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In this paper, a theoretical analysis of secondary electron emission in the nearly-free-electron (NFE) metals is
presented. Restricting ourselves to excitation of secondary electrons (SE’s) from the valence (or conduction)
band only, we investigate the roles played by screened electron-electron scattering and by volume- and surface-
plasmon decay in the excitation of SE’s. Using the complex dielectric constant in the random-phase
approximation we demonstrate that an important source of low-energy SE’s may arise from the decay of long-
wavelength surface and volume plasmons via near vertical interband transitions. A simple transport theory
based on the work of Berglund and Spicer is developed to treat the SE escape problem approximately
assuming an idealized model of the solid-vacuum surface barrier. Model calculations of the external SE energy
distribution curve (EDC) and its derivative are presented for aluminum. The results are in reasonable
agreement with some recent experimental EDC’s obtained by a number of authors on clean Al samples. We
tentatively conclude that an appreciable contribution to the total number of low-energy SE’s emitted from
NFE metals under kilovolt electron bombardment may come from the decay of surface and volume plasmons
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into single-electron excitations.

I. INTRODUCTION

The phenomenon of secondary electron emission
(SEE) in solids has received considerable attention
in the past.!™® In virtually all theoretical treat-
ments of SEE in solids, secondary electrons (or
SE’s as they are commonly denoted) are assumed
to be generated through direct electron-electron
scattering between the incident (or primary) ele-
trons and the electrons associated with atoms in
the solid. AnSE excitation function derived by
Streitwolf* utilizing an unscreened Coulomb poten-
tial has been used most often.

It is well known'*'5 that owing to the dynamic
screening of the pure Coulomb potential, the con-
duction or valence electrons in many solids can
take part in collective oscillations known as plasma
oscillations or plasmons. A large number of char-
acteristic energy-loss experiments (using elec-
trons in the keV range) have demonstrated the
existence of both volume and surface plasmons in
many solids. An extensive list of references on
characteristic energy-loss experiments can be
found in Refs. 16 and 17. Theoretically, it has
been shown'* that plasmons should constitute a very
important energy-loss mechanism for incident
fast electrons in many solids. This has been con-
firmed by experiments.'®:7

In an actual solid, a volume plasmon once ex-
cited can decay via the mechanism of interband
transitions. Pines'® and Ferrell*® have given theo-
retical expressions governing the rate of this de-
cay process. Plasmon decay via interband transi-
tions can occur even for plasmons of very long

wavelengths, the transitions in this case being
nearly vertical in the reduced-zone scheme. [In
a free-electron gas, volume plasmons cannot de-
cay into a single electron-hole pair unless their
wave vectors exceed a critical value if one re-
stricts oneself within the random-phase approxi-
mation (RPA).*] Because of the possibility of
plasmon decay via interband transitions, it is con-
ceivable that electron emission can result from
the decay of plasmons created by external radia-
tion. Steinmann and Skibowski*® have attributed
observed peaks at the plasma frequency in the
photoyield spectra of aluminum films to the decay
of plasmons via interband transitions. With re-
spect to SEE, Gornyi®* appears to have been the
first to point out that plasmon decay into single
electron excitations probably plays a role in SEE
in some solids. Very weak structures in the ex-
perimentally measured SE energy distribution
curves (EDC’s) from aluminum were attributed
by him to plasmon decay.?®> The observed struc-
tures occured at SE kinetic energies in vacuum
equal to fiw— ¢, where fiw is the surface- or vol-
ume-plasmon energy and ¢ is the work function.

Subsequently, various authors have reported the
observation of similar structures in the SE EDC’s
of A1.%*"* Some of these authors®*2® have also at-
tributed the origin of the observed structures to
plasmon decay. However, to the best of our know-
ledge, no one has yet given a quantitative theo-
retical analysis of the possible role played by
plasmon decay in SEE.

In this paper, we present a detailed quantitative
analysis of SEE in the nearly-free-electron (NFE)
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metals, restricting ourselves to excitation of

SE’s from the valence (or conduction) band only.
The roles played by screened electron-electron
scattering as well as volume- and surface-plasmon
decay are considered. The results of actual model
calculations of the SE EDC are presented for
aluminum and compared with existing experimental
data. The random-phase approximation is used
throughout our analysis.

II. SE EXCITATION: VOLUME-PLASMON DECAY

In this section, we analyze the excitation of SE’s
in solids by the decay of volume plasmons gen-
erated by the incident fast electrons. We describe
the crystal electrons by the Bloch scheme, in
which the one-electron states are described by a
band index I and reduced wave vector k. We are
interested in the process in which an incident fast
electron of initial momentum hﬁo and energy E,
interacts with a crystal electron in an initial state
IZ,E), causing it to undergo a transition to a new
state |I’,k’). After the interaction, the incident
electron has a final momentum %K,. Both the
initial and final states of the incident primary
electron are assumed to be describable by plane
waves. Applying the Fermi golden rule to the
scattering act and using the RPA, we can write
the transition probability per unit time for the
process just described as

327% * |(I'K’ 1IK) |2
nakgt le(@,w)l?

—E 3 — Tw), (1)

w(l,k - 1'k") =

X 6;’, E+€6(E 1k

where §=K,-K,, and

(k' |1k) = ufig (Fu,g(T) dF. (2

In (1), A is the volume of the solid, E 4 and
E,; are the one electron energy eigenvalues of the
two Bloch orbitals taking part in the transition,
and €(q,w) =¢,(§, w) +ie,(d, w) is the RPA longi-
tudinal dielectric constant for Bloch electrons. %27
Also, 7w is the energy loss suffered by the inci-
dent electron, i.e., fiw=#n2K2/2m - K?K?/2m
=E,-E,. In (2), u;; and u, are the periodic part
of the Bloch functlons so that (F|Ik)=a"1/2
xell¥y (). 4, is the unit-cell volume and [
implies integration over a unit-cell volume.

Equation (1) is a straightforward generalization
of an expression given by Ritchie?® (for a free-

electron gas) to the case of Bloch electrons. In

(1) local field corrections to the dielectric con-

stant are ignored. A concise derivation of (1) is
outlined in Appendix A.

The allowed transitions in (1) can be either in-
traband (I’ =1) or interband (I’ #1) in nature. We
must have the states Il ,E} initially occupied and
|l',l?) unoccupied. Equation (1) already embodies
the mechanism of plasmon decay excitation of
SE’s. To see this, we note that the ¢™* factor im-
plies that transitions involving small momentum
transfers are heavily favored. In the limit of very
small ¢ and for the NFE metals like Al, €, can be
regarded as very small in the immediate vicinity
of the g ~ 0 plasmon frequency w,. Hence [1/¢€|

]1/ (e, +ze2)l has a large resonance in this domain
for €, sufficiently small. To put this in mathe-
matical terms we follow Ehrenreich® and write

€@, 9 |uxo,

~ 9¢y
~ ((x(q,wp)+3—w-

wzw

(w=w,) tig,(g, w,)) .
(3)

Furthermore, for solids like Al,lim__;¢,(g,w)
in the vicinity of w, is extremely well approxi-
mated by the expression 1- (w,/w)*. Substituting
in (3), we obtain for ¢ small,

€lg, wrw) ™ (2/w,)(w=-w,) +ie,(g, w,) 4)
and

1 o (wy/2)
lelg, v~ w)? " (0= w,)?+(wd/Be,(q, w,)?"

