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Existing experimental data for the electronic band parameters of the conduction and valence bands of PbTe
are analyzed and compared using a multiband model electron dispersion relation. The model permits the
identification of inconsistencies among the data and the derivation of an improved set of band parameters.
Among the principal conclusions are (i) the most commonly used value of the transverse-conduction-band-
edge effective mass is too large; (ii) the conduction- and valence-band mass anisotropy ratios vary only weakly
with carrier concentration, in contradiction to much of the early data for p-PbTe; (iii) existing theoretical
calculations of the far-band contributions to the conduction- and valence-band-edge effective masses are not in

very good agreement with experiment.

1. INTRODUCTION

The electronic band structure of PbTe has been
the object of experimental and theoretical investi-
gations for many years.! A considerable body of
experimental data now exists relating to band
parameters near the fundamental energy gap. In
many instances, however, these data are incon-
sistent. Moreover, they seem never to have been
critically analyzed with the aid of a theoretical
model of sufficient scope to permit identification
of the probable nature and sources of these incon-
sistencies and the establishment of a set of “most
likely” parameters. Consequently, even some of
the most recent theoretical studies of the PbTe
band structure®?® have incorporated experimental
parameter values which, as we shall see, there
is reason to mistrust. In this paper we attempt
to rectify this unsatisfactory situation through an
analysis of the available data on conduction-and
valence-band effective-mass parameters in PbTe.

II. MULTIBAND MODEL

PbTe has a small (0.19 eV) direct gap at the L
points of the Brillouin zone. The free carriers,
whether electrons or holes, are degenerate in all
available samples, with typical Fermi energies
of several tens of millielectron volts. Because of
the smallness of the gap, the electronic dispersion
relation E(P) is substantially nonparabolic al these
energies, with the consequence that experimentally
measured effective masses at the Fermi surface
depend on the Fermi energy and hence on the car-
rier concentration. For low carrier concentra-
tions, the Fermi surface consists of four (eight
half) prolate spheroids centered at the L points
with long axes parallel to (111) directions. At
higher carrier concentrations, the Fermi sur-
face becomes nonellipsoidal.

The energy levels at the L points in PbTe con-
sist of the conduction- and valence-band edges,
separated by 0.19 eV, two pairs of levels about
2 eV above and below the gap region, and remain-
ing levels 10 eV or more away.® The dispersion
relation which we shall use to describe the elec-
tronic structure near the band gap has been dis-
cussed and used by many workers.>** It is ob-
tained from a K+ § perturbation calculation in which
the interaction between the conduction- and val-
ence-band-edge levels is treated exactly and inter-
actions with other bands taken to second order.
For present purposes, the dispersion relation for
zero magnetic field and neglecting spin suffices.

It is
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Here the zero of energy E is at the midpoint of the
gap, and E is measured positive upwards into the
conduction band. E, is the fundamental gap energy
(positive), p, and p, are the components of crystal
momentum parallel and perpendicular to a (111)
direction, respectively, and m, is the free-elec-
tron mass. P, and P, are the longitudinal and
transverse momentum matrix elements taken be-
tween the conduction- and valence-band-edge
states. The parameters m,,, m,, my, and m,,
represent contributions to the effective masses
which result from interaction of the conduction-
and valence-band-edge states with more distant
bands. They are of the form

mo/my=1+M,.; my/m;,=1+M,; @)

Mmo/My,==1+My; mo/m,=-1+M,,.

The M’s are sums of terms of the form (p)*/m,AE,
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where (p) is a momentum matrix element connect-
ing a gap-edge state and one of the distant states,
and AE is the appropriate energy denominator.
Theoretical calculations of these far-band contri-
butions usually include only the six levels nearest
the gap region, including the conduction- and val-
ence-band-edge levels. Hence the model is often
called the “six-band model.” Since these far-band
mass parameters could include contributions from
other bands as well, we shall refer to the model
as the “multiband model” (MBM).

Equation (1) describes both the conduction and
valence bands, and contains seven independent
parameters which one might hope to obtain from
experiment.

For comparison with experimental data, it is
convenient to rewrite the MBM dispersion relation,
Eq. (1). For the valence band, with energy now
measured positive downwards from the band edge,
the desired form is

2 2
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E,/] 2m,, E, 2m,, E,
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The new parameters which appear here are related
to those which appear in Eq. (1) as follows: m,,
and m,, are, respectively, the transverse and
longitudinal effective masses at the valence-band-
edge and are given by

my _ 2P m, my, _ 2P} LMo )
msv mOEz mlv

4,,and A, are measures of the difference be-
tween the conduction- and valence-band-edge
masses, and hence the asymmetry between the
two principal bands. They are given by

Ay =my(my,—my)=1- my,/my.

(5)
- -1 -1y _
By =myy(my, —mi)=1-mg,/m,, .
Further,
2
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It should be noted that we have introduced one re-
dundant parameter.

The dispersion relation for the conduction band,
with energy measured positive upwards from the
band edge, can be obtained from Egs. (3)-(6) sim-
ply by interchanging the subscripts “c” and “v”
everywhere. This introduces seven more redun-
dant parameters. Some useful translation rela-

tions are
myg=my,/(1=4,); my=my,/(1-4,);
Brembi /By =10 By=8y /G
Quc=@1/(1-8,)% Qpc=Q,,/(1-8,,)(1-4,);
Quc =Quo/ (1= 85,7,

Several comments on Eq. (3) are in order: (a)
It is nonparabolic and describes nonellipsoidal
energy surfaces. (b) If the terms quartic in p
(the terms with @ factors) are dropped, it re-
mains nonparabolic but the energy surfaces are
then ellipsoidal. (c) This ellipsoidal but nonpara-
bolic approximation depends explicitly on the de-
viation from mirror symmetry of the conduction
and valence bands. It is often said that the conduc-
tion and valence bands of PbTe (and the other lead
chalcogenides) are mirror images. This is ap-
proximately true, but not exactly so, and, as we
shall see, the difference is important. (d) Two
models commonly used to analyze experimental
data for PbTe and similar materials are the (el-
lipsoidal nonparabolic) Kane model,” with disper-
sion relation

E(1+E/E,) =p%/2m, +p2/2m, (8)
and the Cohen model* with (conduction band) dis-

persion relation

E,= LA + B
¢” 2m, (1+E/E +p2/2m,E,) * 2my,’

9

with (nonellipsoidal nonparabolic) or without (ellip-
soidal nonparabolic) the term containing mg,,. [Equa-
tion (9) is actually an approximation to a more
general dispersion relation given by Cohen.?] The
Kane model follows from Eq. (3) if we assume that
Moy My, My, and m,, are all infinite ov drop
terms quartic in p and assume m,,=m,, and m,,
=m,,. Either set of assumptions is equivalent to
assuming exact mirror symmetry of the conduction
and valence bands. Any use of the Kane model to
describe PbTe therefore dependsimplicitly on this
(unjustified) assumption.

