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The order-disorder phase transition at the surface at A, B-type alloys has been studied using the Bragg-
Williams theory. A simple electronic theory for the order-disorder transition at the surface is also presented.

In agreement with experiments for Cu3Au one finds that the order parameter and in particular the

discontinuity in the order parameter at the transition temperature T, is strongly reduced for the first three

atomic surface layers. We study also the effect of surface segregation on the order-disorder transition at the

surface. One finds that due to segregation the order parameter can disappear at the surface at temperatures

below T, . Also, atomic ordering may suppress segregation.

I. INTRODUCTION II. THEORY

As in the case of magnetism, superconductivity,
melting, ete. , one might expect that the order-dis-
order phase transitions are affected by the sur-
face. One would like to know, for example, over
which distance away from the surface the order
parameter is affected by the surface, how the ef-
fect of the surface depends on the geometry of the
surface, and how atomic segregation occurring
at the surface affects the order-disorder tran-
sition.

In this paper we present a Bragg-Williams-type
theory and also a simple electronic theory for the
effect of the surface on order-disorder phenomena.
The effect of surface segregation on atomic or-
dering is taken into account. It is shown that with-
in the first few atomic layers at the surface the
atomic ordering is strongly reduced due to the
surface. This agrees with experimental results
for Cu,Au. ' We show that the effect of the surface
on the order -dis or der transition is diff erent for
different surface geometry. Surface segregation
has a strong effect on atomic ordering. As a re-
sult of surface segregation the order parameter
in the vicinity of the surface can be strongly re-
duced and might even disappear at some tempera-
ture below the transition temperature.

In Sec. II we outline the Bragg-Williams-type
theory for the effect of the surface on the order-
disorder transition in alloys of type 238(Cu3Au,
Pt, Sn, etc. ) with first-order phase transition in
the bulk. ' ' In Sec. III we present numerical re-
sults and a comparison with experiment. These
results are discussed in Sec. IV. In Appendix A
we give details of the determination of the internal
energy using the Bragg-Williams approximation
and outline in Appendix B a microscopic theory
for order-disorder phenomena at the surface.
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Then, p, and p 8 &
can be obtained from p ~,

+p~; = & and p»+p & &
= 1. The equilibrium val-

ues for x& and g& are then determined by mini-
mizing the free energy

F=U —TS, (2.2)

with respect to x& and q, . This yields the equa-
tions

(2.3)

and

In the following we study atomic ordering at the
surface of a fcc lattice for A. ,B-type alloys. The
lattice is decomposed into planes parallel to the
surface. Then the atomic order parameter q; for
the ith plane away from the surface is defined by

n~-pa, t-p 8, i (2 &)

where p~ &
and p &, are the probabilities to find an

A atom in the ith plane in the a and J3 sublattice,
respectively. Note, in the case of a fcc lattice
and A,B alloys the u sublattice consists of all face-
centered lattice sites and the P sublattiee of all
corner sites of the fcc lattice (Fig. 1). Noting that
N g

p" g+N~; p ~ ) = x;N;, where N„g and N ~,.
are the numbers of a and P lattice sites in the
ith layer with N, atoms and concentration x& of
A atoms, one finds that

q(+ (N(/N~;)x(
1+N»;/Ns;

and
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FIG. l. e and P sublattices
of the considered fcc lat-
tice.
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(2.4)

Here, x~ is the average concentration of A atoms
in the bulk. The equations will be evaluated by
using for the entropy S the expression S =P, S, ,
where S; is the contribution due to the ith layer
and is given by

A. (111)surface

In the following we evaluate Eqs. (2.8) and (2.4)
for the case of a (ill) surface plane. Then one
finds

3 1N;= —Ng and Ng ]=—¹;
A

Pn k +i+4gi y

~ th' t N tN
P . =1 —X) —

~4

B (2.5)

Similarly, by using the Bragg-Williams approxi-
mation the internal energy U is written U =P~ (UI'~
+ UI' ), where UI' and Up are the contributions
due to the ith layer which result from nearest-
and next-nearest-neighbor interactions. In the
Appendix A these energies UI', Ua" are determined
explicitly.

