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We have found the energy-momentum relation of the acoustic deformation-potential polaron to be nearly
parabolic. This means that the energy crossing arguments may be misleading as a tool to justify forms of the
energy-momentum relations for polarons. We have studied the strong-coupling limit to develop a better
understanding of the self-trapping state. We have concluded that in silicon and germanium self-trapping of
electron due to the deformation-potential interaction is not expected. We further have given evidence
suggesting that in the calculations of the energy levels of impurity atoms in materials where the acoustic
deformation potential is dominant the inclusion of the polaron effects might be necessary.

I. INTRODUCTION

In the deformation-potential' model of the elec-
tron-phonon interaction, the electron interacts
with the local strain accompanied by an acoustic
wave. One equates the local electronic energy
shift due to such a fluctuating strain with the ob-
served shift under a homogeneous strain of the
same magnitude. Hence this model is expected
to be successful in the description of the interac-
tion of an electron with long-wavelength phonons.

In addition to scattering electrons from one
state to another, such an interaction would dress
the electron, modifying its ground state and mass.
In the present ease, we refer to the composite
system as the acoustic-deformation-potential
(ADP) polaron.

The polaron problem has received considerable
attention in recent years. ' 4 There is now a rather
clear picture associated with many aspects of the
problem such as the binding to impurities, be-
havior in a magnetic field, internal structure, and
the energy-momentum relations of free polarons.

Among the various polaron problems, the de-
formation-potential polaron seems to have re-
ceived relatively little attention. Toyozawa" has
discussed the self-trapping of an electron due to
its interaction with the acoustic-phonon field
through deformation-potential coupling. Kittel'
has discussed the ground state of the acoustic de-
formation-potential polaron using second-order
perturbation theory and calculated the number of
virtual phonons in the cloud accompanying the
electron. Whitfield and Tomak' have discussed
the possibility that the ADP polaron effect might
contribute to the binding energy of shallow traps
in homopolar semiconductors. Gray' has analyzed
the optical deformation-potential polaron in a uni-
form magnetic field. While this paper was being
written, we learned of the recent work of Whit-
field and Shaw" on the deformation-potential polar-

on in one dimension. Their paper includes a der-
ivation of the interaction Hamiltonian and analy-
sis of the problem in one dimension contributing
to a better understanding of the piezoelectric po-
laron. The strong-coupling limit is treated and
exactly soluble models are given, This work also
made us aware of a paper by Sumi and Toyozawa"
which elaborates on the relationship of the self-
trapping state to the small polaron along the lines
of the previous work of Toyozawa. "

The primary purpose of the present paper is to
study the dynamics of the ADP polaron. We are
mainly interested in determining whether all polar-
ons involving acoustic virtual phonons have an
anomalous energy-momentum relation. This work
is presented in Sec. II. In Sec. III, we study the
structure of the ADP polaron. Self-trapping of
electrons due to the ADP interaction and ADP
polaron correction to the impurity binding energies
are discussed in Sec. IV and V.

II. MOTION OF THE DEFORMATION-POTENTIAL
POLARON AT ZERO TFMPERATURE

Schultz" has discussed the motion of the polaron
using an argument based on the bending over of
the free electron energy-momentum relation due
to its crossing the dispersion relation of the free
phonon field. This argument was used to guess
the energy-momentum relation of the optical polar-
on. Whitfield et al. ' ' applied this argument to
the optical and piezoelectric polarons. Recently,
Sheka et al."have presented a variational theory
giving the energy-momentum relation for the opti-
cal and the piezoelectric polarons of arbitrary
coupling strengths. Based on functional integra-
tion, this theory seems to offer added theoretical
support to the results of the energy-momentum
relation calculations given for the optical" and
piezoelectric"" polarons.

The energy-crossing arguments refer to the
existence of an interaction between an electron
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and a particular branch of lattice vibrations but
not to its form. Since much theoretical evidence
has been amassed in the case of piezoelectric in-
teraction leading to a polaron energy having an
asymptotically linear dependence on momentum,
our attention has been drawn to the acoustic-
deformation-potential polaron. Even though this
type of polaron effect has received relatively little
attention, it would be relevant for silicon, a ma-
terial which has been studied extensively. There-
fore, it seems nearly impossible that evidence
pointing to an anomalous energy-momentum rela-
tion would not appear among the observations.
This is what motivated us to analyze the energy-
momentum relation of the acoustic-deformation-
potential polaron.