The Cohen model follows from Egq. (3) if we
assume m,, and m,, are both infinite and set P, =0.
While complete mirror symmetry of the conduction
and valence bands is not assumed, since m,, and
m,, may still be different, the assumption m,,,
=m,, inherent in this model is no more justified
for PbTe than the assumptions leading to the Kane
model.

We now proceed to consider some experimental
data within the framework provided by the MBM.
Expressions for various necessary experi-
mentally measured quantities are derived in
the Appendix.
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III. ANALYSIS OF EXPERIMENTAL DATA

A. Dependence of transverse cyclotron masses on
carrier concentration

The data points in Fig. 1 represent measured
values of the transverse normalized (to the free-
electron mass) cyclotron effective mass y,, in
p-PbTe as a function of the minimum de Haas-van
Alphen frequency Fnin (magnetic field parallel to
a (111) axis). F,;, is proportional to the extre-
mal (maximum) p-space cross-sectional area of
the Fermi surface in a plane normal to the magne-
tic field, and this area in turn depends on the Fer-
mi energy and hence the carrier concentration.

The strong nonparabolicity of the valence band in
PbTe is manifest in the dependence of the cyclotron
mass on de Haas—van Alphen frequency.

We have plotted 2, rather than u,,;, because the
Kane and Cohen models both yield a simple linear
relation between p%;, and F

l“'fnin:(ml/mo)z[l+4(Fr‘ninmo/F0m1)]y (10)

where Fy=m ,cE,/ek. We might expect the corre-
sponding relation for the MBM to be rather simi-
lar.

With the exception of one point, all the data in
Fig. 1 were derived from simultaneous measure-
ments of cyclotron masses and de Haas—van Alphen
frequencies in some type of quantum-oscillation
experiment, usually a Schubnikov-de Haas experi-
ment.>™*' The exception is from our own Faraday-
mode cyclotron resonance experiments.> Effective
masses derived from cyclotron resonance experi-
ments are generally subject to uncertainties owing
to the presence of nonlocal effects and, in the pre-
sent instance, either from a need for extrapolation
of measured masses to the band edge, or the es-
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FIG. 1. Square of the normalized minimum cyclotron
effective mass vs minimum de Haas—van Alphen fre-
quency for p-PbTe. Sources of experimental data are
Refs. 8—12. Curves are explained in the text.

tablishment of a proper connection between the car-
rier concentration and de Haas—van Alphen fre-
quency. For these reasons, the cyclotron reso-
nance results of Nii'® and Perkowitz'* for p-PbTe
have been omitted from Fig. 1. Our experiments
were done on epitaxial films with sufficiently small
carrier concentration (~5x 10'® cm™)that extrapola-
tion to the band edge involved a negligible correc-
tion. Furthermore, the correction for nonlocal
effects (proportional to n°/°w™2/3  where 7 is the
carrier concentration and w is the experimental
frequency), was very small (~3%) because of the
low carrier concentration and relatively high fre-
quencies (140 and 330 GHz) used in our experi-
ments.

The most commonly used experimental values of
band edge effective masses in PbTe are those of
Cuff et al.® They are m ./m,=0.024 +0.003 and
M y,/my,=0.022+£0.003. They were obtained by fit-
ting data like those in Fig. 1 (the Cuff ef al. data
for p-PbTe are included in Fig. 1) with the equiva-
lent of Eq. (10) derived from Eq. (3) with m,./m,
=1, my,/my=-1 (all M=0). Thompson et al.'° later
fitted their own data plus the Cuff et al. data with
Eq. (10) and found m ,,/m,=0.018 +0.003. In both
cases E, was treated as an adjustable parameter
and found to be substantially less than the known
gap energy (see below) and, in the Cuff et al. case,
slightly different for the conduction- and valence-
band data. The source of this rather unsatisfactory
situation lies in the neglect of the far-band contri-
butions to the effective masses. The “gap ener-
gies” obtained in such fits are phenomenological
“interaction gaps.” The degree to which they differ
from the measured optical gap reflects the impor-
tance of the far-band contributions to the effective
masses and emphasizes the unsatisfactory nature
of the approximations which yield these interaction
gaps.

We have fitted the data of Fig. 1 using the full
MBM as embodied in Eqs. (A15) and (A20) of the
Appendix. In doing so, we fixed E, at the measured
direct gap. This has been determined in two dif-
ferent experiments. Mitchell ef al.’® found E,
=0.190+0.002 eV from magneto-optical studies of
epitaxial films, and Butler and Calawa'® found E,
=0.187 eV from magnetoemission studies with
PbTe diode lasers. (Both results are for T~0K.)
These two results are in excellent agreement., We
somewhat arbitrarily selected the latter, feeling
that it is likely to be somewhat more accurate than
the former. We then least-squares fitted various
subsets of the data, withm,, A, and @,, as ad-
justable parameters. Our results can be summar-
ized as follows.

Although all of the data shown in Fig. 1 are fairly
consistent, we believe the data of Burke et al.® and
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Jensen et al.'! are likely to be the most reliable of
thequantum-oscillationdata. In these experiments,
in contrast to the others, the de Haas—van Alphen
frequencies were obtained from Fourier analysis
of the raw data, complete angular dependences
were measured, and good agreement was obtained
between carrier concentrations determined from
quantum oscillation data and from Hall measure-
ments. We have therefore concentrated our fitting
on these data plus our own cyclotron-resonance da-
tum. A weighted least-squares fit to this subset of
data gave a minimum X? of about 10, substantially
larger than the expected value (the number of de-
grees of freedom) of 4. Deletion of the rather
divergent Jensen et al. point at F,, =1.8X 10° G re-
duced the minimum x® to 1.0, much less than the
expected value of three, indicating a very good fit.
The fitted valence-band-edge mass is m ,/m,
=0.0210+0.0008. (The uncertainties quoted here
and in the following are intended as one-standard-
deviation uncertainties.) The values of A, and @,,
corresponding to the minimum x? are A, =-0.47
and @,, =0.09. However, the fit was relatively in-
sensitive to individual variation of A, and @,,. It
appeared instead to depend primarily on their sum.
The reason for this is evident from Eq. (A27); to
first order and, very nearly, to second order as
well, A,, and @,, enter into the dependence of ufin
on Foni, only as the sum A, +@,,. The two para-
meters become distinguishable only through the
higher-order terms. Since we question whether
the data of Fig. 1 are really adequate to discrimin-
ate reliably between A, and @,,, it seems to us
more appropriate to consider the minimization of
x? with respect to the sum A, +@,, and to quote the
result of the fit as A}, +@,,=-0.38+0.10.

