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Most phonon-assisted spectral transfer rates across an inhomogeneously broadened line are proportional to the
inverse square of the energy change. The time-dependent optical emission profile is calculated exactly for a
rectangular line shape for these processes. Numerical solutions are required for other line shapes (e.g. , a
Gaussian as found in ruby). They are exhibited as a function of time for a variety of initial excitation energies

at different positions across the optical line.

I. INTRODUCTION

ln a previous publication' (to be referred to as I},
a number of phonon-assisted spatial energy-trans-
fer processes were computed for inhomogeneously
broadened spectral lines in solids. For the case
of ruby, a two-phonon process was predicted to
dominate, leading to a transfer rate inversely
proportional to the square of the energy change
in the excitation transfer process. The peculiar
character of this energy dependence has led us
to examine the evolution in time of the emission
line profile for the case of sharp line (e.g. , laser)
excitation. We shall assume that the variations in
environment which lead to the inhomogeneous
broadening are microscopically random, so that
there is no correlation between transition energy
and spatial position. This allows us to average
over all spatial positions and to focus solely on
the energy-mismatch dependence of the transfer
rate.

A general expression for the time development
of the emission line shape was first written down

by Motegi and Shionoya. ' Unfortunately one cannot
solve their equation for an arbitrary equilibrium
line shape. We have been able to obtain an exact
solution, however, for the time evolution of the
emission line profile for a rectangular density of
states with arbitrary initial excitation. We have
also set up a numerical iteration procedure for
the time development of the excitation function
for an arbitrary density of states.

The general features of our solutions are in-
teresting. For a rectangular shape, the inverse-
square energy dependence of the transfer rate
leads to a continuously spreading excitation across
the line. The rate of spread turns out to be inde-
pendent of the "jump" energy, being nearly the
same for a single jump as for a large number of
small jumps covering the same energy interval.
This curious result is peculiar to the inverse-
square energy dependence of the transfer rate
(actually a rather general feature of two-phonon

assisted energy transfer'}, and to the rectangular
density-oz-states model. Should the transfer rate
fall off more rapidly with energy change, the re-
sult approaches the more conventional small-en-
ergy-change diffusion limit.

For the case of an inhomogeneous line of Gaus-
sian shape (as found in ruby, for example), the
slowly varying inverse-square dependence of the
transfer rate is overwhelmed by the much more
rapidly varying Gaussian density of final states.
The initial sharp excitation line is observed (on
the computer) to decay monotonically, while the
spectrally (spatially) transferred energy appears
first near the center of the equilibrium emission
line profile, but is shifted slightly towards the
initial excitation line position. The emission line
profile then develops into the equilibrium Gaussian
line shape. In general, the farther the initial exci-
tation is from the emission line center, the longer
the transfer process takes to complete its time
evolution.

The two-phonon-assisted spectral (spatial) trans-
fer process considered above is interestingly the
inverse of the problem of radiation trapping in
planetary nebulas. '4 In this physical situation,
two conditions obtain: (a) collision broadening is
quite negligible, and (b) the spatial dimensions
are sufficiently large that at the absorption edge
of a Doppler broadened line (the frequency at
which the opacity of the enclosure is -l), the line
shape is dominated by natural broadening. In such
a limit, excitations diffuse slowly across the line
profile in small steps, appropriate to Doppler
shifts arising from absorption-reemission pro-
cesses. In the present problem, by way of con-
trast, diffusion to the wings for phonon-assisted
transfer takes place in essentially a single step.

We formulate the expression for the time evolu-
tion of the emission line profile in Sec. II. The
exact solution for a rectangular density of states
is derived in Sec. III, along with a discussion of
its significance. A numerical iterative solution of
the time-evolution expression is formulated in
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Sec. IV. Various initial conditions are analyzed
and representative time developments are exhib-
ited. Section V summarizes our results and re-
views our conclusions.

sonably low temperatures (T~ 10 K).
In the following sections, we integrate (1), using

a I.orentzian form for the initial emission prob-
ability function P(E, 0):

II. TIME DEVELOPMENT OF THE EMISSION SPECTRUM
y m

P(E, O) =( E ), (4)