Defining T, =lim__ hw,€,(q, w,), we have

1 N (L,/27)(w,/2)
lelg,wmw) * " [(w=-w,P+(T,/28F]e,(q, w,)

(6)

For T, very small, (6) is a very sharp Lorentz-
ian centered at w,, representing the sharp plas-
mon-loss lines observed in characteristic energy-
loss experiments. I, is associated with the finite
damping of the plasmons which must exist in
actual solids. We note that our expression for
T, has already been derived by Pines***® and
Ferrell.'® Substituting (6) into (1), we have, re-
stricting ourselves to processes involving very
small ¢ and occurring in the neighborhood of Wy

WE - 1) ~ (321r3e4> (wpTy/40) | (1K’ |IK) 165, ¢, 20(E 13— E 53 — Fiw)

Aﬁ h—qtl

[(w = 2,7+ (T,/210%)e;(q, ) ' w
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In (7) we have replaced w, by w in €, since we
are interested in the frequency region w~ w,.
Now in the limit of very small g, the RPA expres-
sion for €,(§, w) in the Bloch scheme can be writ-
ten as!*?7

Tr2
€@, w) = —% Z 5(hw—E | 3,:+E )
Ag? &
1t
4112
e Z lPl'l *8(E yi— E 10— i),
BT
(8)
where
R e puE -
Py, . Ul @ Pupdr. (9)
0°o

In (9), §=84/q and P is the momentum operator.
The prime on the second summation denotes that
terms with I =1’ are to be excluded. The first
term on the right-hand side in (8) represents the
intraband transitions while the second term rep-
resents the interband transitions. From perturba-
tion theory,?” we have

i [0 |18 = D= 01 - 5,

"<mw > Py l2,  (0)
. > e (dmePw,) I"/Zh’ O g(1 -6
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where
Fwyy =E o= E g0 -
Using (10) we can write, for ¢ very small,
83 1.q| K’ |TR) PO(E 30— B, 3 - Tiw)
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We now note that for NFE metals like Al, with
near parabolic energy bands, the intraband tran-
sition energy 6 functions in (11) and (8) will, in
general, vanish in the limit ¢ -0 and for w~ w,.
This is because for near parabolic bands, mo-
mentum and energy cannot be conserved simul-
taneously in this limit. Hence, keeping only the
vertical interband transition terms in (11) and
(8), and substituting in (7), we have

t'x)fo(ExEc)[l - fo(Em':')] | P, 126(E 1= E 13— Fiw)

le'xi'fo(E 1?')[1 _fo(El'P)] |P§‘q 126(E vie=E g fiw)

(12)

In (12) we have taken care of the occupancy requirements by introducing the Fermi-Dirac distribution
functions f,’s. We obtain the total transition rate into final state |l'k') by summing over all [l k) and

small wave vectors §,

> 7
WT(l,k,) = Z <41;eﬁ;i;)}> r‘v/z

small ¢g*s

21 Fo(E 31 = fo(E 13)] | PE, 125(E 30— E 13~ Hiw)

(ﬁw—ﬁwp)2+(rv/2)2 Zt'u:'fo zt')Tl fo(Ex"E')]]Px'xl 5(E1'P‘E1E' hw)’ 13)

From (13), we obtain at once the differential transition rate per unit excited SE energy.

aw <41re2mo,) r,/2
= 2 2 F(E,hw),
dE small ¢’s Aﬂq (ﬁw - h—wﬂ) + rv/z)z
where
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We note that for polycrystalline solids or solids
with cubic symmetry such as Al, in the limit
q -0, the momentum matrix elements are ihde-
pendent of the orientation of g,***® and the term
F(E,nw) is identical to the normahzed optical
energy distribution of the joint density of states
encountered in photoemission studies of solids.*
Now in (14) the factor

4ne*hw,(I'/2)
Alg?[(Bw - iw, ) +(T,/2)°]

small ¢’s

is just the transition rate for generating long-
wavelength plasmons. Also the term F(E, fiw) is
correctly interpreted as the electron energy dis-
tribution resulting from plasmon decay via ver-
tical interband transitions. Hence (14), (13), and
(12) describe a second-order process in which the
incident electron first creates plasmons with
¢=0 which subsequently decay via vertical inter-
band transitions, thereby producing energetic
SE’s.

To proceed further, we replace the summation
in 4 by an integral,

$-a/fa

-

q

Referring to Fig. 1, which depicts the geometry
of the scattering act, we have dd=2wq,dq, dg,.
Also, for very small g or, equivalently, 8, we
have the approximate relation®®

¢ =q+q}=K36"+6%), (15)

where 6z =hw/2E,, and E, is the incident electron
energy. Hence,

d=nK 36d6d(hw)/E, . (16)
Substituting in (14), we have
AWy _ E€hwKo
dE Z}iE0
y f"l 8do
b 6%+ 6%
Xf d(hw)
(1]

/27
( S h’w,)2+(r,,/2)2>'
(17)

Dividing (17) by the incident-electron velocity,

o4

qu

FIG. 1. Scattering geometry discussed in the text.
KO and Kl are initial and final wave vectors of the inci-
dent primary electron. The components of the momen-
tum transferred parallel and perpendicular to ]?0 are
denoted by kg, and 7q, respectively.

we obtain the differential inverse mean free path
(MFP), or probability per unit distance for creat-
ing SE’s by volume-plasmon decay,

d(1/x)
dE

=AGHE,, 6) f F(E, w)
0

oL r,/2
[T ey 0,
(18)
where

2 2\ 1/2] -1

N oy )= 20oEa n (557%) 1", o
’ E
with a,=%%/me? the first Bohr radius.

In (18) and (19), A.4(E,, 6,) is the effective MFP
for creating long-wavelength plasmons, 6, being a
small upper limit of integration so that the maxi-
mum wave vectors of theplasmons considered in (18),
q,=K ,(6%+62%)*/?, is very small compared with
typical Brillouin-zone dimensions (~1A ). In this
way, we can characterize the interband transitions
causing plasmon decay as approximately vertical
in nature.

Specializing to the case of Al, we can evaluate the
energy distribution of the joint density of states
F(E,#w), using the simple two-band (or two-ortho-
gonalized-plane-wave in Harrison’s® terminology)
model used by previous workers to analyze the op-
tical properties of this metal.3*32 From the work of
Koyama and Smith 3° we can easily derive the
following expression for F(E,Zw) in the two-band
model:

F(E h—w) - E nGGIWGI [HE EG h—w) H(E EF_}[w)]

Z)an*GlW |2(Ep - ES)

) (20)
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where

(fw - 1%G%/2m)? - 4|Wgl|?
Ef = 2h"{cz/ln el 21)

In (20), we sum over all nonequivalent recipro-
cal-lattice vectors G corresponding to the distinct
Bragg planes capable of causing vertical interband
transitions at Zw. Also ng is the number of equiv-
alent reciprocal-lattice vectors corresponding to 5,
Wa is the Gth Fourier coefficient of the lattice pseudo-
potential, H(x)is the unit step function, and E . is the
Fermi energy. In (20), (21), and all subsequent
analysis in this paper, the electron zero of energy
is set at the bottom of the conduction band unless

-

E -E§ -hw,
-1
X {HZ naGIWaIZ(Ep—ES)}
G

and

(Fwp = H2G%/2m)? — 4| Wg|?
E§=Ef(w=w,) = T

(24)

In arriving at (22)-(24), we have made use of
the fact that since the Lorentzian in (18) is sharply
peakedatw =w, for small I, itis agood approxima-
tion to set w=w, in the expression for Efenter-
ing F(E,nw), making the integration in (18) ele-
mentary. It is easily shown the [D(E,%w,,T',)dE
=1, as it should since D(E, fiw,, I',) describes
plasmon decay via one-electron transitions.

Before we conclude the present section, the
following remarks are in order. First, the ver-
tical interband transitions giving rise to (20)-(24)
are the so-called normal or Butcher-type transi-
tions discussed extensively within the context of the
optical conductivity of NFE metals.®*"%* Second,
our discussion of plasmon decay via interband
transitions is based on the dipole or long-wave-
length approximation to €,(§, w) [cf. Eqs. (8), (10),
and (14)]. Such an approximation is valid for
plasmon wave vectors such that ga<<27 or, equiv-
alently, A>a, where X is the plasmon wavelength
(A=27/q) and a is the unit-cell dimension. Actual-
ly, the dipole approximation should be reasonably
valid for A2 10a.3> However, g cannot be less than
the minimum value determined by the primary-

J

WUE ~ 105 )= 20e L QR IR 0B 1 = fo(Erra ) O oo OBy 20 ~ By f =~ Fiw)

stated otherwise. For Al, Ashcroft and Sturm,*
and Koyama and Smith®® found that by using the
two-band model, good results are obtained by con-
sidering only the eight equivalent reciprocal-lat-
tice vectors C’m and the six equivalent vectors
ézoo. We shall follow Refs. 30 and 32 and only sum
over G,,, and G,y in (20) for Al with n,,,=8 and
N,00=6. Finally, substituting (20) into (18), we
obtain

dgéh) = Ae-flf (Eo’ 91)D(E’ ﬁww rv) ’ (22)

where

) _tan_1<E-EE- ﬁw,)]}

D(E,hw,, T,) = {%: nzG|lwel z[tan-"(——ﬁ7§——*

r,/2

(23)

—

electron scattering geometry. Specifically
q2q,=K,6z[cf. Eq. (15)] for the small-angle
case. For the dipole approximation to be valid,
we must have g, <q <q,<2n/a, where g, is the
maximum plasmon wave number considered. In
the case of Al, for E, (incident primary energy)
=1 keV (the range of values used in the experi-
ments to which we shall compare our theoretical
results in Sec. VI, ¢,=0.15 A", In our subsequent
calculations for Al, we have decided to set g, =0.2
f\“, slightly larger than the minimum value per-
missible at E,=1 keV. (Since 1 keV is the mini-
mum value of E, used in our calculations and since
qo<EgY?, this value of g, is always greater than
do-) Now in Al, a=~3 A; hence for ¢,=0.2 A=y

we have ¢,= (2r/a)x107! or A,=10a, where A, =271/
¢, is the minimum plasmon wavelength considered.
Hence, for our choice of q,, the dipole approxima-
mation on which our treatment of plasmon decay

is based is expected to be reasonably valid.