The consistency of all the data in Fig. 1 is evi-
denced by the fact that a fit to the entire set (un-
weighted, because experimental uncertainties were
not reported for some of the data) gave values of
m,, and A}, +@,, which do not differ significantly
from those given above.

The solid lines in Fig. 1, reading from top to
bottom, correspond to Eqs. (A15) and (A20) withthe
final parameters recommended here (see Table 1),
Eq. (10)(the Kane and Cohen models) withm ,/m,,
=0.021and E, =0.187 eV, and the model and parame-
tersof Cuff et al., exceptthat we haveusedthe mea-
suredgap, E, =0.187 eV, instead of their fitted “ef-
fectivegap”. Thelatter two curvesare clearly rath-
er poor fitstothe data. Thefirstis muchbetter, al-
though it is not the best-fit curve for these data
alone because our final recommended parameters
based on the totality of the data differ slightly from
those derived from these data alone.

Having determined the transverse-valence-band
parameters to the extent permitted by the available

data, we consider the transverse-conduction-band-
edge mass. We begin by noting that if the valence-
band data yielded an unambiguous determination of
m,, and A,,, m,. could be inferred from these data
alone without any reference to conduction-band
data! As it is, we can only limit the range of like-
ly values of m .. If we were to take seriously our
fitted A,, =-0.47, it would imply m,./m,=0.0143.

A firmer inference can be drawn using the equa-
tions relating M;. and M,, to the fitting parameters:

A, m 1 m
Miam= (105 1 ) g s a0,
b v

(11)

(1 ) Ll 400
2 m,, 2 my,
where the upper signs or the lower signs are to be
taken together. Given the constraints that the M’s
must be real (so that A%, +4Q,, >0) and A,, +@Q,,
=-0.38+0.10, A,, cannot be algebraically greater
than -0.35+0.09 for any value of @,, (disregarding
unphysically large values)! This implies that
m,./m, can be no larger than 0.0156 +0.0012.

Turning to experimental information on m,,, we
find that the range of values inferred above from
the valence-band data lies substantially below all
but one of the reported experimental values.

These are summarized in Table I. The one excep-
tion is our own cyclotron resonance result.? (This
unexpectedly low value provided the original impe-
tus for the data analysis reported in this paper.)
We are at a loss to account for the generally high
values previously reported except to note that in
the microwave-frequency cyclotron-resonance
work of Nii and Numata and Uemura'® and Fuji-
moto,"” corrections for nonlocal effects were not
made. Such a correction would lower their values
of m,.. Nonlocal effects were explicitly treated

by Walpole and McWhorter'® and their value of my.
is the lowest among those previously reported.

The valence-band data leave little room for doubt
that the transverse-conduction-band-edge mass
must be less than the transverse-valence-band-
edge mass by several tens of percent despite indi-
cations to the contrary from almost all existing
conduction-band data. On the basis of the foregoing
discussion, we have elected to use our own experi-
mental value, m,./m,=0.0164£0.001, as the best
available estimate of m,.. Taken together with our
fitted value of m ,,, it implies A, =-0.28 £0.09.

The implications of these conclusions for the far-
band contributions to the transverse masses are
presented in Fig. 2. The curved shaded band cov-
ers the values of M,, and M, allowed by the con-
straint derived from our fit to the valence-band
data, A, +@,,=-0.38+0.10. The straight shaded
band covers the values allowed if instead we use
our recommended values of m . and m,,. It is sim-
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TABLE 1. Experimental values of transverse-conduction-band-edge mass. Extrapolated
band edge values were reported by Cuff et al. and by Walpole and McWhorter. In the other
cases, the extrapolation was made by us using the MBM model with parameters derived in the
present paper. This extrapolation typically lowered the originally reported values by 5-20%.

Reference my/my Experiment
8 0.024+0.003 from model fit to
Schubnikov—de Haas data;
data not reported
13 0.022 cyclotron resonance
17 0.021 cyclotron resonance
18 0.020 helicon propagation
14 0.035 cyclotron resonance
19 0.022 ir magnetoreflectivity
20 0.023 ir magnetoreflectivity
12 0.0164+0.001 cyclotron resonance
ply a plot of the relation overlap region in Fig. 2 suggests only that @,
robably lies somewhere in the range —0.03 to
My =M =2+my/m,, —my/m ., (12) p y g

which is easily derivable from Eqgs. (2) and (4).
The straight unshaded band corresponds to the
band-edge masses of Cuff ef al.® The difference
between the two straight bands results mainly from
the difference between the experimental trans-
verse-conduction-band-edge mass of Cuff et al.
(which is typical of most of those in Table I) and
ours. We see that the latter is consistent with the
result of our fit to the valence-band data whereas
the former clearly is not.

Note that, although the data determine the differ-
ence My, =M. [Eq. (12)] with some reliability,
they impose only the loosest of limits on the pos-
sible individual values of M,. and M,,. Their de-
termination would require accurate determination
of @,,, i.e., of the nonellipsoidal distortion of the
Fermi surface. The location of the double-shaded

FIG. 2. Far-band contributions to the transverse
effective masses. Bands indicate ranges of values of
M, and M, consistent with various experimental data.
For detailed discussion see text.

0.14. The points and error bars on the central line
of the straight shaded band are derived from the
value of ,, and its uncertainty obtained from the
fitting procedure of Sec. III B.

Theoretically calculated values of M,, and M,,
are generally nearly equal to magnitude, have
positive signs, and lie in the range 5-8.212? It is
clear from Fig. 2 that these theoretical results
are inconsistent with the experimental data, which
indicate that M, and M,, should be in or near the
overlap region of the two shaded bands. The gen-
erally accepted parity assignments?® for the energy
levels near the gap require that M,, and M, both
have positive signs. Even the inversion of the L}
and L; levels at the gap would leave these signs
unchanged. For M,, and M,, both positive, the
experimental data indicate that M,, must be sub-
stantially larger than M,, (perhaps a factor of 3
or more). Recent suggestions?*'?* of a more dra-
matic change in parity assignments would imply
negative signs for both M,, and M,.. If this were
so, we would draw the opposite conclusion about
the magnitudes of M, and M,, from Fig. 2.