P B, f xi 4R$s
A,

and
B 3

p 8 )=1 —+~+4'g

Using now the explicit expressions for S&, U, ',
and U|,"one obtains from Eq. (2.3} the coupled
set of equations
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W~'~, 1, Wi'l 3, («, +~g2)(1 -x, +~42)

(2.6)

and from Eq. (2.4) the coupled set of equations
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kT ' ' ' kT ' ' (1 —xb —~gb) (1 —xb+ 47}b)(«2+ 44}2) («2 4r}2)

These equations determine x; and g, . The ener-
gies of unmixing W(' and W ' which refer to near-
est- and next-nearest-neighbor bonds are given
by W =2UA'B —U„'„—UB'B, i=1, 2. Note that if
segregation is absent or neglected then all x& =xb
= 0.'I5 and Eqs. (2.6) simplify to

gr (1) W(z ) 16
(rl, + —,'bl, }—

k
32b=3ln 1+

3(1
"'

),
/1

W(1) 3W(z )

kT ( l2+ 2 11+ 2r)2) kT (}1+t}2)

=31n 1+ ', , 2.8)
16qz

B. (100) surface

In the [100] direction there are two types of dif-
ferent planes. There are planes of type 1 with
equal number of z and P sites, such that N«
=N&, =-z'N& . The other planes of type 2 contain
only z sites. Thus, one can define order param-
eters

terchange of atoms between adjacent planes in the

way to properly describe the order. That is, the
concentrations g„g, referring to the two kifids of
planes are functions of the temperature. In the
complete ordered case the concentrations will be

and xz' = 1, respective ly, and in the disordered
situation the concentrations will be equal to 0.'t5
everywhere. To calculate for the bulk x'„xz', and

g, as a function of T we use the equations

QF
~X ~X ~7[

with

b b+1+A'z = 2+b .

The solution of these equations are sho~n in Fig.
2. This gives a linear dependence of the concen-
trations on gb:

b 3 1 3 1
4 47)b and gz = 4 + 4Y)b ~

In the case that the surface plane is of type 1 the
equations determining q„, and x, are

10

09-
APa, a =&c+ZRS) AP g, f +i 2gi~

P~ g
= 1 —x] —zYj~, and p 6

- = 1 —x]+—
gg

B B 1 (2.9) 08-

0 7-

005 0.10 0&5

for the planes of type 1 ~ For the planes of type 2
one has

Bp, «, -x«, and p~, » —1-x&».
If one now subdivides the lattice into these planes
parallel to the (100) surface, one has to allow in-

0.6-

05

FIG. 2. Temperature dependence of the concentrations
x& and x2 referring to bulk (100) planes. @ is the

b

energy of unmixing due to nearest-neighbor bonds.
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(2.11)

In the case where the surface plane is of type 2
the corresponding equations are

III. NUMERICAL RESULTS

In Fig. 3 we show for the bulk results for the
order parameter q~ (T) in order to illustrate the
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0.1-

FIG. 3. Temperature de-
pendence of the bulk order
parameter. The curves A
and B refer to S = 0 and

/W = 0.125, respec-
tively.
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significance of taking into account next-nearest-
neighbor bonds. Then, using Eqs. (2.6) and (2.7)
we have calculated the temperature dependence of
the order parameter in the vicinity of the (ill)-
surface. In Fig. 4 we show results obtained for
the (111)surface for q„q„g„etc., in the ab-
sence of surface segregation. In order to study
the effect of surface segregation on atomic order-
ing, we show in Fig. 5(a) results for q, (T) obtained
by taking into account the surface segregation
shown in Fig. 5(b). Note, both surface segrega-
tion and atomic ordering have been calculated si-
multaneously from Egs. (2.6) and (2.7). In order
to study how the atomic ordering depends on the
surface geometry, results are shown in Figs. 6
and 7 for the order parameter in the surface layers
for the case of a (100}surface. The results refer
to the different two possible surface configura-
tions.

