states. For the (ill} direction cas

e erminant for I. +4+ LG st t s
possible to writeor e L, states. It is

so u ions of these determinants in a
pie form if one n l

inan s in a very sim-
neg ects small cou lin te

tween different I t
p ing erms be-

have for 6
n states. In the ~10

or, symmetry
0) direction we

El = 4P

(31)

(32a)

(32b)

(32c)1( +12~
5 5 O'Oli

II we see that 6 is aalways smaller than p. so that
the contribution of the 'nonaxial ter " -'55'erms —55 is
always quite small.

For the (111}dire ction the analysis proceeds in
a very similar manner and one gets

[p + q& + o p oz + o {"oi(4+ o 6)] 4S~(0),

(29)

and, using the axial model

[0'225 6 5 Po+j'5 Vol ('+ 5 6)] 4Sy (0)

and for 6, symmetry

&4= o(P + oP oi) I

Z, =,—', (-p, —-', [66+ 4p.„
(32d)

+ (3246'+ 36p, » —1446'„)'~']j, (32e)

Eo= oo( I oo[66+4poz

—(3246o+ 36/2~ —1446 ) ~ ]].

(32f)

In the (111 direction, we write for I. L, ,4+ Gr

Ex = o(P + oP oi)

1&o= oo( P + o6+oPoi)

(33a)

(33b)

and for L, symmetry,
1

3

&4=o(P oPox) ~

(33c}

(33d)

1 1E,= —„I-p, ——,'65 + p. „+{,3245'+ 81'.' —365Ol I Ol

(33e)
IE, = —,', -p, ——,'66+ p. „—(3246'+81p, —36601 I 01

(33f)

The erturp urbation analysis presented here is not
accurate because the values ofues o p, , 5, and p.„for
indirect excitons are large I F'e. n ig. 1, we show
ne behavior of the lowest t ts a es as a function of

UJ

p 3

UJ

UJ

2-

K
UJ
X
UJ

I- IS5
2- 2P3
3-2SB
4- 2P5
5-2P

OO
I

2

DIRECT
EXCI TONS

I

I

I

INDIRECT
EXCI TON S

I
I

ACCEPTORS

FIG. 1. Ener 1gy evels for the most im
and acceptor st ta es using the "s heric

important exciton
p real rno e {Be. )

ion o e parameter p [Eq. {10)].
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and, for odd I. (p-like) states,

f(r)=r d, e ';m"
m=

(35)

While the linear parameters ct and d, are
used as variational parameters in order to mini-
mize the energy, the other quantities, i.e. , V,. and

, are fixed. The number of terms in the ex-
pressions (34) and (35) is determined using the
convergence criterion, that is, by checking that a
large set does not affect the eigenvalues within a
required accuracy. In addition we allow this quan-
tity ¹,to be dependent on the angular momentum
L„ that is, iV,. decreases as L increases because
the higher L the weaker the contribution of the
state to the eigenfunction expansion. The param-
eters n,. „are chosen in geometrical progression
and their range of values is wide enough to cover
all actual situations met in studying the indirect
exciton spectrum.

In Table VII we present the results for all rele-
vant exciton states in germanium using the values
of p, , 5, and p. , given in Table II and the basis
functions shown in Table IV. In the same table we
also give the results obtained using the axial mod-
el (22). The comparison between the two calcula-
tions is, indeed, very good for all the states and
supports the validity of the axial model. As dis-
cussed in Sec. II, the number of basis states in-
volved in the expansion (18) is considerably re-
duced when the axial model is employed. This re-
duction allows us to check the convergence of the
reported eigenvalues. In Table VIII we report the
dependence of the eigenvalues upon the values of

the quantity p, ." From Table II we have seen that

p, for indirect excitons is typically around 0.4 and
for this value of p, the solutions are outside the
validity of the perturbation approved. In addit;ion

6 and Il. oy contribute to rendering the solution even
less perturbative. Expressions (26)-(33) there-
fore provide only a very rough description of the
indirect exciton states and a more accurate meth-
od of solution is required.

We now discuss the method of solution for the
system of radial differential equations presented
in Sec. II for the various states. Since an exact
solution of the problem is clearly impossible, we
solve these equations by the same method as that
previously used for acceptor states. In the present
case, however, we assume that the trial wave
functions are linear combinations of exponential
functions times the lowest polynomials which cor-
rectly behaves at the origin for the lowest L value.

For even L (s-like) states we write

A()= g (34)

TABLE VII. Indirect exciton energy levels for Ge.
The parameters shown in Tables I and II are used for
their calculations. Comparison with the axial model is
also shown. All results are obtained using the basis
states given in Table IV. The lowest 3 states for even
L and the lowest 5 states for odd L are reported. The
energy unit is meV.