A. The Hamiltonian

Polarons have been discussed using a Hamil-
tonian of the form

H= + g IIrqa„a~+/ Q-(a-+a -)e'~', (I}
q q

where p and r refer to the electron momentum
and coordinate, aq and aq destroy and create a
phonon with wave vector q, and Qq is the ampli-
tude of the interaction between the electron and
the qth mode of lattice vibrations. The band mass
of the electron is taken to be a constant and ~q is
the dispersion relation for the field of relevant
lattice vibrations. When these comprise the acous-
tic modes, one writes (d~ = s~ (I ~, taking s to be the
spherical average of the velocity of sound in the

medium. In this case if one expresses energies
in terms of ms' and lengths in terms of g/ms,
one can write the ADP polaron Hamiltonian as

=p'H=
2

+ Q ((I~a„a~+ g Q-„(a~+a ~)e'~', (2)
q

where the physical quantities and operators retain
their previous meanings but are dimensionless.
For the present problem the interaction amplitude
is given by

where E, is the band-edge shift per unit volume,
p is the density of the medium, and V is the volume
of the crystal. The second equality defines a con-
venient dimensionless coupling constant n in terms
of previously defined parameters. In Appendix A,
we observe that in silicon and germanium the de-
formation-potential coupling between the electron
and the field of acoustic-lattice vibrations is
weak. This was the motivation to apply the per-
turbation theory, the variational theory of I.ee,
I ow, and Pines" and Gurari" and the Tamm-
Dancoff approximation with one quantum cutoff
to the present problem.

B. Perturbation theory

Starting with an uncoupled electron and the field
of acoustic-lattice vibrations, we calculate the
energy correction by the second-order perturba-
tion theory where the correction is first order in
Q~

2
E(2)(p) P +~ C

- P'/2 —(P -(I)'/2- e

+ 2 1+3P +

—p(p' ~ p))4( ('", )
—() pp'))4( ) -p(4)( ——

4)I (p& (), (5)

where z is the cutoff on the magnitude of the pho-
non wave vectors.

In order to get an idea about how this result
compares with a similar calculation in the case
of the piezoelectric polaron, "we write

lim d'~(p) =E(0)+p'/2m*, (5)

and compare the self-energies E(0} and the effec-
tive masses for the two polarons for small P Table
I.

Figure 1 shows the energy-momentum relation
given by E(I. (5). It should be noted that unlike
the piezoelectric polaron, the derivative of energy

with respect to momentum at P= 2 is not singular.
Even though for a sufficiently large o. one observes
anomalies such as a negative mass, "for a coupling
constant that characterizes silicon such a problem
does not arise.

C. Intermediate-coupling theory

This theory" is based on using a trial state:

where T, represents the Bogoliubov canonical
transformation



4824 MEHMET RONA AND SERPIL AYASLI

TABLE I. Energy-momentum relations of the acoustic-deformation-potential polaron (ADPP) and the piezoej. ectric
polaron {PEP) for small momenta [EP') =E{0)+P/2m*].

Type of polaron

ADPP by the perturbation
theory

PEP by the perturbation
theory

ADPP by the intermediate-
coupling theory

Interaction amplitude

(&q/2v)'"

(4m/qy)'

(~q/2v)'"

Self-energy
E(0)

-Q/n )(—'f«)

(4&/~) [ln(-,'~+ i)]

—Q/7r') (—'I«)

Inverse effective mass
i/m*

i —(2~/~ )[3 ln(~1«+ i) —i]

i —(4(y/37t)[i —(—'K+ i) ]

j&+ (2o/n')[ —', ln(~K+ i) —i]} '

T, = exp -i r ~ qa qa q

q

and T, transforms to the coherent states of the
field of lattice vibrations

T, = exn P f „Ia„—a-))-

(6)

(9)
with the

a

The upper bound to the energy at fixed p is given
by

The f -„are variational parameters chosen to mini-
mize the expectation value of the ground-state at
fixed polaron momentum p,

f -„=0,/(le'+ Ij I
-j v)

p=v+g(, ,
~

~, q.