IV. DISCUSSION

In Fig. 7 the numerical results obtained for
q;(T) using the Bragg-Williams approximation are
compared with experimental results' obtained for
Cu,Au. Note that from the experiment one obtains
an average order parameter. In the experiment
one observes an order parameter which is aver-
aged with respect to different possible atomic con-
figurations at the (100) surface and which is also
averaged over the surface region which is proved
by the experiment. Therefore, the results shown
in Fig. 7 for the average order parameters q~'„~

2[ 2 (t)1 +r)3) + 2 (92 +re)] a r) „2[ (Rl +r)3+ 9
+-', (q, +q, +q, )] should be compared with the experi-
mental results. It is interesting that g~'„~ agrees
better with the experiment than q~„'~. This might

indicate that the LEED experiment' probes a sur-
face area which corresponds more to the spatial
average yielding q&„' than the one yielding q~'~. As
expected on physical grounds our numerical an-
alysis yields that q~'„and p~'„ increase for de-
creasing surface segregation. Therefore, the
agreement with experimental results could be im-
proved if values for the parameter (U» —Ues) are
used which yield less segregation than was ob-
tained in our calculation. Note, the previous Mon-
te Carlo calculations of g&'„~ assume no segrega-
tion. Also, it has been assumed in all our calcula-
tions that the bond energies do not change at the
surface. It is of interest to study the validity of
this assumption within a microscopic electronic
theory. Clearly, if the bond energies are concen-
tration dependent, then the surface will cause them
to change. Finally, note that for an irregular sur-
face one has to average the order parameter also
over different surface configurations.

The theory presented could be easily extended
by determining U within a microscopic electronic
theory, for example, by using U=Z, U, and U,
= J dEEN, (E), where N, (E) is the electronic
density of states referring to the ith layer paral-
lel to the surface. However, as long as the un-
mixing energies W"' and W"' are only weakly
concentration dependent, the Bragg-Williams ap-
proximation should be sufficient.

Note, we find that only the q, for the first few
atomic surface layers are strongly reduced. Com-
paring the results for r), obtained at the (111)sur-
face, see Figs. 4 and 5, with those at the (100) sur-
face, see Figs. 6 and 7, one notes that the reduc-
tion of q, (T) depends strongly on the surface geo-
metry. The results shown in Figs. 5 and 6 indi-
cate that surface segregation may have a strong
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o4- a+P
n3-a P
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FIG. 4. Temperature de-
pendence of the layer-de-
pendent order parameters
g;, for the (111) surface.
Surface segregation is ne-
glected. As indicated by the
inset, each plane parallel
to the surface consists of
a and P sites and g& refers
to the surface plane, g& to
the second layer, etc. , and
rj~ to the bulk.
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FIG. 5. (a) Temperature

dependence of the order pa-
rameter g& at the (111) sur-
face, taking into account
the segregation shown in

(b) for different values4:—(lg-Uzz)/W '~. (b) Re-
sults for the temperature
dependence of the surface
segregation. The concen-
trations x& and x2 refer to
the first and second surface
layer.
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effect on atomic ordering. Note that at T, all g,
disappear. In view of the fact that approximately
T, ~x(l -x), one might expect due to surface seg-
regation (x, +x„) that at the surface T, ~& Tb"'" de-
pending on x~& 0.5. However, if the surface segre-
gation occurs over a distance d away from the
surface, then for d& $,(T) all q, (T) disappear at
the same temperature and hence Te"~"'= Tb"'"

$,(T) refers to the correlation length measuring
atomic ordering in a direction perpendicuLar to

the surface. However, note for d& $,(T) it seems
possible that T;""~'+T,"'". This argument ex-
plains why due to surface segregation q, (T)-0
(i =1,2) at temperatures below T„where (~(T)-0 (see the results shown in Fig. 5).