B. Dependence of mass anisotropy ratios on
carrier concentration

Experimental data which relate to the longitudi-
nal band parameters in PbTe have generally been
reported in terms of the so-called mass-anisotropy
ratio K. For a spheroidal parabolic band with
transverse and longitudinal effective masses m,
and m,, K=m,/m,. For a nonparabolic and pos-
sibly nonellipsoidal band, some care is required
in the definition and use of K, as discussed in the
Appendix. Two different K’s may be defined in
terms of experimental quantities, one in terms of
the maximum and minimum de Haas-van Alphen
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frequencies, K,=(Fpa/Fpy)?, and the other in
terms of the maximum and minimum cyclotron
masses, K, =(1,,/tmn)- Both depend on the Fer-
mi energy and hence the carrier concentration.
We now consider the available experimental data
for K, and K, as a function of carrier concentra-
tion.

The data are shown in Fig. 3. Consider first
the data for p-PbTe, Fig. 3(b). It happens that
most of these data are from quantum-oscillation
experiments (solid symbols), so K, is the relevant
K. Most of the data fall into two groups: The first

group, including the vanguard data of Cuff et al. 8%

indicates that K, decreases from about 14 at the
band edge to about six at a carrier concentration
of 3x10'® cm™, The other, containing data of
Schilz,?® Burke et al.® and Jensen ef al.'! (exclud-
ing the one high Schilz point at 5.4 x10'® cm™) in-
dicates that K, varies much more slowly with car-
rier concentration. The two groups are clearly
inconsistent.

30 [ T
Iy
20}l| (a) n-PbTe }
I

L S S S " |

aal 1
10 10
CARRIER CONCENTRATION (10'8cmi3)

o

FIG. 3. Mass anisotropy ratio vs carrier concentra-
tion for (a) n-PbTe and (b) p-PbTe. Solid symbols
represent data from quantum oscillation experiments
and correspond to K, or Kg. Open symbols repre-
sent data from cyclotron resonance experiments
and correspond to K, or K,,. Sources of experimen-
tal data are: (@) Cuff et al. (Refs. 8 and 25); (O Nii,
Numata, and Uemura (Ref. 13); (V) Perkowitz (Ref. 14);
(A) Fujimoto (Ref. 17); (¢) Schilz (Ref. 26); (¥) Burke
et al. (Ref. 9); (m) Thompson et al. (Ref. 10); (A) Jensen
et al. (Ref. 11); (0O) Foley and Langenberg (Ref. 12);

(0 ®) Stiles et al. (Refs. 27 and 28); (X) Coste (Ref. 29).
K values notdirectly quoted by the original authors were de-
rived by us from the reported data. Uncertainties in K not
directly quoted by the original authors were estimated
by us from the scatter in the reported data. K’s to the
left of the break in the logarithmic scale are band edge
values reported by the indicated authors.

We may judge which group is likely to be more
reliable using the MBM model. Consider Eq.
(A28). At a carrier concentration of 3 X 10'® cm™,
(N,/N,,)?'3 is about §, so the first three terms of
this series should suffice for qualitative argument.
The difference A,,- 4,, can be written

AL,-8,,=(1 _Alu)(Kov/Koc" 1). (13)

We have seen that 1 - A, is about 1.3. All the data
of Fig. 3 suggest rather strongly that K, /K, is
larger than 1 and is probably in the range 1.2-1.4.
We thus expect A, - A,, to be positive and to lie

in the range 0.2-0.5. It is then clear from Eq.
(A28) that, if K, actually decreases (the first
group of data) or increases (the one high Schilz
point) by something like a factor of 2 between the
band edge and a carrier concentration of (3-6)

x 10'® cm™, the @’s must be on the order of one

or larger. This would imply nonellipsoidal dis-
tortions of the Fermi surface much larger than
are generally observed (and would invalidate the
basis for the MBM model, the assumption that the
far-band contributions to the band edge masses are
relatively small compared with the contribution of
the direct conduction-valence-band interaction).
We conclude that the data of the first group, al-
though internally consistent, are simply unreliable,
and eliminate them from further consideration.

We have deleted the one high Schilz value for the
same reason and have also elected to delete the
remainder of the Schilz data because their experi-
mental uncertainties are relatively large and be-
cause the totality of the Schilz data for both n-PbTe
and p-PbTe does not inspire confidence. For
p-PbTe, we are thus left with the data of Burke

et al. and Jensen et al.

Turning now to the data for n-PbTe [Fig. 3(a)],
we note that they are rather sparse compared with
those for p-PbTe. We eliminate at the outset the
Schilz data because here again they would require
an unlikely increase of K by a factor of 2 above
the band edge value. The remaining data appear
rather consistent. Nevertheless, we have chosen
to delete also the Cuff et al.?® and Perkowitz'4
points, mainly because they come from experi-
ments which yielded the highest values of m .,
which we have seen above are unlikely to be reli-
able. The remaining data are all from cyclotron
resonance experiments and are therefore subject
to uncertainties owing to uncorrected nonlocal
effects. However, nonlocal effects should partial-
ly cancel out of the ratio K, .= (lpe/ Bmin)?- Furth-
ermore, a fit to these data should give a reasonably
good estimate of K, in the zero-carrier-concen-
tration limit where nonlocal effects vanish, although
the apparent variation of K,, with carrier concen-
tration may be distorted by nonlocal effects. We
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have therefore chosen to include these data in our
basic data set.

We have carried out a four-parameter weighted
least-squares fit to this selected set of data using
Egs. (A21), (A22), and (A26). E,, m,,, m ., and
hence, A,, were fixed at the values established in
Sec.IT'A and K,,, K,;, @,, and @,, were varied
for best fit. A choice of K, and K, determined
A,, through Eq. (13), and a choice of @,, and @,,
then determined @,, through

QZU = %{—AlvASU*. [(Afu + 4Q1 v)(A‘?sv + 4Q3U) ] 1/2} M (14)

The necessary conduction-band parameters were
determined using the translation relations [Eq. (7)].
The resulting best-fit parameters are K;,,=9.2+0.3,
K,,=11.6+0.2, @,,=0.03+0.10, and ,,=0.06 +0.06.
The corresponding minimum x? is 2.0 for nine de-
grees of freedom, indicating a considerably better
fit than might be expected from the experimental
uncertainties. Our selected set of K data are re-
plotted in Fig. 4, using linear scales, together
with best-fit curves calculated from our final re-
commended parameters and Egs. (A21), (A22),
and (A286).