Here v is the polaron velocity. "
The last two expressions yield the following

energy-momentum relation for the ADP polaron:

@ (p) P (p-v)
2 2 3m'v

K 1+ gK —V 2 (1+ 2K) —V 2 1-V K1 ~ 3 ' ~ — ln, -v(v' ~ 8)ln *, (1 n )'In — ——
4)2 1+pK+v 1— 1+v 2

(v & 1), (13)

~p —v~=, , 1 —nv' ~ — 1, (1 —3 ')ln ~ nv'tn, v —-1) ( 1). (14)
a, v 1+ ~g-v 1+V 3 (1+ 2K) —V K

3'' 5 2 1+ pK+ v 1-v 1 —v2 2

(E(P)-E(0))(ms*)

0.5 .

0.0

-0.5

a=O
«x =.I

ai - I

— p(ms)

0

For small p, we can cast Eqs. (13) and (14) in
the form of Eq. (6). The appropriate parameters
for this representation is given in Table I.

To compare the intermediate coupling energy-
momentum relation of the ADP polaron with that
of the piezoelectric polaron both are plotted in
Fig. 2.

D. Tamm-Dancoff approximation with one quantum cutoff

- I.O

-le5.

-2.0

FIG. l. Acoustic-deformation-potential polaron en-
ergy-momentum relation given by second-order per-
turbation theory (& = 300).

The last analysis of the weak coupled ADP po-
laron which we present involves utilizing the
Tamm-Dancoff approximation with one phonon
cutoff. This approximation involves a diagonaliza-
tion of the interaction term using a truncated
basis of zero phonon and one phonon states. It
has been noted"'" that this approximation is
particularly suited to cases where the optical
modes are involved in the lattice distortion since
it treats the energy (not the velocity) in a self-
consistent manner.
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FIG. 2. Comparison of the energy-momentum rela-
tions of the piezoelectric polaron (PEP) and acoustic-
deformation-potential polaron (ADPP) given by the in-
termediate-coupling theory of Lee, Low, and Pines
(a = 0.1 and x = 300) .

The Tamm-Dancoff approximation gives the
polaron energy in terms of the integral equation

p2 Q2

(p) --'(p-4)' —iqi
'

q

For the ADP polaron the energy is given by a
complicated transcendental equation. The energy-
momentum relation given by the Tamm-Dancoff
approximation is plotted in Fig. 3.

E. Discussion of the weak-coupling theories of the ADP
polaron motion

Energy-crossing arguments point to anomalous
energy-momentum relations for polarons. For
polarons involving the acoustic modes, the anom-
aly would be a linear dependence of energy on
momentum for large p. '4

FIG. 3. Acoustic-deformation-potential polaron en-
ergy momentum relationship given by the Tamm-Dan-
coff approximation with one quantum cutoff {v= 300).

E~ =
& 4~I g 141&&&&1 t)&& (16)

2m', (—,'q+1)' —v' '

For the piezoelectric polaron Q,
' c q

' and the in-
tegral has a logarithmic infrared divergence when
v =1. On the other hand, for the ADP polaron

For the piezoelectric polaron such an energy-
momentum relation is given by the intermediate-
coupling theory, "a strong-coupling theory, "and
by a technique employing functional integration. "
However, in the case of the ADP polarons none of
the weak coupling theories yields an anomaly of
the type described above.

An anomalous energy-momentum relation of an
electron interacting with longitudinal-acoustic
phonons has been pointed out to be related to the
degeneracy of the unperturbed energies when the
electron (polaron) reaches the velocity of sound. "

The success of the intermediate-coupling theory
in yielding the predicted anomaly in the dynamics
of the piezoelectric polaron has been ascribed to
the fact that the former treats the polaron velocity
(not energy) self-consistently. The anomaly has
been shown to exist at nonzero temperatures, "
when the anisotropy of the crystal is included, "
and even if screening is taken into account. "