III. SE EXCITATION: SCREENED ELECTRON-
ELECTRON SCATTERING

In this section, we analyze the direct excitation

of SE’s via screened electron-electron scattering
between the incident primary and crystal electrons.
This process is also contained in Eq. (2) of Sec.

II. We rewrite (2) in the following form:

A’ng*le@, w)[?

(25)
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In treating the direct electron-electron interac-
tion process, we must ignore the plasmon pole
contribution to |1/¢(d, w)|? in evaluating (25). This
is because we have already considered the plasmon
resonance in Sec. II.

Although the Bloch form of the RPA to €(q, ) is
explicitly known,*# it is not very practical to cal-
culate (25) as it stands since one would have to
calculate the actual band structure, and evaluate
the matrix elements (I’k’ | IK) and €(§, w), etc.
Instead, we have chosen to evaluate the direct
electron-electron interaction contribution by using
the jellium or free-electron-gas model to describe
the valence electrons. We expect this to be fairly
reasonable approximation for Al since its calculat-
ed band structure is so nearly free-electron-
like.?' In the free-electron-gas picture, the RPA
expression for €(d, w) becomes the well-known
Lindhard dielectric function.” Furthermore, we
shall simplify matters by using the static, long-
wavelength form of the Lindhard dielectric func-
tion,' lim__,€,(d,0) =1+ (g5;/q)?, Where g is
the Thomas-Fermi screening wave vector. This
should be a good approximation for the excitation
of very-low-energy SE’s.

In the jellium model, the crystal electrons are
described by plane waves and occupy a Fermi sea
(or sphere) in k space at absolute-zero tempera-
ture. Hence in (25), (I'k’ |l§) is replaced by unity.

J

2mme?
W, &) = —T—A PN S Iqﬂ{

for |&-(&,-R)| <k, |, -E],
=0, otherwise.

In (28) we have relabeled k’ by k and k&, is the
Fermi wave vector. Dividing (28) by the incident-
electron velocity and summing over E, we obtain
the total inverse MFP for screened electron-

k=ky; and Wo(K)

J

Dropping the 7 and I/, we obtain

Wk -k

3217 e4fo ')[1 - fo EE')]Gk'. k*q
Azh(g? +q%p)?

(Eg-Ez- Piw)

(26)
We have used the expression lim__ €, (§,0) =1
+(gpp/q)? in (26). The total transition rate for
generating SE’s of wave vector K is

-

W)
=Y wk-k)
4,k
-5~ Sty (Eppl1 - foER) 0~ Epg= w)
: A%H(g® + q%q)?
(27)
where
hw_h'ng_ ﬁz(ﬁo' 9’
2m 2m ’
_n2R rA (k' - g
Ev==n Eei="3,

The summation in (27) can be carried out ex-
actly. In Appendix B we give an outline of the
calculations involved. The final result is simply
stated below,

BB (e
Bt ) [0 = K3F + 2% (k2+ki.———§——°.——“|{ O“fklf)' >+q4"} } (28)

r

electron scattering,

1A= 7= W)
; 0

== [ w &R .
i f rr W dag;. (29)

Using the relations E =1%k*/2m, k*dk =(m/k°) (2mE)*/?dE, specializing to the important case of very
high incident-electron energy and low excited- SE energy such that we can set K,,— kzﬁo, we obtain from

(29) and (28), after some algebra,

E-Ep+Epr

dz(l/X) —@ qFTEllz
dEdR:, " 4r°E B3 (

[(E —E p)?+2E ;1 (E +E - 2E cos®)+E% Wz> : (30)

In (30), R= e2/2ao is the Rydberg constant, Eg, = WqFT/Zm, Ep is the Fermi energy, and y is the angle
between k and K0 Also in (29) and (30), dQ, is a differential solid angle in the direction of 7.

By integrating (30) over df2,, we have

dA/N) o (apse SN
dE ~kp/k dEdQ,

d(cosy)

= (208 REWa) [28E 5 = (E - E g+ E 5) sin"(

2QE ¢
((E ~Ep)?+2E ,(E +EF)+E2FTJ”2>], (31)
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for E,>E, where 8=qpr/kp.

Equations (28), (30), and (31) give the various
SE excitation functions arising from direct elec-
tron-electron scattering, taking into account static
screening only. An investigation of (30) revealed
that for large E, (2 1 keV) and low SE energy E
(<100 eV), d3(1/))/dE dQ,~ sin*y. We can write,
in this regime,

2

where

r 8

Hence for large E, and small E, we have the
approximate relation

a?(1/N) 3 d1/N)
dEdQ, 81 dE

sin%y. (33)

Equations (31) and (32) will be used later in our
quantitative calculations for Al. As a reviewer
has pointed out, it is not rigorously correct to use
the Fermi-Thomas (static) approximation when
the excited SE’s have final energies far from the
Fermi surface. However, the results obtained
in the present section are not entirely without
justifications. In the footnote under Ref. 36, we
present some arguments in favor of our results
based on the static approximation.

IV. SE EXCITATION: SURFACE-PLASMON DECAY

In this section, we investigate the possible role
played by surface-plasmon decay in SEE in solids.
We again restrict ourselves to plasmons of small
wave vectors. The physical picture is the same as
in the case of volume-plasmon decay. We have an
incident fast electron exciting a surface plasmon
on the metal-vacuum interface which subsequently
decays into single-electron transitions. We con-
sider the case of a semi-infinite solid situated
in vacuum. The coupling of fast electrons with
surface plasmons was first treated by Ritchie.%”
Neglecting hydrodynamic dispersion and retarda-
tion effects,®® Stern and Ferrell®® have given a
simple derivation of the probability of exciting
surface plasmons by incident electrons for a semi-
infinite NFE solid. For normal incidence of the
external fast electron, Stern and Ferrell have ob-
tained the following result3®:

dP _ _ e%0546 (34)
dQ, ho(6° + 6557
In (34), 6 is the scattering angle (see Fig. 2),

6ps=hw/2E, (hw, is the nominal surface-plasmon
energy), and v, is the incident-electron velocity.

dP/dSy, is the differential probability per unit solid
angle for creating a surface plasmon. In arriving
at (34), the small-6 approximation has been made
and surface-plasmon dispersion is ignored. We
have fiw = fiwp/V2.

Neglecting retardation and hydrodynamic disper-
sion effects, the surface-plasmon field can be
described by a simple scalar electric potential.®
For a semi-infinite solid bounded by vacuum, one
can write

By(F,0)= D ¢(Qe!@Fsreale!, (35)

-

Q

In (35) §=Xx +yy is the position coordinate paral-
lel to the surface and z is the coordinate normal
to it. The solid is situated in the half-space z >0,
with the solid-vacuum interface at z=0. Q is the
two-dimensional wave vector of the surface-plas-
mon field, i.e., §=Qxy‘c+Qy3‘;. Since the surface-
plasmon field decays exponentially into the solid,
one can have excitation of the bulk-crystal elec-
trons via coupling to the electric potential ¢ (T,¢).
Endriz and Spicer?® have discussed a so-called
surface-plasmon-decay volume photoemission ef-
fect in Al. In their case, the surface plasmons are
excited by photons which are coupled to the sur-
face-plasmon field through surface roughness.

We shall follow Endriz and Spicer’s analysis (see
Sec. IT A of Ref. 40) in our treatment of SE ex-
citation via surface-plasmon decay.