Even I

Axial model
L4+ I g

Axial model

3.183
0.883
0.584

3.168
0.877
0.564

Olid I

4.206
1.329
0.748

4.185
1.322
0.744

1.136
0.879
0.774
0.541
0.461

L6
Axial model

1.128
0.831
0.812
0.537
0.458

1.915
0.938
0.790
0.540
0.399

L4+ I 5

Axial model

1.903
0.933
0.789
0.538
0.396

TABLE VIII. Convergence of the most important even
L exciton states in germanium and silicon using the
axial model. Five different values of L,„were used in
the calculations.

Stat max

Ger maniuzn

L4+ L5 2.649 3.922 4.185 4.238 4.253

2.649 3.130 3.168 3.173 3.174

Silicon

12.951 14.514 14.584 14.585 14.586

12.951 14.059 14.123 14.124 14.125

L,„. The number of basis functions increases only

by 4 when going from any L value to the next high-
est, and we see that all eigenvalues show good con-
vergence for L ~ 4. Appreciable differences are,
however, seen when going from L,„=2 to L =4,
and therefore all the calculations presented in this
paper are performed using L = 4 and have a con-
vergence of better than 0.1 meV. A similar study
for odd L states shows that calculations using
I„„=5 have also comparable accuracy. In Tables
IX, X, and XI the results for Si, GaP, and AlSb
are shown using the number of basis states given
in Table III and the parameters shown in Table II.

In Fig. 2, we show the s-like components for the
lowest L4+ I.', and L,' states in Ge. For comparison
we also show the hydrogenic solution, valid in the
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TABLE IX. Indirect exciton energy levels for Si. The
parameters shown in Tables I and II are used for these
calculations. Comparison with the axial model is also
shown. All results are obtained using the basis states
given in Table VII. The lowest 3 levels for even L and
the lowest 5 levels for odd L are reported. The energy
unit is meV.

Even L states
X6
Axial model

XY

Axial model

TABLE XI. Indirect exciton energy levels for A1Sb.
All quantities are the same as those defined in Table
VIII.

Even L
&6
Axial model Axial model

20.431
5.604
3.322

20.355
5.579
3.304

22.729
6.485
3.461

22.658
6.467
3.456

14.199
3.752
2.058

14.123
3.728
2.041

14.658
3.934
2.069

14.584
3.913
2.014

Odd L states
X,
Axial model

X7
Axial model

Odd L
b,6

Axial model Axial model

4.582
3.548
2.638
2.095
1.643

4.562
3.540
2.623
2.086
1.637

4.949
3.483
2.908
2.256
1.637

4.923
3.332
3.021
2.245
1.584

perturbative region. It is, indeed, evident the
large deviation of the two states, especially the
L, + L, , from the hydrogenic behavior and nec-
essity of the present treatment which is valid for
any value of p, , 6, and p py A quantity of special
interest is the value of the function at the origin.
For the hydrogenic case, we would have (g„(0)~'
=4, while from Fig. 2 we see that ~)~4'~&(0)~'
= 18.92 and ~g~~(0)~'= 7.36, which are considerably
different. In addition the wave functions for the
two indirect exciton states are considerably more
localized than the hydrogenic wave function. In
Fig. 3 the wave functions for the analogous states

7.088
5.304
3.307
3.215
2.530

7.067
5.294
3.297
3.203
2.523

8.685
5.123
4.404
3.984
2.548

8.662
4.971
4.509
3.977
2.509

in silicon are shown, and we see that their deviation
from the hydrogenic solution is considerably smal-
ler than for Ge due to the fact that p, for silicon is
much smaller than its corresponding value in Ge
and that, for (100) direction minima, the splitting
between ~, and ~, is smaller, as easily seen from
the perturbative expressions, than the correspond-
ing splittings in the (111)direction.

Before closing this section, we show in Figs. 4,
5, and 6 the behavior of the lowest indirect exciton
states for the case of (100) conduction-band minima
as a function of the parameters p, , 5, and p. p].
These figures are useful in determining the effect
of the uncertainty of any of the three parameters
on the calculated indirect exciton spectrum.
Since it would be quite difficult to show the com-
bined effect of the three parameters, we show the
effect of each individual one. These figures, to-

TABLE X. Indirect exciton energy levels for GaP. All
quantities are the same as those defined in Table VIII.

Even L
x,
Axial model

X7
Axial model

16.995
4.612
2.699

16.950
4.598
2.688

Odd L

18.954
5.396
2.878

18.912
5.386
2.866

X6
Axial model

XY

Axial model

5.774
4.371
2.816
2.694
2.065

5.761
4.366
2.809
2.688
2.061

7.194
4.203
3.692
3.315
2.084

7.182
4.096
3.771
3.312
2.058

r (eff units)

FIG. 2. s-like components of the ground-state doublet
in Ge. The hydrogen 1s radial wave function is also
shown for comparison.
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TABLE XII. Indirect exciton binding energies in

group IV elements and III-V compounds. The energy
unit is meV. The last column gives the reference for
the experimental data.