%hat seems to render the velocity of sound an
upper bound to the piezoelectric polaron velocity
is the divergence of the energy of the lattice dis-
tortion as v -1. One can show this by calculating
the expected value of the phonon energy operator
with the intermediate-coupling ground state in
Eq. (7),
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Q,
' (x: q and, therefore, E& is finite even when v = 1.
We conclude that the anomalous energy-momen-

tum relation given by the intermediate-coupling
theory for the piezoelectric polaron is a result of
the Coulombic nature of the interaction between
the electron and the field. On the other hand, the
local nature of the deformation-potential interac-
tion precludes an important contribution of the
long-wavelength phonons. Hence, the intermedi-
ate-coupling theory of the ADP polaron does not
yield a linear energy-momentum relation as v -1.

The energy-momentum relation given by the
perturbation theory [Eq. (5)] is not useful as P -1
even for small a, since the unperturbed energies
become degenerate in that limit. Although the
Tamm-Dancoff approximation [Eq. (15)] treats
this degeneracy correctly, it is not useful either
since the correct threshold is determined by the
velocity and not the energy of the electron when
the latter interacts with the longitudinal-acoustic
phonons.

III. STRUCTURE OF THE DEFORMATION-POTENTIAL

POLARON

A qualitative discussion of the structure of
polarons has been given by Frohlich. " Devreese
has discussed the internal structure in connection
with the optical absorption and cyclotron reson-
ance of polarons. ~ A calculation of the structure
of the displacement field of the piozoelectric po-
laron based on the intermediate coupling theory
was given by Rona. " The most detailed analysis
of the internal structure of the moving piezoelec-
tric polaron was published by Thomchick and Whit-
field. " They noted that the interaction Hamiltonian
is the potential energy of the electron in the polar-
ization field of the lattice. Following them, we
calculate the internal structure of the ADP polaron
by considering the lattice potential

IV. ADIABATIC THEORY OF THE ACOUSTIC-

DEFORMATION-POTENTIAL POLARON

Although the adiabatic theory is appropriate
for strong-coupled polarons, the size of the po-
tential well we calculated in Sec. II suggests that
self-trapping might occur even when the coupling
constant n is small.

To investigate this possibility, we write a trial
state

i()„(r—R)) =4(r —R)e~ 'i0), (21)

where the exponential operator describes a dis-
placement field centered about the point R, and
4 (r —R) is a trial wave function for the electron.
We choose

2 3/4

P(p) = e-(Pl ~)
mP2

(22}

To compare the structure of the piezoelectric
and ADP polarons, we show Eqs. (19) and (25) of
Ref. 25 in Fig. 4. Note that outside the piezoelec-
tric polaron radius (r = 1 in units of )f/ms), the
potential is Coulombic. The size of the ADP polar-
on lattice distortion is almost an order of magni-
tude smaller. Within the latter, we have a Yuka-
wa-type potential and outside a rapidly vanishing
fluctuating component is observed. For silicon
the size of the lattice distortion is of the order of
a few tens of atomic spacing and the continuum
approximation is marginally justified. The rela-
tively small size of the potential well around the
electron raises the possibility that the adiabatic
theory of the polaron state might be appropriate
for the ADP polaron.

(1S)

2n 1 —cos(~r)
I es2 2y2

VI(r) =((I(I i Qqq—(aq+a'q)e' '
i 0, ),

where
i g~) is the intermediate-coupling ground

state.
For the stationary ADP polaron (n = 0}, we find CC

——(cos(2r) (si[2r(1+ —,
'

~) J
—si(2r)]

—cic(2r)(ci[2r(1 ~ -', cl] —c'(Ir}))) .
I I I I I I ~ I I I I I I I

IO IO I IO

For large x, we readily obtain

20. 1lim V (r) =——
e n' 2 (20)

R(A/(ms))

FIG. 4. variation of the potential of the piezoelectric
polaron (PEP) and the acoustic-deformation-potential
polaron (ADPP) with distance.
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S(R)= g dq(aqe»" —aate»q ), (23)