The data of Jensen et al.!* for K, appear to
show a slight trend upward with increasing car-
rier concentration. Itisclear from Eq. (13), the
associated discussion, and Eq. (A28) that this is
just what we would expect from the MBM and our
fitted parameters. Jensen et al. chose to ignore
this upward trend and to characterize their re-
sults by a carrier-concentration-independent
K,=13.0+£0.5. In order to test the validity of this
conclusion, we have fitted a constant XK, to the
Burke ef al. and Jensen ef al. data. The resulting
minimum ¥? is 4.9 (at K, =13.1), for seven de-
grees of freedom, indicating a rather good fit.
However, the contribution of these data to the
minimum total x2 in our overall fit is only 1.8. We
conclude, therefore, that the MBM with its car-
rier-concentration-dependent K, gives a signif-
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FIG. 4. Basic selected set of mass-anisotropy-ratio
data from Fig. 3 and best-fit curves.

icantly better fit to these data than a constant K,
and that the upward trend in the experimental K,
data is probably real. We note that a correspond-
ing downward trend may be present in the K, .
data. This is precisely consistent with the K,
data: if K, increases with increasing carrier
concentration and A,, - A, is therefore positive,
then A, - A, must be negative and, from Eq.
(A29), K, . must decrease with increasing carrier
concentration.

The @,, derived from this fit to the mass-aniso-
tropy data is very consistent with the conclusions
drawn from the transverse data in Sec. Il A. Fig-
ure 5 is the analog of Fig. 2 for the longitudinal
far-band mass parameters. The shaded band cov-
ers the values of M;, and M, allowed by our de-
rived value of A,,. The points and error bars on
the central line of the band indicate the M,, and
M,, determined by the fitted value of @,,. The data
place rather tighter constraints on the possible
values of M,, and M,, than they do for M,, and
M,,. M, and M,, appear to be about an order of
magnitude less than M, and M,, and are more
nearly equal in magnitude. Theoretical values of
M, and M,, are about 0.6-1.0 and 0.8-1.6, respec-
tively.?'22 These are not grossly inconsistent
with the data, although the data suggest that M,
is larger than M,, rather than vice versa.

In Table II we summarize the results of our fits
to the experimental data. The uncertainties as-
signed to the derived parameters have beenestima-
ted on the assumption that the uncertainties of the
basic experimental or fitted parameters are un-
correlated. A study of the details of the fits in-
dicates that this is not strictly true, but we do
not believe that the errors introduced by this as-
sumption are significant. The lower limit of the
uncertainty for @,, has been truncated in accord

M A
24
14
7z
+ A A— +
2 -1 Q?ﬂ' 2 3Mm,
_2..
-3+

FIG. 5. Far-band contributions to the longitudinal
effective masses. Shaded band indicates the range of
values of M, and M,, consistent with experimental data.
For detailed discussion see text.
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TABLE II. Final recommended parameters obtained by fitting the multiband model to ex-

perimental PbTe data.

Conduction band

Valence band

(a) Basic experimental or fitted parameters

E, (eV) 0.187
my/mg 0.0164 + 0.001 0.0210 + 0.0008
K, 9.2+0.3 11.6 £+ 0.2
+0.10
Q 0.03_"04
Qs 0.06 + 0.06
(b) Derived parameters
my/my, 0.151 + 0.010 0.244 + 0.010
A 0.22 + 0.09 —-0.28 + 0.09
Ay 0.38 +0.13 —0.61+0.13
+0.06
Q4 0.02 —0.03
+0.06 +0.13
Q@ 0.04_ "0y 0.09" 0o
Qs 0.02 +0.02
Fy (G) 1.62 x 107
N, (cm™) (9.36 + 0.06) x 1018 (1.52 £ 0.07) x 101?

with the theoretical expectation that, whatever
the correct parity assignments for the energy
levels at L may turn out to be, M,, and M,, must
have the same sign.

In Figs. 6-12, we show the dependence of vari-
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FIG. 6. Normalized maximum de Haas—van Alphen
frequency vs Fermi energy for the multiband inodel with
our recommended parameters. In a simple ellipsoidal
parabolic model these curves would be a straight line
with slope 1. €p =E/E,.

ous quantities of interest on Fermi energy for
both n-PbTe and p-PbTe. These have been cal-
culated from the parameters of Table II and the
appropriate equations from the Appendix. In

each case the dashed line corresponds to the ellip-

30 — T T T T T T T 1
i )
i /]
—— NONELLIPSOIDAL /
L ——— ELLIPSOIDAL /
i /
20k VALENCE / .
i / 4
//
Fan.mg | V/ //
FO my r / / 7
/ V J
r / S
g S
1.0 Y/ ]
i // CONDUCTION |
0 | Il | | | | | 1 |
O Ol 02 03 04 05 06 07 08 09 10

eF
FIG. 7. Normalized minimum de Haas-van Alphen
frequency vs Fermi energy for the multiband model with
our recommended parameters. In a simple ellipsoidal
parabolic model these curves would be a straight line
with slope 1. e€p=E./E,.
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FIG. 8. Normalized maximum cyclotron mass vs
Fermi energy for the multiband model with our recom-
mended parameters. In a simple ellipsoidal parabolic
model these curves would be a horizontal straight line
on the bottom edge of the figure. ez=E/E,.

soidal truncation of the MBM obtained by setting
all @’s equal to zero, and the solid line shows the
effect of including the @ terms. For F;, and

Lmin the exact Eqs. (A15) and (A20) were used. For
all other quantities we used the equations given

in the Appendix which describe the nonellipsoidal
perturbations only to first order in the @’s. Non-
ellipsoidal perturbations are clearly considerably
more important in the valence band than in the
conduction band. For the valence band, our ex-
pansion of the nonellipsoidal effects to first order
in the @’s apparently fails at Fermi energies sub-
stantially less than the gap energy.

C. Nonellipsoidal distortions of the Fermi surface

We have seen that experimental data provide
some evidence for rather small deviations from
spheroidal shape of the Fermi surface in PbTe.
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FIG. 9. Normalized minimum cyclotron mass vs
Fermi energy for the multiband model with our
recommended parameters. In a simple ellipsoidal para-
bolic model these curves would be a horizontal straight
line on the bottom edge of the figure. ¢p=E/E,.
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FIG. 10. Normalized quantum-oscillation mass
anisotropy ratio vs Fermi energy for the multiband
model with our recommended parameters. In a simple
ellipsoidal parabolic model these curves would be the
horizontal straight line K,/Ky=1. €x=Ep/E,.