Following Ref. 40, we can assume that each
Qth component of the surface-plasmon potential
has a field energy distribution into the solid given

Incident primary electron

Eo
Vacuum Metal-vacuum interface
ol
/
Metal z E
a Secondary electron path

FIG. 2. Diagram illustrating the escape of unscattered
secondary electrons. E; and E are the primary- and
excited-secondary-electron energies, respectively.
Also, z is the distance into the solid at which the secon-
dary electron is created, while & is the angle specifying
direction of escape of the excited secondary electron.
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by e¢™29% (2>0). If it is assumed that single-elec-
tron excitation is the principal plasmon decay
mechanism, we can assume that the probability
per unit distance of exciting SE’s is given by
2Qe™9%, If F(E, hw,) is the normalized energy dis-
tribution of surface-plasmon decay via single-
electron excitation, we can write the differential
probability per unit distance per unit energy of

SE excitation via this process as

axi(z)

= -2Qz
7B 2Qe™*%*F(E , hw,). (36)

For polycrystalline or cubic solids (e.g., Al) and
for very small @’s it is not hard to show, using
the same arguments in Sec. II, that F(E,%w,) is
just the normalized optical energy distribution of
the joint density of states for vertical interband
transitions defined by (20) and (21). Equation (36)
describes a volume SE excitation process analo-
gous to conventional volume photoexcitation. As
Endriz and Spicer® have pointed out, 2@ here
plays the role of the photon absorption coefficient.

Convolving (36) with a Lorentzian, as in Sec. II,
to account for plasmon lifetime broadening, we
obtain

dxt(z)

5~ 2Qe? 9D, hw,, T,), (37

where D(E, fiw,, T',) is the same function defined
in (23) but with parameters appropriate to surface
plasmons. Multiplying (37) by (34) we obtain the
double differential inverse MFP for SE excitation
via decay of surface plasmons of wave vector @:

dz)\'l(z)= 629539
dE dQy  whv(6°+ 6% )

2K, 6e"2F0%D(E , fiw_, T,).

(38)

In (38), we have equated @ with K,6 from con-
sideration of the scattering geometry for small 6.
dQ, is a differential solid angle about the scatter-
ing angle 6.

V. SE TRANSPORT AND ESCAPE

In our treatment of the SE transport and escape
problem we shall only consider those SE’s that do
not suffer any scattering on their way to the sur-
face and those that scatter only once. Our analysis
is largely based on the original work of Berglund
and Spicer* in connection with photoemission.
Following previous work in SEE3:5:1%42 the only
scattering process that we shall consider is in-
elastic electron-electron scattering. [We shall
ignore electron-phonon (elastic) scattering since
there does not appear to be any appreciable tem-
perature dependence in SEE in metals. Our SE
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transport model is based on a similar one used
earlier by us in a simple calculation of SEE,!° but
represents an extension of that work by consider-
ing once-scattered electrons also.

A. Unscattered SE’s: Volume-plasmon decay and direct
electron-electron interaction

We consider a primary electron incident nor-
mally on a semi-infinite solid situated in vacuum.
We assume that the primary-electron energy is
sufficiently high so that we can approximate its
trajectory throughout a typical low-energy SE es-
cape depth (~50 A in most metals) as a straight
line. This is an often used assumption in many
phenomenological theories of SEE in solids for
high primary energies.'?*!3 The treatment of the
unscattered SE’s for the contributions from vol-
ume-plasmon decay anddirect electron-electron
interaction is particularly simple. Using the
idealized step-potential model of the solid-vacuum
surface barrier and an escape-cone argument, we
can write for the external energy distribution of
emitted unscattered SE’s

d 27 oc(E) d2(1/>\)
N (E)=_[ f f ___,e-z/l(E)cosa
0 o Yo dEASR,

xsinadadpdz . (39)

Referring to Fig. 2, a is the polar angle spec-
ifying the initial direction of motion of the SE of
energy E created at depth z. ¢ is the azimuthal
angle and df?, is an element of solid angle centered
at the angular coordinates (a, ¢). In (39), I(E) is
the energy-dependent inelastic electron-electron
scattering MFP, d?(1/))/dE dS, is the double
differential inverse MFP for excitation of SE’s by
either volume-plasmon decay (Sec. II) or direct
electron-electron scattering (Sec. III). Also, d is
a maximum phenomenological SE escape depth,
and o (E) is a maximum emission angle such that
the normal component of momentum is just enough
to surmount the surface barrier,

a (E)=cos™{[(E 5+ ¢)/E] 3}, (40)

where ¢ is the work function. [We are assuming
that the excited SE’s are treated as free electrons
in arriving at (40) and in all subsequent analysis. |

For the contribution from volume-plasmon de-
cay, we assume that the excited SE’s are distri-
buted isotropically. Such an assumption is prob-
ably permissible in a first-order treatment such
as the present one. Hence, for volume-plasmon
decay,
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<%2E-(];i/—(;i>vp— 417( ;E/X )vp’

1 d ac(E) -
[No(B)]yp =3 f _[ At(Eo,
o Yo

Xe-z/l(E) s gina do .
(41)

In (41), we have made use of (22). Now following
previous work,!® we assume the primary energy
E, remains constant throughout a distance d and
take \7;, outside the integral signs. Also noting'®
that since ¢~¢/}(E)®se jg 5 rapidly decreasing func-
tion of z, we make the approximation of replacing
d by «, so that

[N E)]VP 2 A’eff (Eoy 91)D(E ’ ﬁwp, rv)

@ (E)
xf f e-z/l(E)cosa sina do
0 0

6,)D(E, iw,, T,)

<IN (E,, 0,)D(E , fiw,, T,)I(E) (1 - M) .

E

(42)

An equation similar to (42) but involving Streit-
wolf’s unscreened result has already been derived
earlier by the present authors.!®

J

For the contribution from direct electron-elec-
tron scattering, we have from (33)

(FiD). Ea). ...
_%r(dgéx))“ sin’a | (43)

where [d(1/))/dE],, is defined by (31).
Making the same approximations as before, we
obtain

[No(E) L,
z% <d%>t)> f" ./;,%(E)e"/””" cose ginda da dz
ee” 0
T

B. Unscattered SE’s: Surface-plasmon decay

For this contribution to the external SE energy
distribution, the treatment is slightly different.
We start from (39) and using (38), assuming as in
the volume-plasmon case that the SE’s created by
surface-plasmon decay are distributed isotropic-
ally, we can write for surface-plasmon decay

dINo(E)Isp =lf°fa°(E)<M> e~/ 1(E) o8 ging da dz
0 0

aQ, 2 dE df,

_e*0psKob 2D(E fiws, L) = [%B ( 1
-(2K. 0 +———
LS e (e

The(8%+ 02 )

cosa)z] sina da dz

_ 8550°D(E, hiws, Ty) “c‘E’( 1 -t
jo. 2K°o+__l(E)cosa sina da . (45)

mag(6%+6%)?

n (45), dQ, is the differential solid angle about
the primary-electron scattering angle 6 and should
not be confused with the corresponding quantity
about the SE emission angle a. Now the integral
in (45) can be performed exactly*! and we can
write

d[NO(E)]SP= GESGZD(E)th’ FS)C(KOO,E) (46)
a, may(0%+ 6Z)? ’
where
C(Ky8,E) = - [ZT(E) 1
2K 6 2K,6I(E)

1+2K00l(E)
l“(1+ 2KL0U(E) - 4K, 6TE)IE )>]

rer-Li-(E22e)].

From (46), the total unscattered external SE
energy distribution arising from surface-plasmon
decay is

[No(B)]gp =27 f‘fi—N"(—E)J—S‘i sinbdo

_26psD(E, fiws, Ty) % 6°C(K.0,E)db
a, o (6%2+62,)°

(47)
In (47), 6, is a small upper limit of integration,
so that the corresponding surface-plasmon wave

vectors are small in the sense discussed in Sec.
II.
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C. Once-scattered SE’s: Volume-plasmon decay
and direct electron-electron interaction

In treating the contribution of once-scattered
SE’s to the external EDC, we shall only consider
those SE’s excited via volume-plasmon decay
and screened electron-electron scattering. This
is because the ¢2¥0%* factor in (38) implies that
SE’s excited by surface-plasmon decay are gener-
ally created nearer to the solid surface and hence
have a lesser chance of scattering before emis-
sion. This is not a rigorous argument and we
could have included once-scattered electrons for
this case also, using the formalism of Berglund

J
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and Spicer* for instance. We have decided not to
do so here to simplify our calculations.