More local experiments would be desirable for
a comparison with our numerical results for
q~(T), g2(T), etc , obtained . for different surface
geometries. In particular, it would be inter-
esting to check experimentally our results
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FIG. 6. (a) Temperature
dependence of the order pa-
rameters g&, g3, and

&(g, + q&) at the (100) surface.
The inset schematically
shows the surface config-
uration of type 1 which has
been used (see text). The
bars represent exper imen-
tal results (Ref. 1). (b)
Surface segregation vs
temperature.

'r13(T) (r 0) 0

(see Fig. 5) obtained in the presence of surface
segregation. It would be interesting to study or-
der-disorder transitions in alloys A+3 with x,
& 0.5 and surface segregation such that at the sur-
ace x&xa ~

In the disordered case, the equations that deter-
mine the concentrations x, reduce to the equations

for segregation in regular solutions. "Here we
have assumed no surface relaxation, but since
the effect of relaxation is to reduce the segrega-
tion, if the pair bonds at the surface are stronger, '
we expect a less drastic reduction for the surface
order parameters in that case.

Our results shown in Fig. 5 indicate that sur-
face segregation and atomic ordering affect each
other. We find that for AP-typealloys segregation
always tries to destroy the atomic order, but also

1.0—

0.9- (1 0 0)-SUf'fBCB

0.8-

0.4- a
a+P

Q3-

0.2-

0.1-

X1
o—X2 qx3

X 'e
lr g

0.05 0.10 0.15

FIG. 7. Temperature dependence of the order parameters g; at the (100) surface. As indicated by the inset, the sur-
face configuration of type 2 has been assumed. Average order parameters

ri,„=3 [3(33&+3b}+a(3e+ p4)) and Q,„=3(3(pf g3+ q3)+g(333+ 3(3+ 333)),

with respect to the two and three topmost &+P layers for the two types of (100) surface configurations are shown. The
experimental results (Ref. 1) are shown by bars.
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that ordering can suppress segregation if the dif-
ference 6= (Us()s) —UAA))/W") is small (Fig. 5).
Until now theories that describe surface enrich-
ment in ordered alloys have assumed the same
order at the surface and the bulk."

Note, if x('&x2 and if T,(x} increases for in-
creasing x, then )I'(""(T)~ F12(T) at T & T, may be
possible.

It is of considerable interest to study the effect
of the surface on the order-disorder transition
by using a microscopic theory for the electronic
structure at the surface. Thus, the dependence
of order-disorder phenomena at the surface on
the various electronic parameters, electron-
charge transfer, chemisorbed atoms and mole-
cules, etc. , may be studied. In Appendix B we
present such a microscopic theory for surface
effects on order-disorder phenomena. In order
to simplify the theory we consider a (100}surface
of a simple cubic lattice.
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APPENDIX A: DETERMINATION OF THE

INTERNAL ENERGY U

—3N„-NAA —NBB

Nlt 2(1)+ N2t 1(1) —N iN1 2(l)+ N2t 1(1))
AB + AB 2 II i AA + AA

iN1 t 2(1 ) ~ N2, 1(1)
)BB BB

The internal energy is given by

U U(l) + U(2)

where

U(tt) (2/Z )[Ni, i (n)Ui. i(n)y t (N(tin)(n) Ui, (nl(n))
AA AA + 2 AA AA

+Ni, i(n)Uii(n) + t i,Ni, i l(n)nU( ~ (nl(n))
BB BB + 2'L BB BB

+ Ni& i (n) rri, i(n) + I g)tri2 i+1(n) yri, i+1(n)%1

Here, Z, and Z, are the number of nearest- and
next-nearest neighbors, N„'„""'are the number
of A-il nearest- (n= 1) and next-nearest-neighbor
atomic pairs (n= 2} in the ith layer with U~A'A"") bond
energies. All the other quantities have a similar
meaning.