Crystal Symmetry E~(1s) Exper iment References

Ge L'
6

L4+ L5

3.18

4.21

3.14

4.15

Si 14.12

14.66

14.7

CaP 16.99

18.95

13.8

AlSb 20.43

22.73

~R. A. Street and W. Senske, Phys. Rev. Lett. 37, 1292
(1976).

discussed, ""excellent agreement is obtained for
Ge both in the absolute value and in the splitting
of the anisotropy split ground-state components.
In Table XIII we show the transitions observed in
recent far-infrared absorption spectra by
Buchanan and Timusk" and by Gershenzon eE al. ' '
together with the calculated transitions. The cor-
respondence between theory and experiment is
quite good, both in energy and in their temperature
dependence. All the peaks which are seen at low

temperature are associated with transitions from
the lower exciton state (1S',&~',) while the lines with

rapid temperature dependence are associated with
transition from the upper exciton state (1S,'&', ). The
new line at 1.3, present in the experimental data
of Buchanan and Timusk, "is much lower than
what one would expect from an hydrogenic model
(at 2.0 meV) and is a direct evidence of the im-
portance of conduction-band anisotropy in the ex-
citon spectra of germanium. 'The extra fine
structure present inthe data of Gershenzon el al.' '
is well accounted for by transition to high excited
states.

In silicon, the agreement for binding energies is
also good and can be improved by including the ef-
fect of the splitoff band. This effect, which is
largest in silicon because of its small spin-orbit
splittings, is calculated by perturbation theory"
to be 0.4 meV. This brings the calculated values
to 14.5 and 15.0 for the heavy and light exciton,
respectively. Excellent agreement is also found
for the 1s-2s separation with the data of Shaklee
and Nahory.

In comparing the splitting of the ground-state
doublet with the experimental information avail-
able, the situation is not as straightforward as in
Ge, where this quantity is directly measured in
modulated absorption experiments. In Si, no split-
ting is visible in absorption, "but analysis of the
temperature dependence of the ratio of Lo to TO
assisted luminescence intensity" indicates a value
of the splitting between 0.3 and 0.5 meV, in agree-
ment with our calculated value, 0.46 meV. The

TABLE XIII. Comparison between theory and the experimental data of Buchanan and Timusk
(Ref. 10 in text). The theoretical assignment of the transitions is given in the last column using
the notation nL+z~ and only the basis states which appreciably contribute to any given level are
shown.

Type

Experiment
Energy
{meV)

Energy
(meV)

Theory
Assigned

transitions

1.3
2 ~ 1

2.35

2.44

3.00

3.13

3.35

3.42

Temp. dep.

Temp dep.

Temp. dep.

Temp. dep.

Temp. dep.

1.27

2.05

2.29, 2.30

2.40, 2.41

3.07

3.33

3.42, 3.43

1$ 2P /
1/2 3/2

1$'/'- 2P3/'1/2 i/2

1S3/2 2P 1S ( (2P5/, 2P5/ )

1$3/2 2P5/2. 1$3/2 {2P5/2 2P5/2 )

Higher excited states and continuum
of heavy exciton series

3/2 g/2

]$ / (2P5/ 2P /
)

1S33 2P35 1$3/2 (2P5/2 2P5/2 )2
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reason why the splitting is not observed in aborp-
tion may be that the oscillator strength of one of
the two states is much smaller than the other, "
perhaps because of destructive interference be-
tween processes with phonon scattering in the val-
ence or in the conduction band. Other explanations,
such as the influence of the exchange interaction
on energies and selection rules, seem to be in
quantitative disagreement with the data. " Finally,
we consider the Gap case. The agreement be-
tween theory and experiment is poor. In fact, the
theory predicts binding energies of 17.8 and 19.6
meV for the ground-state doublet while the data
suggests a much smaller value. The disagree-
ment is outside the kind of error expected for the
theory and suggests that, provided the experi-
mental value for the binding energy is correct,
we have an inadequate description of the conduc-
tion-band structure. Indeed it has been recently
pointed out that the construction band minimum in
GaP is not at the zone edge but somewhat close to
it." This would imply a "camel back" type of
E(K) rather than parabolic. Preliminary results"
show that indeed better agreement is obtained.
I astly, no experimental data for AlSb are avail-
able.

VI. CONCLUSIONS

In the present paper we have described a new ap-
proach to the effective-mass theory of indirect ex-
citons in semiconductors. In this method, similar
to that used for acceptor impurities, one sepa-
rates the various terms in the Hamiltonian ac-
cording to their symmetry. In addition to the val-
ence-band anisotropy one has a strong electron
anistropy term which makes the perturbation
analysis inaccurate. Using rotation-group tech-
niques to separate the angular and the radial
parts, accurate solutions are obtained for the
most important exciton states. A simple, but
equally accurate model, the "axial model, " is de-
scribed. The validity of this model, which de-
pends on the relative strength of the electron and
the hole anisotropy, is generally satisfied and al-
lows a considerable simplification of the analysis.
The importance of this model is more fully ap-
preciated when other effects are taken into ac-
count in the exciton Hamiltonian such as inclusion
of energy-momentum dispersion, external fields,
etc. Finally, extensive comparison with experi-
mental data show the validity of the present
method.
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