In this section we comment further on this point.
Consider first the data of Jensen et al.,'* upon
which we have relied so heavily. Figure 13 is an
adaptation of Fig. 4 in Ref. 11. It shows the mea-
sured Fpni,as a function of carrier concentration.
All of these data points have been used in the fore-
going analysis with the exception of that at the
highest concentration (4.5 X 10*® ¢cm™) which was
omitted in the K analysis since no corresponding
anisotropy ratio was reported. The dashed straight
line with a slope of £ indicates the dependence ex-
pected from a simple ellipsoidal model with a car-
rier-concentration-independent K, =13.'* The
deviation of the high-carrier-concentration point
from this line was interpreted by Jensen ef al.
as evidence for the appearance of significant non-
ellipsoidal behavior at carrier concentrations
above 10'° cm™3,
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FIG. 11. Normalized cyclotron-mass anisotropy ratio
vs Fermi energy for the multiband model with our re-
commended parameters. In a simple ellipsoidal para-
bolic model these curves would be the horizontal
straight line K,/Ky=1. € p=Ep/E,.
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We have calculated F,;, vs N from Eqgs. (A14)
and (A26) using our fitted parameters (Table II).
The resulting curve is virtually indistinguishable
from the dashed straight line over the entire range
of carrier concentrations shown in Fig. 13 and has
therefore not been separately shown. At the lower
carrier concentrations its slope is slightly less
than %; this is essentially a consequence of the
slight increase of K, with increasing carrier con-
centration. [Note that this occurs even in the el-
lipsoidal truncation (@,,=Q,,=®,,=0) of the MBM.]
At high carrier concentrations the curve tends to
turn up, not down! The reason for this is sugges-
ted by the series expansion Eq. (A30): It is due to
the growing importance of the nonellipsoidal terms
at high carrier concentrations and the fact that
our fitted @’s lead to upward deviations from the
ellipsoidal truncation of the MBM. The ellipsoidal
truncation actually gives a slightly better fit to the
one high-carrier-concentration point. However,
shifts of the @’s from our fitted values in the di-
rection suggested by Eq. (A30) give a better fit
yei. The solid line in Fig. 13 shows the result of
using a @,, at the upper limit of its uncertainty
range (@,,=0.13), a Q,, at the lower limit of its
uncertainty range (Q,, =0), and the implied value
for @,,, withall other parameters held fixed. We see
that the Jensen ef al. high-carrier-concentration
point suggests that @,, and @,, are, respectively,
larger and smaller than our fitted values, but
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FIG. 12. (Normalized carrier concentration)?’3 vs

Fermi energy for the multiband model with our recom-
mended parameters. In a simple ellipsoidal parabolic
model these curves would be a straight line with slope
1. €p =Ep/E,.
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within the uncertainties we have assigned them.
[This should be borne in mind in considering the
implications of the data for the far-band mass
contributions (Figs. 2 and 5) and in comparing
these with the results of theoretical calculations
of these quantities.] We feel that the use of this one
high-concentration datum to provide a yes or no
judgment of the existence of significant nonellip-
soidal behavior is thus somewhat dubious, but it
is quite consistent with our analysis of all the
other data.

Consider now the results of Schilz.2® Schilz’s
results for the angular variation of the de Haas—
van Alphenfrequency in both n-PbTe and p-PbTe
(Fig. 14) show extremely strong deviations from
ellipsoidal behavior at carrier concentrations
above about 2 X 10'® cm™, For comparison we
show in the upper part of Fig. 14 the angular vari-
ation calculated from Eq. (A11) for p-PbTe at a
carrier concentration of 5.4 X 10'® cm™, (Note
that this is not a cross-section of the Fermi sur-
face!) The dashed line represents the ellipsoidal
prefactor in Eq. (A11). The solid line on the left
was calculated using our fitted parameters. The
nonellipsoidal distortion is of the same form as
that observed by Schilz: U, remains essentially
constant at 0.018 from 6 =0 to 6§ =60°, then in-
creases rapidly to 0.032 at § =90°. The result is
a tendency toward a squaring off of the end of the
Fermi surface like that observed by Schilz. How-
ever, the size of the distortion is much smaller.
The distortion can be made to look a little more
like Schilz’s by shifting the Q’s. Onthe right we
show the result of setting @,, near the lower limit
of its uncertainty (Q,,=0) and Q,, at the upper limit
of its uncertainty (Q,,=0.12). (Note that this is the
opposite of the @-shift required to fit the Jensen
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FIG. 13. Minimum de Haas-van Alphen frequency
vs carrier concentration from the data of Burke et al.
(Ref. 9) and Jensen et al. (Ref. 11). Curves are ex-
plained in the text.
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et al. high-carrier-concentration datum in the pre-
vious paragraph.) For no reasonable set of Q
values we can getdistortions are large as those re-
ported by Schilz. It might be argued that Schilz’s
data may be internally consistent in the sense that
the large nonellipsoidal distortions imply very
large @’s which in turn are consistent with the
very large K’s apparent in Fig. 14 (see the discus-
sion in Sec. IIIA). However, the Schilzdataasa
whole seem so inconsistent with all the other PbTe
data that we are inclined to discount their reliabil-
ity. We conclude, therefore, that nonellipsoidal
distortions of the Fermi surface in PbTe clearly
exist but are relatively small at all carrier con-
centrations and Fermi energies so far studied.

IV. CONCLUSIONS

We have applied the multiband model electron
dispersion relation given by Eq. (1) to an analysis
of the available experimental data for PbTe. We
find that it provides a useful tool with which to ex-
amine the consistency (or lack of consistency) of
the whole body of data. The principal conclusions
which result from our analysis are: (a) The trans-
verse-conduction-band-edge effective mass is al-
most certainly significantly smaller than the com-
monly used value derived from the early experi-
ments of Cuff et al. (b) The conduction- and val-
lence-band mass anisotropy ratios vary with Fer-
mi energy or carrier concentration, but only weak-
ly in the range of carrier concentrations so far in-
vestigated (<5x 10'*® ¢m™). This conclusionisin
substantial disagreement with most of the earlier
data for p-PbTe, but agrees with more recent data.
(c) Both the conduction and valence bands are
strongly nonparabolic but only weakly nonellipsoi-
dal for carrier concentrations less than about
5X 10 em™3. (d) The deviationfrom “mirror sym-
metry” of the conduction and valence bands is sig-
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FIG. 14. Angular variation of the de Haas—van Alphen
frequency, below as observed by Schilz (Ref. 26) and
above as calculated from the multiband model as dis-
cussed in the text.