Using Table I and the probabilities given in Eq.
(2.5) we get for the (111)surface the expressions

NAA = ~2Ntt[(x) '))(Ix+ )I,-)+ (nx, + 4)I,)'] t

N122(1) + N2 1(1)
AA AA

= N„((x) ——,')I,}(x2+-,')l2)

+ (x, + )I,)[2(x, + —,' )I2) + (x, ——,')7 )]},

and for next-nearest-neighbor atomic pairs,
N121(2) —PAA

NA'A + NAA &Ntt[(x) & Il)(x2 & 72)

+ 3(x, +-,')I()(x2+ n)I2)],

N121(2) pBB

Ns)) "'+N))')')"' = n~„[(I—,+ 2)I,)(I — 2+ 2)I2)

+ 3(1-x, --,'1),)(1-x2--,')I2)],

N121(2) pAB

'+N ' '= N —iN)' '+N—' )AB + AB 2 II % AA + AA

BB BB(Nl. 2(2)+ N2, 1(2))

In the (100) surface we obtain, using Table II and
the Eqs. (2.9) for the surface configuration type
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Site in the
ith layer a b c d e f g h

~ type 1
o.'type 2

P

0 4 4
4 0 2
4 0 4

0 4 0
2 4 0
0 0 4

1 0
1 0
0 1

1, the expressions

N'g„'") = 2N„(x, -2)t, )(x,+ 2)t,),

NAA + NAA
' = 4NtPC1X

Nls's" 3) = 2N„(1 -x, —2)t,)(I -x,+ 2)t,),

N12 l(1 ) 2N Nl ~ 1 (1) Nl ~ 1(1)
AB tr AA BB

Nl, 2(1) + N2, 1(1) 2N (N1, 2(1)
+ N12t1(1))AB + AB tt & AA + AA

(Nll 2(1) + N2( 1(1))BB BB

TABLE G. Number of nearest- and next-nearest neigh-
bors for each & and P site in the two types of (100)
planes. Columns (a), (b), (c), (d), (e), and (f) have the

same meaning as in Table I. (g) Number of next-nearest
neighbor o.'sites in the (i + 2) th layer. (h) Number of
next-nearest-neighbor P sites in the (i + 2)th layer.

It is easy to derive a similar set of expressions
for the surface configuration of type 2.

APPENDIX B: ELECTRONIC THEORY FOR THE ORDER-

DISORDER TRANSITION AT THE SURFACE

OF BINARY ALLOYS

Recently, several authors have described the
order-disorder phase transition in the bulk medi-
um using a band-model calculation. All these
calculations have been done in the coherent-poten-
tial approximation. ' "

Here we present such a calculation for the order-
disorder transition at the surface. A continued-
fraction technique is used for determining the
local electronic Green's functions on the surface
of a semi-infinite crystal. We assume that only
the first three layers near the surface are affected
by the surface. We find that atomic ordering
occurs at T, in the bulk as well as at the surface.

Consider a binary alloy AQ, with N lattice
points and assume that these lattice points can be
subdivided into two sublattices a and p, such
that there are &N sites of type n and &N sites of
type p. Each site o. has z sites J3 as its nearest
neighbors, and each site p has z sites a as its
nearest neighbors. We consider now the simple
case of a simple cubic lattice and an alloy with
concentration x = 0.5. If the number of A atoms on
n sites is denoted by 2(1+ )t)2N, then the order
parameter q varies between 0 and 1. Since all
atoms which are not on e sites are on I3 sites and
all sites are occupied by A or 8 atoms, we have
the following distribution:

and for next-nearest-neighbor atomic pairs,
N)I)&»-N [(x + —')t )2+ (x —')t )2]