We wish to calculate the emission spectrum of
an excited level subject to an initial excitation of
arbitrary spectral shape. We denote the equilibri-
um emission line shape for the inhomogeneously
broadened line by g(E}, and the energy transfer
rate from a packet with central energy E' to apack-
et with energy E by W(E E') -We d. enote the
emission probability function by P(E, t). Our defi-
nition differs from that of Ref. 2 because we ab-
sorb the line-shape factor g(E) into the emission
probability function, whereas Motegi and Shionoya
separate P(E, t) into the excitation probability of
a given packet, p(E, t), times the probability of
finding that packet, equal to the line-shape func-
tion g(E) Thus, . [P(E, t))'""=[p(E, t)]'h""g(E).
Given this distinction, the time dependence of
P(E, t) is given by&

Qur results will not depend sensitively upon the
initial conditions. We have used Gaussian shapes
as we)l, with little significant change in the emis-
sion time-development profile (except for an in-
crease in the time scale). We shall choose y=ya
for convenience, and the width of g(E) will be
taken considerably larger than y, so that the initial
excitation width is small compared to the equilib-
rium emission width.

III. RECTANGULAR DENSITY OF STATES. EXACT
SOLUTION FOR THE TIME DEVELOPMENT OF THE

EMISSION LINE PROFILE

In the limit of a simple rectangular density of
states [i.e. , g(E) = I/t! for -6/2&E&6/2, and 0
otherwise], one can solve (1}for IE ~«n. . In this
limit, (1) becomes a simple convolution. Defining

g(E') W(E' —E)P(E, t) ]dE'. (1}

P(E, t}= P(s, t}e "sds,
27T moo

(1) reduces to

(5)

We are interested in linewidths much smaller
than tisT, so that W(E E'}= W(E' -E}. Accord--
ing to I, the energy-transfer rate varies inversely
as the square of the energy mismatch. We write,
therefore,

dP(s, t) ~ W(s) WQ

dt (6)

which can be integrated immediately. Here, W(s)
is the Fourier transform of (2), equaling (I/V2v)
x W;e~". One finds

y/ii
W(E E ) Wa (E Eg)2 (2)

P(s t) =P(s 0)e no' ~exp ' e~"Wt
b,

We have inserted a "width" y for normalization
and convergence purposes. It will turn out that
this convergence parameter will play no essential
role in our solutions. Comparing with I, for ex-
ample,

W,y = ~J'W~. »
for ruby, where J is a mean site-site exchange
coupling (varying rapidly with concentration), and

W~„» is the phonon-induced excitation rate within
the 'E manifold, varying as e 'I' ~, where 5
=E(2A) E(E). This form for—Way corresponds to
only one of a number of two-phonon-assisted en-
ergy-transfer processes. The "nonresonant" (see
I for a pictorial sketch) and Raman processes gen-
erate a T' temperature dependence for Way. The
latter is proportional to the square of the differ-
ence in phonon couplings between the ground and
excited levels. aur numerical estimates indicate
that (3) dominates for ruby, for example, at rea-

e-&'ail 4 (Wo /+) -(r0+nr) lal+issa
n!

(7)

where we have used P(s, 0) =(1/~2v e~o~'+ "sa.
Taking the inverse Fourier transform, we find

n! (E —E,)'+ (y, + ny)'

(8)

This solution has some remarkable features. The
summand is peaked for n= W, t/n, the more sharp-
ly the larger n. Because W, enters as the nth
power, the nth term can be interpreted as n suc-
cessive transfers, each shifting the edge of the
emission line by the amount y [see the denominator
of (8) ], corresponding to the width assigned to the
energy-transfer rate (2).

Of course, (8) is only valid for IE I «n, as
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r=ny= w,yt/t

= vd'WS, „t/t =(-vZ'WS„„tlrn}-r . (9)

The term in parentheses is the single-jump prob-
ability for an energy change of (rh)'t'. For I'»y,
and I' a sensible fraction of 6 (say, O. lh), the time
required for diffusion to an energy width I' by n
successive "steps" of width y is close (within a
fa.ctor of 3) to the time required for a stngle jump
to take place over the same energy width 1. This
remarkable feature of our result is a direct conse-
quence of the Lorentzian energy dependence of the
energy-transfer rate and the assumption of a con-
stant equilibrium density of states.