nificant. (e) The neglect of nonellipsoidal distor-
tions of the Fermi surface is often justified, but
the analysis of experimental data using an ellipsoi-
dal nonparabolic model less general than the ellip-
soidal truncation of the multiband model (e.g., the
Kane or simplified Cohen models) is likely to yield
misleading results. (f) Existing theoretical calcu-
lations of the far-band contributions to the conduc-
tion- and valence-band-edge effective masses are
not in very good agreement with experiment, es-
pecially the transverse contributions.
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APPENDIX: CALCULATION OF EXPERIMENTAL QUANTITIES WITHIN THE MULTIBAND MODEL

We begin with the MBM dispersion relation, Eq. (3),

pt

b3

E _Pf< £
13<1+.I;,:)-2m1 g A,

(4

b3 E )
3 —_ "
*om, <1+E %) Y Gn7E,

p2p2
Q1+4mlm3E, Q, + Q. (A1)

4m2E,

We have dropped the ¢ or v subscripts for convenience. In calculating the Fermi-surface geometrical
quantities we shall need, it is useful to rescale the momentum coordinates of a given constant-energy sur-

face according to the prescription

2¢(1 +€m E )‘/2_ (2€(l+e)m E, >‘/2,_ §
= 2E\ T EIM Py = =y [ L8\ TEMa B =,6
by r( Trea, rS,(€), p,=2 Trea, 28,(€), (A2)
where € =E/E,. Equation (A1) can then be written in the form
1=7%+22 +R7* + R7%2° + R,2% (A3)
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where

R, - €(l+¢) €(1+e€)

ST - €(1+¢€)
T (1+€A)? Q, R= (1 +eA)(1+ea,) @,

(1 +e4,)
This scaling transforms the ellipsoid given by Eq. (A1) with @, =@, =@, =0 into the unit sphere in -z space.
It is important to note that the scaling factors S,(€) and S,(€) are energy dependent.

We now proceed to calculate de Haas—van Alphen frequencies and cyclotron effective masses.

R,= Q,. (A4)

A. De Haas-van Alphen frequency

The de Haas~van Alphen frequency F is given in general by F=(c/eh)A,, where A, is an extremal cross-
section area of the Fermi surface in a plane normal to the magnetic field. (We use cgsunits: FisinGauss.)
We assume that the parameter magnitudes of our model are such that the Fermi surface described by Eq.
(A1) resembles a distorted ellipsoid and not, for example, a dumbbell. Then the appropriate cross section
is the central one. Suppose the magneticfield is at an angle 6 with respect to the p, axis. For convenience
we assume it to lie in the p,-p, plane. It is easy to show that the central plane normal to the magnetic field
in p space transforms into a central plane in -z space with normal in the x-z plane (#*=x% +y?) and at an
angle ¥ with respect to the z axis, where

tany =(S,/S;)tané. (A5)
Furthermore, the central cross-section area A,, of the rescaled Fermi surface is related to A, by

A S2S

L D3

A,. (STsin6:Sicos )" (48)

To calculate A,,, we first express the intersection of the Fermi surface with the central plane in 7-z
space in terms of polar coordinates (p, ¢) in the plane. Then A,, is given simply by

1 27
Arz=‘2‘f p*de. (AT)
0
Substitution of

x=pcospcosy; y=psing; z=-pcosgsiny, (A8)
into Eq. (A3) yields

1=p*+Dp*, D=R,(cos’p cos® +sin®p)? + R,(cos®p cos®y +sin’p) cos®p sin®y + R, cos?ep sin*y . (A9)
It is easy enough to solve this for p?, but the exact evaluation of the subsequent angular integral, Eq. (A7),
is beyond us. However, since we expect (and find) the @ s and, for all Fermi energies of interest, the R’s
to be small compared with unity, we may expand p? in a series in the R’s and integrate term-by-term. For
present purposes it suffices to retain terms only to first order in the R’s and thus to take into account the

quartic terms in the dispersion relation only to first order in the @’s. To this order, the solution of Eq.
(A9) is simply p?=1- D. Integration over ¢ and elimination of ¥ in favor of 6 yields

Arz = 7’(1 - U) ’
8U(S1 sin6 +S7 cos®6) = R,(3S % sin® 6 + 85257 sin? 6 cos? 6 + 85 cos® )

+R,(S} sin 6 +4S5%S? sin” 6 cos®6) + R,(3S: sin6) . (A10)
Using Eq. (A6), we find
2 1/2

F=F,ep(1 mms /g -
o€l +€")((1 +€pA)(1+€pA,)(5in%0 + kp cos?6) -0, (A11)

- €p(l +€p) Q, - - .

8(sin’0+ Ky c0s20F \(17 ey (3 sin®0 + 8k, sin6 cos?6 + 8k2 cos?6)
+ Q, (sin*@ +4kp sin?H cos®6) + ———Q"——(3 sin®6) (A12)
(1+€pA)(1+€pAy) F (1+€pA,) :

Here F,=mCE, /el and kg = k(€z), where
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1+eA
=My —Feq
w(e) = m, l1+€4,

The maximum (6= 37) and minimum (6=0) de Haas—van Alphen frequencies are of particular interest.
They are

/2
= mm,\* €p(l +€p)
Fmax_F0< mlz) ) (1+€pA1)1/2(1+EFA )172 (1- max)
_ €e(1+€p) 3Q, Q, 3Q,
= 8 ¢ +€FA1)2 (1+epa)(1 +€FA3) (1+€pa,)° (A13)
and
PR LI g g ellren)d, i)

"m, 1+e€pa, min (1 +e€pA,)

For 6=0, the central Fermi-surface cross section is circular and its area and hence F_,, can be cal-
culated exactly without resorting to the approximation which led to Eq. (A14). This exact result is

Fowm=Fo —:—: 2Q,) - (1+ €A +[(1+€44,)%+ 4Q, € (1 + € ) ]2} . (A15)

B. Cyclotron effective mass
The cyclotron effective mass corresponding to an orbit bounding a p-space cross section area 4, is in
general given by (27)"*84,/8E. The normalized (to the free electron mass) cyclotron mass corresponding
to the extremal Fermi surface cross section is thus

1 a4, 1 84,

H=Z2mm, E B<Ep " 3mm,E, b€ (416)