N~ + N~g N2[(3x+12 'gl)(x3+ 2 )t3)

+ (X, --2')t, )(X3 --2')t3)],

Ns))
' =N„[(1-x, + 2)tl) + (1 -x, - 2 )t,) ],

N'" '+N""'=2N [(1-x +2)t,)(l-x,+2)t,)

N~=2(1+1t)2N=N(), NB =2(1 )t)2N=N~ .-(Bl)

If )t = 1 (the complete order case) all A atoms are
on the + sublattice and all B atoms are on the P
sublattice. If it=0 (the complete disorder case),
there are as many A atoms on o. sites as on P
sites and the sameholdsfor B atoms. Values of q
between 0 and 1 correspond to intermediate de-
grees of order.

The electrons in the binary alloy are described
by the tight-binding Hamiltonian

Q = ~ f ~cf}fc~+~ f8C8C6+ ~ tc~cg ~

CX 8 a~S
(82)

N4 3(2)+ N3 1(2) 1N (N) 3(2)+N3yll(2))
AB AB i tt i AA + AA

BB BB(Nly 3(2) + N3 ~ 1(2))

Here, the electronic energy levels of atoms sitting
in the n and p sublattices take the values aA or cB
with probabilities

p~ = 2 (1+q), p() = 2 (1 —)t)

p() =-2'(I -)t)~ p() =-2'(I+q)

respectively. c,cq, c,c8 are the usual electron-
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ic creation and annihilation operators referring to
sites in the e and p sublattices. The hopping inte-
gral t describes electronic transitions between
sites in the n and P sublattices. The average local
electronic Green's function G on sites in the n
sublattice is given by

G«(E, ti) =p~/(E —e~ -z~)+p~/(E -es -g) (B4)

Here, 6 is the electron self-energy resulting
from the electron hopping processes starting and
ending at the site i of the z sublattice

test
E -ea —g6

A B
t2 PS PB

Ck a68 E 6B 68

In a similar way one finds approximately

A paat -—(* —1)f'( "
p q) . (B6)

The continued fraction is approximated by

A B

E —eg —Ag E —CB -68

Thus, we get for sa the equation

A

d.s = (z —1)t'
E —e~ —(z —1)i'[Ps/(E —ex —ii's ) +P8/(E -as —As)]

pB

))) f)sn~ ~ +8)+08~) +II))) (B8)

A B
P P

&8 —z E -e~ -Z E -zB —S (Blo)

Then, the average local density of states is cal-
culated from

N(E, t})= -(1/2v) 1m[G~„(E,q)+ Gee(E, )7)j . (Bll)

To calculate the order parameter q we minimize
the free energy

F(R) = U(ti) —TS(t}), (B12)

with respect to q. Here the internal energy is
given by

U(n)= f dEEN(Z, II)

and the entropy is given by S(t})=S(0) +AS,

(B13)

hS= -k ln + ln . 9141+@ 1+@ 1-g 1-q
2 2 2 2

In order to apply this theory for studying surface
effects, we assume that the surface affects only
the first three layers near the surface. %e intro-

This equation can be rewritten as a fifth-order
equation in 68 as a function of z, e„, c B, g, and
E.

The average local Green's function for the P sub-
lattice is given by

pA B

Gss(E, t})= 8 +F —6~ AB E ~B +8

with

p„' = —,(1+q,)) ps =-, (1 —t},) . (B16)

ti i is the hopping integral between the atoms in the
same layer and t;

ized

is the hopping integral be-
tween atoms in ith and (is 1)th layers. zo is the
number of nearest-neighbor atoms in the ith layer
and z, is the number of nearest neighbors laying
in the adjacent layer. aaj' refers to the self-ener-
gy which results from electron hopping processes
starting and ending in a site in the ith layer of the

P sublattice and avoiding a site in the same layer
of the n sublattice.