In treating once-scattered SE’s in the other two
cases, we assume, as in Ref. 41, that the elec-
tron-electron scattering is spherically symmetric
in the laboratory frame. Figure 3 depicts a SE
excited at depth z from either volume-plasmon
decay or screened electron-electron scattering
initially moving with an energy E’ at an angle o
with the z axis. It travels a distance 7, suffers an
inelastic electron-electron scattering, and moves
off with a final energy Eat an angle § with z axis.
Following Ref. 41, we can write for the external
energy distribution of once-scattered SE’s

E) 00 6,(E) r/2 2/cosa r o
N(E)=1 dE'f dzf dé[(f daf ar+ [ da [ a )]
1( -/; 0 0 0 0 '/f./2 j'; 4

x-———
dE'a%, °

AN sie dPEY)
dE

In (48), 6,(E)=cos™{[(E.+¢)/E]}/2 and E, is an
upper limit of initial SE energy. dI"(E’)/dE is the
differential inverse MFP for an excited SE with
energy E’ to be scattered by electron-electron
scattering with the Fermi sea into a final energy

J

~(z-r cosa) /1(E) cosb sinasing . (48)

between E and E +dE.

Carrying out the integrations in  and z in (48)
we obtain after setting x =cosa, y=cos?, y,
=[(Ep+ ¢)/E]’?, and with the same approximations
as in the no-scattering case,

NI(E)zﬂf:’ dE'f dy dl;éE') [ FAD) )y axs [ 0N (l(E')lz(E)yz )dx] ) (49)

o dE'dS,

To simplify (49) further, we note that for low
SE energies [ is a strongly decreasing function of
energy.**** For E, >E we have I(E’) <I(E) for at
least part of the integration range in E’. Hence
we approximate the factor I(E’)I*(E)y?/[I(E)y - 1(E")x]
by U(E’')I(E)y, so that (49) becomes

B A ARE
NI(E)—TrfE dE Uyc S UEDUE)y dy
O' —Z;(,ld/;;l sina da)
-1 M)
=g (1- 2 @)

LAY dIEY)
xj: E e 50)

In (48)-(50), d*(1/\)/dE’ A2, is the differential
inverse MFP for exciting SE’SIvia either volume-
plasmon decay (Sec. II) or direct electron-elec-
tron interaction (Sec. III);

2 dE dQ \I(E)y - IE)x

d(/r) _ aa/n .
dE’ '2"f daE'dg, S0 de

and is given by (22) or (31), so that (50) is applic-
able to both processes.

Incident primary electron

Eo

Vacuum Metal-vacuum interface

< Secondary electron

/‘ path after scattering

Secondary electron
path before scattering

Metal z

(\l/
FIG. 3. Diagram illustrating escape of once-scattered

secondary electrons. Symbols are explained in Sec. V
in the text.
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VI. CALCULATIONS FOR ALUMINUM AND COMPARISONS
WITH EXPERIMENTAL DATA

Using the formalisms discussed in the previous
sections, we have performed quantitative calcula-
tions for Al. The total external SE energy dis-
tribution is expressed as a sum of three contri-
butions coming from volume-plasmon decay,
screened scattering, and surface-plasmon decay,
respectively,

N(E)=[N(E)]vp+[N(E)]ee+[No(E)]sp ) (51)
[N(E)]vp = [No(E)]vp + [Nx(E)]vp

=1ix, (Eo, 6,)D(E, fiw,, r,,)z(E)<1 -M)

E
- Ep+
+Xe:f(E07 el)l(E)<1__LE9_>
xfEl DE’, iw,, 1-'u)gElL(i')‘l(E’)dE' ’
B dE

(52)
[N(E)],, = [No(E)],, + [N, (B)],,

= 1(1(1—/)‘)—> Z(E)(l _5‘;3—+9)2

16\ d4E
l Ep'f‘(p)
+4<1-————E 1E)

Ey (d(1/X) s
xfE (dE )e,‘”—;l(f—)z(E')dE'. (53)

In writing (51)-(53) we have made use of (50),
(47), (44), and (42). In (53), [d(1/))/dE],, is given
by (31), while [Ny(E)]sp in (51) is the expression
defined in (47). For dI™*(E’)/dE, we utilize the
theoretical calculations of Ritchie and Ashley*®
(RA) for a degenerate free-electron gas. The
work of RA yields

ANE)\  _ wE' -E)
< dE )RA FE, ’ (54)
[l(E/)JnA=LT§E/:_Z_——'EEITF)2 s (55)

where u is a constant depending on the density of
the electron gas and a,.

We have found that values of the MFP given by
(55) are roughly a factor of 2 smaller than the
experimental electron scattering lengths in Al
compiled by Lindau and Spicer* for electron ener-
gies between ~5 and 10 eV above E ;. In our calcu-
lations for Al, we have accordingly used the fol-
lowing expression:

arE) _1 (dz'*as') _LE'-E)
dE 2\ dE )a. 2E'E, ’

(56)

B = 20HE ) = Sy (57)

Equations (57) and (56) describe quite well the
rapid initial decrease of the experimental MFP*
with increasing electron energy for E’ <100 eV.
Around E’ =100 eV, the experimental MFP reaches
a broad minimum and then increases with in-
creasing energy.**»* Owing the assumptions made
in its derivation,* the MFP given by (57) is a
monotonically decreasing function of energy and
fails completely to predict the observed behavior
of the MFP’s for E’ 2100 eV. Hence, (56) and
(57) can only be used as approximate relations
for E’ <100 eV in Al. In view of this observation,
in our calculations for Al, we have set E, the
upper limit in the scattering integral in the EDC
from screened electron-electron interaction
[Eq. (53)], equal to 100 eV, the approximate upper
limit of validity for (56) and (57). For the EDC
from volume-plasmon decay, we have set E, in
the corresponding scattering integral [Eq. (52)]
equal to 40 eV. Actually, for the EDC from vol-
ume-plasmon decay at least, the results do not
depend very critically on the value of E, as long
as E; »E p+hw,. Infact, we have found that
[N(E)]yp for Al calculated via (52) with E, =100 eV
differs from that calculated with E, =40 eV by no
more than ~1% with respect to overall magnitude
for E <12 eV in vacuum (the maximum value of
emitted SE energies considered in this paper). In
view of this, we have set E, =40 eV (rather than
100 eV) for the volume-plasmon-decay EDC to
economize on computation time. Since, as we
shall see, the EDC from volume-plasmon decay
represents by far the dominant contribution to the
total theoretical EDC, the previous observation
implies that the exact value of E, is not very cruc-
ial to our theoretical results for Al.

Having explained our choice of E,, we turn next
to discuss the other parameters entering in our
calculations. As was mentioned at the end of Sec.
II, the maximum volume-plasmon wave number
q, is set equal to a constant value of 0.2 A™! in our
calculations for Al. (The considerations involved
in selecting ¢, were outlined in Sec. II.) Having
chosen g,, the maximum scattering angle 6, for
volume plasmons in (42) and (19) is determined via
the relation (15). For the surface plasmons, we
have decided to set the maximum scattering angle
6, in (47) equal to 6,5 =fw,/2E,. For E,=1keV,
this choice of 6, implies a maximum surface-
plasmon wave number ~0.08 A~ (assuming fw,
=10.6 eV; see below). The corresponding mini-
mum surface-plasmon wavelength is ~75 A>a
(unit-cell dimension). Again, we expect that with
this choice of minimum surface-plasmon wave-
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length, the dipole approximation may still be rea-
sonably valid. {The excitation probability for sur-
face plasmons decreases very rapidly with in-
creasing scattering angle, ~6 [cf. Eq. (34)] for
large 6. Also, the EDC from surface-plasmon
decay will be seen to constitute the smallest frac-
tion of the total EDC in Al. A rigorous determina-
tion of 6, in (47) should therefore not be very criti-
cal.}

Concerning the choice of the broadening con-
stants I'; and T, in Al, the following remarks are
in order. The existing experimentally determined
long-wavelength limits of the surface- and volume-
plasmon damping constants in Al quoted in the
literature vary considerably from author to author
depending on the technique used (optical measure-
ments or electron-energy-loss spectroscopy).*®:4?
Furthermore, both I'; and T, are expected to de-
pend strongly on the particular sample studied; in