Were the energy transfer to fall off sharply with
energy mismatch, one would obtain the usual dif-
fusion result (i.e. , slow diffusion in small energy-
shifting steps). To see this, return to (7) and
identify n with the number of steps in the diffusion
process. Call the time-evolved emission profile
after n steps P„(E) Then, from. (7),

P„(E) f (W(s) J'e' 'Ss.
~OO

(10)

If W(E) = Wo f(E},wheref(E) isa sharply varying
function of energy, say rectangular with width y
and height 1/y, the Fourier transform of W(E)
could be approximated by

W(*) 'f e E(E) EE='*

t/2
(I+iEs —EE's')dE

~am y

=~ (1 —v';y's'}
v2m

~0 -y2s2

v2m

otherwise "end effects" arising from the rectangu-
lar density of states become important. Equiva-
lently, (8) is only valid for short times. The time
scale is set by the requirement that ny «rh, or
Woty«t)E. Using (3), this requires t«h'/aJ'W&, „-.
The right-hand side (see I} is simply the time for
a single jump from the center to the edge of the
rectangular line.

With this restriction in mind, it is interesting
to ask for the time required to make n jumps, such
that the width of the emission profile I' »y (but
still smaller than t|.). Neglecting y, (n large), this
requires

Equation (11) allows (10) to be written as

P {E)(E s-Es I EP s-s I &EP l6)
n (12)

This leads to a broadening of the initial excitation
after n jumps to a width n'-i'y B. ut each step has
associated with it the same transition time, so that
the width of the distribution proceeds in time as
t' '. This is the conventional diffusion result, and
is a direct and immediate consequence of the rapid
energy dependence of W(E} It i.s only for a Lor-
entzian dependence, appropriate to most of the
two-phonon-assisted energy-transfer processes
developed in I, that the distribution width proceeds
linearly in time [and indeed is the same regardless
of whether one makes n successive jumps, or a
single jump —see {9)].

The situation is different for a Gaussian density
of states, as would be the case for ruby. The time
development of the line profile is controlled by the
density-of-states function —i.e. , the Gaussian line
shape is controlling over the Lorentzian energy-
transfer rate. The evolution of the line profile
will be shown in Sec. IV to be a rather simple
diminution of the initial excitation profile, with a
concomitant increase in intensity of the equilib-
rium emission line profile.

IV. NUMERICAL SOLUTIONS FOR THE TIME
DEVELOPMENT OF THE EMISSION LINE PROFILE

FOR ARBITRARY DENSITY OF STATES

The time-development equation for P(E, t}, Eq.
(1), cannot be solved analytically for arbitrary
line shape g(E) If, for .example, we should as-
sume that g(E} varies slowly compared to P(E, t)
(an assumption only valid for early and inter-
mediate times), we would obtain a diffusionlike
differential equation for the Fourier transform of
(I):

dP(s, t) W,y Isl W,y isl d'P(s, t)
dt )t 2v & ' ~2s &' ds'

(13)

Here, b is the width characteristic of g(E), and
we have taken y «h. Unfortunately, we know of
no closed-form solution to (13}. The presence of
s as a coefficient on the right-hand side makes the
equation intractable.

As a consequence of our inability to solve (1)
analytically, we have had to resort to numerical
solutions. We have used an iteration procedure,
reducing (1) to

t P) (=EP(E, t.-,) ~ ( t )ftEE (E (E)W(E„-,E')P(E'', t„,l E(E )W(E —E)P(-E. t ')
1 . ' (14)
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This procedure is valid for very small time inter-
vals I;„—I;„,. In order to handle the computer
processing expeditiously, we have converted the
integral to a sum over 41 values of E', and sam-
pled the computer memory for the iteration n of
interest. For simplicity, we have utilized equal
time intervals. Though the time axis is some-
what arbitrary, we have taken the following values
for the rate-determining parameters:

W ('t„-t„,) =10 ', y=y =0.1.
The equilibrium line shape has the form

+(E) 0 57e-E-2.o+&r-z&o. xl

where r varies from 1 to 41, defining the energy
interval, Gaussian width, and setting the scale
for the time interval once W,(t„—t„,) is chosen.
Note that a change of r by 1 changes E by 0.1.