Using the same technique as before, see Eqs.

duce then as before layer-dependent long-range
order parameters q; which describe the atomic
order in the ith layer parallel to the surface.

The local Green's function depends then also on
a layer index

a.j a, j
G) (E) PA + PB

E -&~j -&a E -~Bi -~a
where

Bi Bj
pi z t2 PA + PB

a 0 ii njj tX jE —egj -hgj E —eBj -Zaj
Bj Bj

t2 pA + pA

&=i+i E &&y ~84 E &84 &8

(B16)

Here, p~' and pB' are the probabilities to find an
A or B atom in the ith layer of the z sublattice,
and are given by
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y 0.0

2IL

——-"0.4
"b

—&' ~ I
Zj ~
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FIG. 8. Bulk local density
of states &q(E) for &=&A-
&~=0.6 and for several
values of gy. %e show only
the lower-half of the band
since &p (E) is symmetric.

(B8), one obtains

( 1, , ~ (1+ii;) a (1 -0i)
e~i -&ai E —ea -&ai

a(1+'%) ~(1-4)
j=gay + ~Aj +aj k —682

(Bl t)

Qg, ~ ~ ~
A 'J

(B18)

E~
~i d E+i( i i li-» t}ii ni+ii ~ ~ ~ ) 1 (B20)

= -(1/2w) Im[C„' (E, . . . , q, „q„q,„,. . . )

+ G88(E| ~ ' ' r 1i-i& lii } + i&' i' ' )] '

and where the electronic density of states
N;(E, . . . , q; „gati, t);„,. . . ) referring to the ith
layer is given by

&;(E, 'Oi-, st};~'4+» ~ ~ )

We may then proceed by writing

U= Ug (B19)

Note, the energy U; depends now approximately
only on q; y Qf and q;, „. As before, the entropy
is written in the form

where U,. is given by the expression zs = ss]

10—

0.6-

0.4-

0.2-

0.2 Q.4 0.6

~l

(1
I

I

0.8 IKT

FIG. 9. Temperature de-
pendence of the order para-
meters g&, g, and q, us-
ing & = 0.6 and for the hop-
ping integrals t,„,f=tb„Ik .
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where

AS& = -k ln + ln1+g] 1+@] 1-g] 1-gl 0.6-
2llCI

lb = 0.310

t)1 = 0.165

q2 =0.210

In order to compare our simple theory with more
elaborate theories, "we show in Fig. 8 results for
the bulk local density of states as a function of the
energy and the long-range order. Note, these re-
sults are in fair agreement with those shown by
Plischke and Mattis" using a generalized form of
the coherent-potential approximation. In Fig. 9
the results are shown for the order parameter
qi(T) We .see that the effect of the surface is not
strong. However, this is only so because for a
simple cubic lattice the coordination number is re-
duced only by one at the (100) surface. Also re-
sults for the average local densities of states in

the first two layers are shown in Fig. 10.
It is of interest to expand the internal energy

U& and S, near T, as a function of the order param-
eters. One then obtains for the free energy the ex-
pression

't i &is iis 7i+z&''')

BF ~ BF=El +—'gl +
Bgg )-g yi Bgj

BI' BE
+ 2 'gi+ ~ 'ggQy + ~ ' '

4

0.2-
Bulk

I ]r'

-1,0 -0.5

Energy

FIG. 10. Layer-dependent local density of states
@f(E), &2(E), and +p (E) referr ing to the first, second,
and bulk layer for the indicated set of g&, g, . . . , pl) equi-
libr ium values.

Note, the linear terms in g& will disappear for i
) 2 (i =2 second layer) for symmetry rea. sons.
However, for the two surface planes due to the
broken symmetry these terms will remain and will
try to reduce the order parameter to zero at the
surface. From SF/Sri; =0 one finds thus a set of
coupled Ginzburg-Landau-type equations determin-
ing g„g2, etc.
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