103x0.8+
06 Aluminum, Eg=1 kev
o 0.4 I:=10ev, I,:20ev
dE
0.2
00 T T - T T -
(o] 2 4 6 8 10 12
-0.24 E- Eygclev)
-0.4
-0.6-
1073x 6.0
5.0 Total EDC
4.0
EDC from vol.
N(E) plasmon decay
3.0
2.0 EDC from screened
electron - electron scattering
1.0
"wplasmon decay
0.0 — T T - T T
[ 2 4 6 8 10 12
E-EygcleV)

FIG. 4. Theoretical secondary-electron energy dis-
tribution curve N(E) and its derivative dN/dE for
aluminum plotted versus secondary-electron energy in
vacuum (E — Evac) for Ey=1 keV (primary energy). The
contributions to N(E) from volume-plasmon decay,
screened electron-electron scattering and surface-
plasmon decay are also shown separately. For the re-
sults shown here, T and T, have been given the values
1.0 and 2.0 eV, respectively.

particular, I', depends on the exact nature of the
surface (crystallographic plane if single crystal).
Hence, a unique choice of I', and T, for all cases
is probably not feasible. In view of this, we have
decided to treat I'; and I', as adjustable param-
eters, allowing them to vary within reasonable
limits. We have found that by setting I’ =1 eV and
I,=2 eV, very good agreement is obtained between
our theoretical EDC’s for Al and the experimental
results that we shall consider later.*®

For hw,, the volume-plasmon energy in Al, we
use a value of 15 eV.* For fiw,, the surface-
plasmon energy, we use a value of 10.6 eV (ﬁw,,/
vZ). Finally, for the pseudopotential form factor,
we use Ashcroft’s® fit to Fermi-surface data,
which gives for |W,,,| and | W, | the values 0.24
and 0.76 eV, respectively.

Having decided on the values of the various pa-
rameters mentioned above, the various EDC’s
given by (51)~(53) have been evaluated numerically
for Al using E;=11.6 eV and $=4.0 eV for E =1
and 2 keV, respectively. The results are sum-
marized in Figs. 4 and 5, which show the external
SE EDC’s and their derivatives (obtained by the
spline-fit technique).

107351 2
1.0 Aluminum, Eo =2 keV
0.8 [(=1.0eV, [,=2.0ev
dN
dE 0.6
04
0.2
0.0 T T T T T T
0 2 4 6 8 10 12
-0 24 E - EyacleV)
-0 4
103 x 5.0
4.0
N(E)
3.04 EDC from vol
plasmon decay
2.0
EDC from screened
1.0 electron - electron scattering
EDC from surf. plasmon decay
0.0 T T T - v ™
0 2 4 6 8 10 12

E-Eygclev)

FIG. 5. Same quantities for aluminum as in Fig. 6
but with Ey=2 keV. I’y and T, have the same values as
in Fig. 6.
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The most significant feature of our results is
the existence of two prominent humps in the EDC’s
that are clearly discerned as minima in the de-
rivatives of the EDC’s. These minima occur at
SE kinetic energies in vacuum equal approximately
to 6.6 and 11.0 eV, corresponding to 7w, ~ ¢ and
hw,—- @ in Al. From Figs. 4 and 5, which show the
various contributions to the total EDC, we see
that the two humps are due to the EDC’s provided
by surface- and volume-plasmon decay, respec-
tively.

To test the validity of our theoretical results for
the SE EDC in Al, we compare them with the avail-
able experimental data. We have for instance the
published results obtained by Jenkins and Chung,?
Powell and Woodruff,?® Henrich,?* and the very
recent data obtained by Cailler et al.®* and by
Everhart ef al.?® All of these experimental results
were obtained from clean Al samples in ultrahigh-
vacuum conditions. We shall select the data ob-
tained by the last-mentioned authors®® for detailed
comparison with our theoretical results. These
authors performed their measurements on a poly-
crystalline Al sample (in ultrahigh vacuum) whose
surface was cleaned by argon-ion bombardment
and monitored by Auger-electron spectroscopy.
The details of the experiment can be found in Ref.
26. Figure 6 shows some of their experimental
results.

By comparing the experimental curves in Fig.

6 with our theoretical EDC’s and their derivatives,
we see that there exists good overall agreement
between theory and experiment. In particular, the
two pieces of structure appearing in the theoretical
results are confirmed by the experimental data
with respect to both overall shapes and approxi-
mate energy locations. We should not expect ex-
act quantitative agreement because of the many
simplifying assumptions used in our theoretical
developments. We remark that had we neglected
the once-scattered electrons in the EDC from
volume-plasmon decay in Al, the agreement
achieved between theory and experiment concern-
ing the total EDC would be severely diminished.

We have also compared our theoretical EDC’s
with experimental data reported in Refs. 23-25
and 51. In all cases, good qualitative agreement
between theory and experiment is obtained with
respect to the presence of the two humps in the
EDC and its overall shape. By numerically in-
tegrating our theoretical EDC’s from E =0 to 50
eV, we have calculated the number of so-called
“true” SE’s, denoted by 6,, which are produced
by the incident primary electron alone. (True
SE’s are also created by backscattered primary
electrons. For a good discussion, see Ref. 52.)
We have compared our theoretical §, for Al with

% Ep=1.5keV

.‘é

>

g 1.0keV

«

2 500eV

w

=z

-

] Vm =2.0 Vp -p
Clean Aluminum

—_ Ip s 2.7#A

.E

3

8

= Vin=0.2Vp-p

w

=

! Ep=1.5keV

o

1
10 20
ENERGY (ev)

FIG. 6. Experimental results for aluminum obtained
by Everhart et al. (after Ref. 26). Shown are the secon-
dary-electron energy distribution curve N(E) and its
derivative dN/dE as a function of secondary-electron
kinetic energy in vacuum (E - Ey,c). E, is the incident
primary energy, I, is the incident-beam current, while
V.. is the modulating voltage used to obtain N(E) and
dN/dE.

the experimentally determined values reported by
Bronshtein and Fraiman®® for two different values
of primary energy. The theoretical and experi-
mental values of §, are listed in Table I. Our
theoretical values are too low by roughly a factor
of 3.

VII. SUMMARY AND DISCUSSION

In this paper, we have carried out a theoretical
analysis of SEE in the NFE metals, restricting
ourselves to excitations from the valence band.
We have found that in the case of Al, the decay of
long-wavelength surface and volume plasmons
excited by the incident primary are important

TABLE I. Comparison of theoretical and experimen-
tal values of the secondary-electron yield 8, produced
by the incident primary electrons alone.

Theory Experiment (Ref. 53)
Primary energy, Primary energy,
Eo (keV) 60 Eo (keV) 60
1.0 0.051 1.2 0.15
2.0 0.038 2.0 0.13
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mechanisms of SE generation. Our theoretical
EDC’s are in good agreement with recent experi-
mental results. Such would not be the case if we
had neglected the contributions from the plasmons.
The theoretical SE yield 5, is about a factor of 3
smaller than experimental values. This discre-
pancy suggests that our choice of ¢,, the maxi-
mum volume-plasmon wave number [or equiva-
lently, x;},(E,, 6,)], may be too conservative.
Haque and Kliewer® have studied the volume-
plasmon properties in Na and K. The Bloch elec-
tron RPA scheme was used in conjunction with an
augmented-plane-wave approach. For g along the
[110] and [100] directions, it was found that
plasmon damping is almost entirely caused by
interband transitions even for ¢ values comparable
to g, the critical value for the onset of Landau
damping. Analogous calculations do not as yet
exist for Al. However, if we extrapolate the re-
sults for Na and K to Al and allow the maximum
volume-plasmon wave number in our calculations
to equal ~g,, we find that the discrepancy between
theory and experiment with respect to 5, is to a
large degree eliminated. Such an extrapolation
may not be unreasonable, since Na and K are even
more nearly-free-electron-like than Al in terms
of their band structures.

The question may be raised that the most sig-
nificant physical process emplasized here, name-
ly, low-g plasmon decay may be uniquely impor-
tant for aluminum only. In this connection, H8h-
berger et al.,’*"%" based on their experimental in-
vestigation of the small-g volume-plasmon disper-
sion relation, have suggested that parallel band
transitions give aluminum unique low-g plasmon
characteristics. However, as we have pointed out
in the footnote under Ref. 34, the contributions to
€,(g 0, w) from parallel band transitions terminate
at frequencies significantly below w, in Al. As
was pointed out in Ref. 46, only normal, Butcher-
type transitions should be important in causing
low-¢g plasmon decay [determined by ¢,(g~0, w,)]
in Al and other NFE metals. Hence, we believe
that the conclusion reached here, that low-q
plasmon decay plays an important role in SEE,
is not restricted to Al alone but should be valid
in other NFE metals as well. In this connection,
we should like to point out that we have also car-
ried out analogous calculations of the SE EDC in
Mg using the formalism described in this paper.%®
The resulting EDC’s are in quite good agreement
with some recent experimental EDC’s obtained
from clean Mg surfaces under ultrahigh-vacuum
conditions.’® In particular, humps similar to those
in Al are found in the theoretical EDC at hw,- @
and 7w ,~ ®, and are confirmed by the experimen-
tal data.