(24)

where

where P and d-q are variational parameters.
The expected value of the polaron Hamiltonian

obtained by using the trial state I»I,„(r-R)) is
minimized with respect to the lattice-distortion
parameters dq if we choose

d q
= —Q, Rec, /I q I

U=exp dq gq —gq
q

with

(28)

pressed in units of g/n»s with s, representing the
static dielectric constant. The last term des-
cribes the interaction between the positively
charged impurity which is located at the origin
of the coordinate system and the medium. This
term is ostensibly eliminated by means of the
unitary transf ormation

dq= Q /»»&q ~ (29)

At this point, the minimum value of the energy
depends on P the spread of the Gaussian trial
state

(p) g ~Q &-{a8/o)a
2 I3 q (dq

(26)

When the sum is evaluated, it is seen that the
function E„(P) has a minimum if and only if o»»»/

12m ' is greater than approximately 1.58. For a
finite value of the cutoff ~, as n increases from
the minimum value that satisfies the above con-
dition to infinity, the value which minimizes Eq.
(26) varies between approximately 4/»» and zero.
We recall that the quantity Q', /u&, essentially clas-
sifies the range of the interaction. -" For both the
acoustic- and optical-deformation-potential inter-
actions, Q', /u&, is»I independent and the correspon-
ding strong-coupling theories are equivalent.

We conclude that the existence of a bound state
of the narrow potential well set up by the electron
depends on the phonon wave-vector cutoff ~ in
addition to the strength of the interaction. This
sets the deformation-potential polaron apart from
the corresponding piezoelectric and optical polar-
ons which are insensitive to an upper cutoff on
the phonon wave vector magnitudes. Another unique
aspect of the narrow nature of the potential well
due to the ADP interaction will be covered in Sec.
V.

The transformed Hamiltonian is

H'=U~HU =———+ m a a-p2 p
2

q

+ P Qq(aq+a q)e»q '

4lq
q q

(30)

i I'
+ Q Qq(aq+aq)e'q' . (31)

The last two terms correspond to the modification
of the impurity potential due to the concomitant
lattice deformation and to the self-energy correc-
tion. The latter is a constant which does not play
a role in the structure of the impurity states.
The term which modifies the potential is more
interesting. For both the polar and piezoelectric
interactions Q,'/»d, aa q

' and the modification re-
normalizes P, the strength of the Coulombic inter-
action. Thus in these cases, the unitary trans-
formation in Eq. (28) eliminates the last term in

Eq. (27). In the case of the ADP interaction, how-
ever, this term gives rise to a repulsive 5-func-
tion-type hard-core contribution

&"=If'+ p -' =———+ g Iqla-, a-„+a~(r)
Q2 p2 p

V. BINDING OF AN ADP POLARON TO AN IMPURITY

Consider an electron bound to a singly charged
impurity in a medium where its interaction with
the field of acoustic-lattice vibrations is described
by the acoustic deformation potential.

We will start with the Hamiltonian"

p2 I3H =———+ ~"a-a- + ~ Q-(a-+ a -)e' q '
2 r q q q ~ q q -q

We will take

H'= ———+ IqIa-a-p2 P
q q (32)

as the unperturbed Hamiltonian and study the
eigenstates of Eq. (31) by the perturbation theory.
Since we will confine ourselves to the absolute
zero of temperature, the basis states as shown
in

—P Q-„(a;+a-,), (27) E lt&lo-„o-„) a„lo&=o„a„lo&
p2

q

(33)

where P =e'/e, I»s is the inverse Bohr radius ex- will be used. Here &I» „= In, l, m) are the hydrogen-
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ic eigenstates and ) 0) is the phonon vacuum.
I.ie 5-function perturbation gives a positive

first-order correction to s states and no correc-
tion to p states. The last term in Eq. (31}gives
the polaron correction to the energy of the electron
in the hydrogenic state 4 „. To first order a, we

get

g C l(n'I "' n&l'

E„-E„+PqJqq'
(34)

f (n 1'm '
)
e' "'

)
n lm) ]'

lql

For the ADP interaction the quantity Q', /~ q~ = o(/
2V is wave-vector independent. Because of this
one can at once perform the q integration and later
obtain

r), E„, = o.(nlm ~5(r) ~nlm)

—
2 g f d'r I(., (r)(*I( (rl('. ...