€=€ F
Performing the indicated differentiation for the extremal A, calculated in the previous section, we find
(m,m,/m2)*?[G(z, z) sin®6+ k ;G(1, 0) cos®¢] (A17)
(1+€,A) 721+ €, A,) " %(sin®0 + k pcos®0)*"*

1-v),

Ve er(l+er)
4(sin®@ + k ; c0s26 )*[G(3,z ) sin?0 + k ;G(1, 0) cos?6)]

1 ind 5 1)aqin2 5 2
x<(1+€FA1) {SSXHH[G(z’.Z)sln 6+KFG(3’-1)COS 9]

+8k £ 5in’0 cos®6[ G(3, 3) sin*0+ k ;G(2, - 3) cos®6] + 8k} cos*0[G(%,§) sin®6+ k. G(2,0) cos®0] }

Q>
(1+ezA8)1+€z4,)

{sin“e[G(-} 3)sin®0+k;G(2,~1) cos?g]

+ 4k ,sin®0 cos?6[G(L, 3) sin®0 + k , G(2 , 0) cos?€]}
F F 2

iy

Qs

1 T2
_1—1?,.—— {3 sin*6[G (5,2)sin’6+k,G(2,0) cos%)]}) ,

where
G(a,b)=1+2€,— € (1+€z) [ad,/(1+€.8)+bA/(1+€,4,)] .

The maximum (8= 37) and minimum (6 =0) cyclotron masses are

_{mymg\i/2 G(3,3
e ( mg ) Tr e 507 (v e gz (1= Vo), (A18)

ST LTNEICCE S M XCE )
™ 4G(5, 3 (1+€x4))  (1+e€z8)(1+€,4,)  (1+€,4,)?

IJ, =.r_n_¥_.____c(1’0)
™ my 1+ €A,

1-v _ 2¢,(1+€,)G(3,00,
me” T (Tv€,8,)%G(1,0)

min

), V,

(A19)
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An exact expression for p.,; can be obtained by differentiation of the A, which leads to Eq. (A15). The
result is

(A20)

“‘mln

. A (1+€p8))+2Q,(1+2¢5)
(2Q1) ( [(1+€ A)? +4Q,€r(1+€5] )

Note that, because of the energy dependence of the scaling factors S, and S,;, the angular variation of the
cyclotron mass for the ellipsoidal-nonparabolic version of the MBM dispersion relation obtained by setting
the Q’s equal to zero differs from the usual angular variation for an ellipsoidal-parabolic model.

C. Mass anisotropy ratios

A parameter often used to characterize a spheroidal constant-energy surface is the mass-anisotropy
ratio K, defined as the ratio of the longitudinal to transverse effective mass. It is also commonly used for
nonparabolic nonellipsoidal bands of the type we are considering here. However, Some care is then re-
quired in its definition. The longitudinal and transverse masses at the Fermi surface are not separately
experimentally accessible. One can, however, define two different “mass-anisotropy ratios” in terms of
quantities which arve directly accessible experimentally. They are (a) the quantum oscillation or de Haas—
van Alphen mass anisotropy ratio, K,=(F.,/Fun,)?, and (b) the cyclotron mass anisotropy ratio, K,
= (Umay/ Emin)?- Both depend on the Fermi energy and hence the carrier concentration and Fermi energy.

These ratios are easily calculated for the MBM from the preceding results. To first order in the @’s
they are

K, l+eza; _ep(l+egr) [ -5Q Q, 3Q
K;L_ 1 +epA, t-w), w= 4 £ ((1+€F1) (1+€pA)(1+€4,) (1+€F3A)2> (a21)
and
K, l+egA G*3,3)
Ko~ Trecn, oo =% (a22)
- Q 3 G(3,3) G(%,O))
woeeen) [riap(y S8 -1 Son
0, togd e 30497,
(1+€FA)(1+5FA) G, 3 (1+€FA ¥ 263,

Note that the parameter « introduced previously [see Eq. (A12)] is simply K, for the ellipsoidal-non-
parabolic version of the MBM.

D. Carrier concentration

The total carrier concentration is N=2n#%"%Q,, where 7 is the total number of “ellipsoids” (four for PbTe)
and @, is the volume of a single “ellipsoid” in p space. To calculate the volume &,, of a scaled “ellipsoid”
in -z space, we express Eq. (A3) in spherical coordinates, »=psinf, z=pcos6:

1=p?+ p*(R, sin*6 + R, sin®6 cos?6+ R, cos?s). (A23)
Then
2r (" 4 .
Q”=T pFsing do . (A24)
0
This integral is easily evaluated to first order in the @’s:
47 €x(l+ep) 8Q 2Q, 3Q
Q,=— (1-Y), Y="F__"F 1 3
"3 ( ) 10 <(1+€F A (1+€FA)(1+€F A,) (1+€FA3)2>

Using the appropriate scaling factors, Eq. (A2), to find 2,, we find

613,-/2(1+ €F)a/:z

N=No A+ep8)(T+e, 8)72 -1, (A26)

where

=(8V2 /3m%h%)ym m}/2E3/?
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E. Series expansions

It is often useful to have series expansions of the quantities we have calculated which are appropriate for
small carrier concentration. Suitable expansion parameters are €, (Fpia#o/Fgm,), [Fpax™Mo/Fo(m M),
and (N/No)” 3. These four parameters become equal to the limit of small carrier concentratxon. Of the
many possibilities, we list below some used in the discussions of the present paper (in most cases we
have dropped terms second order in the @’s to be consistent with the foregoing calculations):

12 n= ( ) [ Z A, < ;x:nl ) ] , A=4(1-A,-Q), A=—6(1-A, -Q)(A,+2Q,). (A27)

K hd N 2n/3 L

k_g=l+ZBn(N—) ’ B].:(A],—A3)+?(5Q1—Q2—3Q3),
(] n=. 0

B,=(4, - Aa)[% (8, -4,)-1]+ 61-6 [@,(TA; - 824,) +Q,(— 28, + 174A,) + Q,(-634, + 1084,)] . (A28)

K ol N 2n/3 N

7{_§=1+; Cn(ﬁ) ? C1=2(A1—A3)+E(5Q1_Q2'3Q3)y

Co=(a, - A)[3 (4, - 4,)-3]+ E';E [@,(2234, - 6734,) + Q,(-534, + 1434,) + Q,(~ 4754, + 7024,)] . (A29)
s 5, (1Y, b1, oo s )

D, , D=1, Dy==73 (8- 8)+ 3 (-7Q,+2Q,+3Q,). (A30)
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