In our theory, we have made a number of simpli-
fying approximations, e.g., the Thomas-Fermi
approximation in Sec. III and our highly idealized
SE transport model. However, the satisfactory
agreement obtained between theory and experi-
ment regarding the SE EDC in Al suggests that
the theory that we have outlined provides a rea-
sonably correct physical picture of SEE in the
NFE metals. In conclusion, while much more
work remains to be done before overall quantita-
tive agreement between theory and experiment can
be achieved, we believe that the present paper
represents the first theoretical demonstration of
the importance of volume- and surface-plasmon
decay in SEE from clean surfaces of NFE metals.
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APPENDIX A

In this appendix, we give a concise derivation of
Eq. (1) in the text. The transition rate for an in-
cident fast electron to transfer momentum 74
=n(K,-K,) and energy nw=E,-E, to the solid is
given by the standard expression'#15

» _ —87me? 1

w(q,w)= NS Im(e@ w))' (A1)

In (A1), €(q,w) is the longitudinal dielectric con-

stant. Writing Im[1/¢(d, w)] as —€,(d, w)/ | €(d, w)|2,
where €(q,w)=¢,(q,w)+i€,(q,w), we have

» _87me% €,(q,w)
W(q,w)—Aﬂqz r;(am . (A2)

Using the RPA for Bloch electrons, we can
write,'*?” neglecting local field and umklapp ef-
fects,
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. 47202 ..
[iz(q’ ’*’)]RPA = % E l 'k’ llk) lz
11, %

X062 3,3 0(Fw—E 3 +E 3).

(A3)
In (A3), all the terms and symbols have been ex-
plained in the text. Substituting (A3) into (A2),
we have
327%* ) | (K’ 1K) |2

n a%g* 1,5n le(@,w)I?

WG, w)=

x6;,,;,;6(h'w -E,; +E ;).
(A4)
In (A4), it is understood that the Bloch-electron
RPA form for €(q,w) is used. From (A4) it is ap-
parent that the transition rate for the process in
which the Bloch state |Ik) is excited into the final

state ]l'l?) with momentum and energy transfer
(g, w) is given by

W(lﬁ-» Ik’) = [w@, w)]zi-x'i‘

_ 32t | (UK’ 1IK) |2

T nagt le(@,w)l®
X g, ;,a&(ﬁw -E . +E ;). (A5)

Equation (A5) is precisely Eq. (1) in the text. We
note of course that [lk) must be initially occupied
and |Ik’) unoccupied.

APPENDIX B

In this appendix, we give an outline of the evalu-
ation of Eq. (27) in the text. We want to calculate

W&’
- Z 321r3eqf°(E;,_€)[1 - fo(E;.)]G(E;,—E;,_E— hw) .

3 A%1(q® +q%q)?
(B1)
We remember that
nZK: h?
=229 g _*2
hw="-8 - o (R, - 9%, (B2)

where K, is the wave vector of the incident pri-
mary electron. The summation over § in (B1) is
equivalent to summing over all initial states lying
inside the Fermi sphere. Consider Fig. 7; k’ is
the final wave vector of the excited crystal elec-
tron while k’ - § is the initial wave vector. The
Fermi sphere is shown with radius k,. We must
obviously have %’ > k. and |k’ - q|=<k,.
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Fermi sphere

"Plane of integration," P

FIG. 7. Diagram in wave-vector space illustrating
the evaluation of Eq. (27) in the text.

Now the 6 function in (B1) can be written as

n2p’2 ﬁZ(EI_a)Z
2m  2m

6(Ez— Eqpg— Fiw) = 5(

R2K2 K% =+
g )

2m
= 506" & -K)). (B3)
Substituting (B3) into (B1) and dropping the f,’s,
Wk = f\: 32”;:?;?;;2::): k') (B4)
_ [4me*s@ K, -K))dg (B5)

AT(G* +q5,)

FIG. 8. End view (along K ;-k’) of the circular disk
C, which is denot_gd by AOA’ in Fig. 7. @ and @’ are
the end points of k’ and %’ —E, respectively. @’ (for
fixed Q) must lie inside or on the circumference of C;
i.e., it must lie inside the shaded region in the figure.
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In (B5), we integrate over all momentum trans-
fers § such that |k’ - §|=<k,. Letting P=-§ (see
Fig. 7), (B5) can be rewritten as

) = A OB (R, - k") dp
an® (P*+a5ef

Letting the p, axis be parallel to K -k’ and
passing through the end point to k’ denotmg the
polar and azimuthal angles of § by 6 and ¢,

4me fff p6(cos8)dpd(cosh)do

(B6)

W) = R, R SR TG
(BT)
4me pdpd(b
'k'o |£k

In (B8), the integrations are to be carried out
for P lying on a plane perpendicular to Ko -k’ and

J

- 2 4
W oK) = — e
an 1K,-K g3y

passing through the end point of k’. This plane is
denoted by P in Fig. 7. In addition, we must have
lk’ +§!<k,,. These two restrictions 1mp1y that the
allowable P vectors and initial states Kk’ +P are re-
stricted to have their end points lying within or on
the circumference of the circular disk formed by
the intersection of the plane P with the Fermi
sphere. This circular disk is shown in F1g 8,
which shows the geometry as viewed along K K.
The integrals in (B8) are then restricted w1th1n
the area of this circular disk, denoted by C in
Fig. 8. Hence,

-, 4dme? pdpdo
Welk)= Sho IR, -k | ff P BY

Equation (B9) can be evaluated exactly. The
exact details are straightforward but extremely
tedious. We shall not reproduce them here.
Rather, we shall just state the final result:

92 E'. K _k’ry 2 -1/2
{1_(klz‘ki*'qzﬂ)[(k’z'ki)z‘*zquT(k'ﬁki- Rl >+f14m] }

K, -k'I?

(B10)

for |k’-(K,-k’ )[<kFIK_9-k’|; and W,(k’)=0, otherwise.
The condition on |k’ (K, -k’)| simply reflects the fact that when |k' (K - k’)] >k [K -k |, the “plane
of integration” P does not intersect the Fermi sphere and so no allowable initial state can give rise to the

final state k’.

Finally, (B10) with k' relabeled by k gives (28) in the text.

*Research sponsored by the Joint Services Electronics
Program under Contract F44620-76-C-0100.

!A. J. Dekker and A. van der Ziel, Phys. Rev. 86, 755
(1952). -

%A. van der Ziel, Phys. Rev. 92, 35 (1953).

3P, A. Wolff, Phys. Rev. 95, 56 (1954).

‘H. W. Streitwolf, Ann. Phys. (Leipz.) 3, 183 (1959).

SH. Stolz, Ann. Phys. (Leipz.) 3, 197 (1959).

A, 1. Guba, Sov. Phys.-Solid State 4, 1197 (1962).

A. 1. Grinchak, Sov. Phys.-Solid State 8, 1000 (1966).

8G. F. Amelio, J. Vac. Sei. Technol. 7, 593 (1970).

T. E. Everhart and M. S. Chung, J. Appl. Phys. 43,
3707 (1972). -

M, S. Chung and T. E. Everhart, J. Appl. Phys. 45,
707 (1974). -

M, S. Chung, J. Appl. Phys. 46, 465 (1975).

127, J. Dekker, Solid State Phys. 6, 251 (1958).

130, Hachenberg and W. Brauer, Adv. Electron. Electron
Phys. 11, 413 (1959).

Hp, Plnes Elementary Excitations in Solids (Benjamin,
New York, 1964).

15p, Nozidres and D. Pines, Theory of Quantum Liquids,
(Benjamin, New York, 1966).

16, Raether, Springer Tracts Mod. Phys. 38, 84 (1965).

K. D. Sevier, in Low Energy Electron Spectrometry
(Interscience, New York, 1972), Chap. 8.

8D, Pines, Physica (Utr.) 26, S103 (1960).