Em'
(36}

To demonstrate this result we calculate the trun-
cated correction to the 2s and 2p states

1 2 1 Q 3 7 QZE = ——P'+- —P ———P200 8 8 p 29 g
(37a)

1 9zE = ——p'+ 0-——p'.2l0 8 29 (37b)

We note that the positive correction to the energy
of the s state dominates the decrease of the energy
due to polaron effects related to the hydrogenically
bound electron. It should be remembered, how-
ever, that the second term of Eq. (34} is an infin-
ite sum such that the contribution of terms with
n'& n and n'& n in )7=In, l, m) has opposite signs.

For the piezoelectric and optical polarons the
energy correction is given by only the second term
in Eq. (34). Since its exact evaluation has not
been possible, various approximation techniques
have been employed for both optical" and piezo-
electric-' polarons. The simple model Hamilton-
ian in Eq. (27) is not realistic enough to deal with
the problem of calculating the energy states of an

impurity in an actual material. Therefore, in-
stead of using a lengthy systematic approximation
scheme, we will point out some of the salient
features of the problem to motivate a rigorous
analysis.

Consider a situation where the binding energy
is such that for all q', E„-E„»x, the maximum
wave-vector amplitude. In this case, we truncate
the summation only to pick up the leading terms

= o(n, l, m
~
&(r) ~n, l, m}

It is interesting to recall that the Kohn-Luttinger
effective-mass-approximation description of the
energetically shallow impurities underestimates
ionization energies without considering the polar-
on-effect modification of the potential of the im-
purity. For this reason the truncated polaron-
effect correction given in Eq. (37a) seems to have
the wrong sign. On the other hand, the truncation
is not justifiable for a typical shallow impurity in
silicon. Although a systematic approximate energy
level evaluation based on a crude model is not too
useful, we hope that the heuristic analysis pre-
sented above will motivate the inclusion of polaron
effects in the calculations of energetically shallow
and deep impurity levels in materials where the
deformation-potential interaction is dominant.

VI. CONCLUSIONS

If an electron interacts with the longitudinal-
acoustic mode of lattice vibrations, the phonon
emission threshold is reached when the electron
velocity is equal to the velocity of sound. This
gives the upper bound theory of Lee, Low, and
Pines a special significance in calculating the
energy-momentum relation of the polaron involving
the acoustic phonons. The reason for this is di-
rectly related to the fact that the Lee, Low, and
Pines theory treats the polaron velocity self-con-

sistentlyy.

For the ADP polaron this theory gives a para-
bolic energy-momentum relation as v-1 and stops
at v=1, the threshold for phonon emission. Thus
we showed that the energy-crossing arguments
which are used to guess the qualitative structure
of the energy-momentum relations of polarons
might be misleading. In the particular case of the
piezoelectric polarons, we identified the singular-
ity which keeps polaron velocity below the velocity
of sound with the long-wavelength phonons and
therefore the long range of the Coulombic interac-
tion. We further discussed the self-trapping of
electrons due to the ADP interaction and obtained
a condition involving the strength of the interaction
and the upper cutoff on phonon wave-vector mag-
nitudes in order for such a state to be possible.
The appropriate parameters for silicon and ger-
manium does not satisfy the condition for the ex-
istence of a self-trapped state.

When the ADP interaction is dominant, the lo-
calized static deformation accompanying a charged
impurity increases the energy of the unperturbed
hydrogenic s states but not the P states. There is
also a perturbation which modifies the energy of
all the states to account for the polaron effects
related to the hydrogenic electron. The heuristic
argument we have presented to substantiate these
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corrections is hoped to motivate the inclusion of
the ADP interaction in the calculation of the states
of the energetically deep and shallow impurities
in appropriate materials such as silicon.
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APPENDIX A

To estimate the strength of the coupling he-
tween an electron and the field of acoustic-lattice
vibrations via the deformation-potential interac-
tion in silicon and germanium, we write a =E', /p,
where E, is the dimensionless quantity represent-
ing band-edge shift per unit volume, and p is the
dimensionless mass density of the medium. E,
is related to the deformation-potential constants
=~ and - „discussed by Herring and Vogt" as
E

g g + 3 g Referring to the data of Murase
et aL,"we obtain the size of the coupling constants
appropriate for both materials as a = 0.01.
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