'9R. A. Ferrell, Phys. Rev. 111, 1214 (1958).

2w, Steinmann and M. Skibowski, Phys. Rev. Lett. 16,
989 (1966). -

2N, B. Gornyi, Sov. Phys.-Solid State 8, 1535 (1966).

2N, B. Gornyi, L. M. Rakhovich, and S. F. Skirko, Sov.
Phys. J. 10, 15 (1967).

231,, H. Jenkins and M. F. Chung, Surf. Sci. 28, 409
1971). -

%V. E. Henrich, Phys. Rev. B 7, 3512 (1973).

2B, D. Powell and D. P, Woodruff, Surf. Sci. 33, 437
(1972). -

8T, E. Everhart, N. Saeki, R. Shimizu, and T. Koshi-
kawa, J. Appl. Phys. 47, 2941 (1976).

*"H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786
(1959). -

R, H. Ritchie, Phys. Rev. 114, 644 (1959).

¥H, Ehrenreich, in Optical Propertzes of Sdids, edited
by J. Tauc (Academic, New York, 1966), p. 106.

%R, Y. Koyama and N. V. Smith, Phys. Rev. B 2, 3049
(1970). -

S'w, A. Harrison, Pseudopotentials in the Theory of
Metals (Benjamin, New York, 1966).

32N, W. Ashcroft and K. Sturm, Phys. Rev. B 3, 1898
(1971). -

%3N. V. Smith and W. E. Spicer, Phys. Rev. 188, 593



15 ROLE OF PLASMON DECAY IN SECONDARY ELECTRON... 4715

(1969).

3 polyvalent NFE metals like Al, another important
contribution to optical absorption is the so-called
parallel band absorption involving transitions between
near-parallel bands near the Brillouin-zone faces.
However, as Ashcroft and Sturm (Ref. 32) have pointed
out, the contribution of this type of transitions to the
real part of the conductivity (or imaginary part of the
dielectric constant) terminates at a definite frequency
wy depending on the particular reciprocal-lattice vec-
tor involved. For instance, for the case of Al, using
Eq. (A3) of Ref. 32, parallel band absorption ceases
at an energy equal to 8 eV for (-}.m and 4 eV for Gy.
These energies are much lower than Zw,, the volume-
plasmon energy in Al. Hence, for the purpose of des-
cribing volume-plasmon decay, this type of transition
should not be important. Only normal interband tran-
sitions (which form the continuation to the conductivity
beyond w,) need be considered. This conclusion is ex~
pected to be valid for other NFE metals, particularly
the monovalent alkalis, where parallel band transi-
tions (similar to those in Al) do not occur. [In this
connection, see also the discussion by A. G. Mathew-
son and H. P. Myers, J. Phys. F 3, 623 (1973).]

%We wish to thank Professor L. M. Falicov for a dis-
cussion concerning the validity of the dipole approxi-
mation and the criteria stated here.

%we give here some justifications for the results ob-
tained in Sec. III. Virtually all previous significant
theoretical work in SEE have used an excitation func-
tion derived by Streitwolf (Ref. 4) employing an un-
screened Coulomb potential to treat the primary-elec-
tron-valence-electron scattering. (See, for instance,
Refs. 5-8 and 42.) Owing to the long range of the un-
screened Coulomb potential, the expression derived by
Streitwolf diverges for E— Ey, where E is the excited
SE energy. {In our notation, the expressions derived
by Streitwolf corresponding to our Eq. (31) is given by
[d(1/7\)/dE] g=e'%3 /31 Ey(E - Ef)?, demonstrating the
singularity at E=Ep.} Nevertheless, Streitwolf’s re-
sult is expected to be reasonably accurate for E— Ep
>> Ep, a regime in which screening is unimportant
since the momentum transfers involved are large. The
unphysical divergence in [d(1/A/dE]g at small values
of E—~ Ep is removed by our result, Eq. (31), which
considers dielectric screening (although in an approxi-
mate way only). It can be shown that our Eq. (31) re-
duces to Streitwolf’s expression in the limit qpr—0
(no screening), as it should. In addition, our Eq. (31)
approaches Streitwolf’s result asymptotically for E
— Ep >>Ep, the energy region in which the latter is ex-
pected to be reasonably accurate. (This is not sur-
prising as the Thomas-Fermi dielectric constant ap-
proaches unity for ¢ very large.) Our Eq. (31) rep-
resents therefore an improvement over Streitwolf’s
unscreened result, which has been used almost ex-
clusively by previous authors. Hence there is some
merit in using the results obtained in Sec. III even
though they are not completely justifiable for all
values of SE energies considered.

%'R. H. Ritchie, Phys. Rev. 106, 874 (1957),

BNodifications brought about by retardation effects in
the surface-plasmon (SP) properties are only impor-
tant for values of Q (SP wave number) such that @
Swy/c (~8% 1073 A~1in Al). However, as Economou

[Phys. Rev. 182, 539 (1969)] and Ngai et al. [Phys.
Rev. Lett. 24, 61 (1970)] have pointed out, the SP
fields tend to zero in the region of Q space where re-
tardation is important. Hence, the coupling of the SP
fields to incident fast electrons will be negligible pre-
cisely for this region of ¢ space. In a first-order cal-
culation of the SP excitation probability by incident
electrons, retardation effects can thus be disregarded.

%E, A. Stern and R. A. Ferrell, Phys. Rev. 120, 130 (1960).

#0J. G. Endriz and W. E. Spicer, Phys. Rev. B 4, 4159
(1971).

4C. N. Berglund and W. E. Spicer, Phys. Rev. 136,
A1030 (1964).

125, J. Bennett and L. M. Roth, Phys. Rev. B 5, 4309
1972).

13p, W. Palmberg, Anal. Chem. 45:6, 549A (1973).

1. Lindau and W. E. Spicer, J. Electron Spectrosc. 3,
409 (1974).

5R. H. Ritchie and J. C. Ashley, J. Phys. Chem. Solids
26, 1689 (1965).

4#For instance, Elson and Ritchie [Surf. Sci. 30, 178
(1972)]1, from analysis of optical data on Al, quote a
value of 0.57 eV for Ty, the surface-plasmon damp-
ing constant. Bagchi ef al. [Phys. Rev. Lett. 27, 998
(1971)], from analysis of inelastic low-energy-electron-
diffraction data, quote a value of 0.9 eV for the same
quantity. Duke and Landman [Phys. Rev. B 8, 505
(1973)], using the same method as Bagchi et al., give
a value of 1.85 eV for T.

“TFor the g~ 0 volume- plasmon damping constant in Al,
T',, values given in the literature range generally from
0.5 to 1.0 eV depending on the experimental method
used (optical measurements or electron-energy-loss
spectroscopy) and sample studied. See the table ap-
pearing in Ref. 49.

*The value of Iy used is within the range of the experi-
mental values while T, is somewhat higher than the
experimental numbers. We must not forget that we
are considering plasmons with a finite wave number
and that T, increases with q.

93, Geiger and K. Wittmaack, Z. Phys. 195, 44 (1966).

®N. W. Ashcroft, Philos. Mag. 8, 2055 (1963).

SIM. Cailler (private commumcatlon) Also reported as
an experimental result by J. P. Ganachaud and
M. Cailler, in Second Colloque Internationale
de Physique et Chemie des Surfaces, Université de
Bretagne Occidentale, Brest, 1975 (unpublished).

H. Seiler, Z. Angew. Phys. 22:3, 249 (1967).

3], M. Bronshtein and B. S. Fralman, Sov. Phys.-Solid
State 3, 1188 (1961).

M. S. Haque and K. L. Kliewer, Phys. Rev. B 7, 2416
(1973).

H. J. Hohberger, A. Otto, and E. Petri, Fourth Inter-
national Conference on VUV, 1974 Extended Abstract 68
and 69 (unpublished).

%H, J. Hohberger, A. Otto, and E. Petri, Solid State
Commun. 16, 175 (1975); E. Petri and A. Otto, Phys.
Rev. Lett. 34, 1283 (1975).

S"We are grateful to Dr. Kenneth L. Kliewer for bring-
ing Refs. 55 and 56 to our attention.

M. S. Chung, Ph.D. thesis, (University of California,
Berkeley, 1976) (unpublished).

L. H. Jenkins and M. F. Chung, Surf. Sci. 33, 159
(1972); B. Wright and E. B. Pattinson, J. Phys. F 3,
1237 (1973);&, 176 (1974). B