In order to compare with a physical system, we
have related our parameters to the ca,se of 1%
ruby. From Sec. II we have W,y=mJ'W~ ». But
we have taken

Wo(t„—t„,) —= WO5t= 10 ~ = (vJ'Ws 2~/y')5ty,

T= IQQ T= IIQQ T-2IQQ

with time, the excitation being transferred to the
equilibrium emission line (background) in a more
or less uniform manner. [The form of (1) ensures
that the integral of P(E, t) is a constant with time.
The iterative solution (14) preserves that normal-
ization. j

Closer inspection of the figures reveals inter-
esting variations. The initial excitation line ap-
pears to develop a shoulder on the side closer to
the equilibrium line center for short times. The
shoulder then gradually envelops the entire equi-
librium emission profile, after which a "valley"
develops between the initial excitation line and
the remainder of the line, finally progressing
downward so as to separate the two features. All
the while the area under the initial excitation is

where y= 0.1. From (2), (15) can be interpreted
a»t equ»ing, —,', of the time required to jump an
energy difference y. For 1Vo ruby, Birgeneau'
finds J- 2.5 x 10 ' cm ', while Blume et al. ' obtain
Ws,&-(3 x 10')e~'~* sec '. An equilibrium emis-
sion-line-profile width of 1 cm means that y= 0.1
corresponds to an energy-transfer width of 0.074
cm '. Hence,

(wO'W@,„-/y')5t=(1. 08 x 10')e~'~ 5t = 10-2

T=4I00 T= 5200 T= 6400 T= 7600

Solving for ~t, we find

5t=(0.98x10 ')e" sec.

At T=4.2 K, this implies St=104 sec, while at
T=10 K, 6t=10 ' sec. The figures to be exhibited
below are calibrated in units of 5t. For lower
Cr concentrations (more dilute ruby) 2 will dimin-
ish rapidly, and the time scale mill be appropri-
ately expanded.

We exhibit below four examples of the time de-
velopment of P(E, t), differentiated from one an-
other by virtue of the position in energy of the
initial sharp-line excitation. We have chosen ini-
tial excitations at r= 1, 6, 11, and the line center
21, on Figs. 1-4, respectively. The number dis-
played for the time t represents the number of
increments of 6t, hence the number of iterations.

The general features of the time-developed pro-
files are very interesting. Contrary to the results
of Sec. III, the initial sharp-1ine excitation does
not just broaden with increasing time. Rather, on
a crude level, the initial pulse simply diminishes

T=8000 T=I0,000 T=ll, 200

FIG. 1. Representative time evolutions for the emiss-
ion profile of an inhomogeneously broadened line initially
excited at the extreme wing of the line. The transfer
rate depends inversely on the square of the energy mis-
match, and the explicit numerical factors are defined
in the text. The initial excitation was centered at r =1,
and the full horizontal scale on the figures is 41. The
equilibrium emission line is centered at the center of the
figure. The symbol T on each graph denotes the number
of time intervals 6t = t„-t„&through which the iteration
has progressed. According to (16), 6t =0.93x10 ~e4+~

sec for 1% ruby. Thus, at time of 100 (meaning 100dt)
translates to 10 2 sec at 4.2 K, or 10 5 sec at 10 K. For
lower concentrations, J diminishes rapidly, and the time
scale is appropriately expanded.
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T=I5 T= 750 T= l100
T= IO T=400 T=600

i +
T= l 500 T= l 600 T- l 900 T= 2200

T=800 T = 1000 T = 1200 T =1400

T=2500 T= 5000 T= 4000 T-5000

T = 1600 T = 1800 T = 2500

T= 6000

FIG. 3. Same as Fig. 1, but with r =11. Again, note,
the time necessary for complete transfer.

FfG. 2. Same as Fig. 1, but with r =6. Note the dif-
ference in the time necessary for diffusion to develop
the initial sharp-line excitation into the equilibrium
emission line profile, as compared to Fig. 1.

T=IO T= 100 T= X)0

diminishing, the area under the equilibrium line
shape is increasing. Finally, the initial excitation
vanishes, and the equilibrium line shape is fully
developed. Yet closer inspection of the figures
reveals that the peak of the central line originally
is to the left of the equilibrium position, moving
gradually to the right as time evolves. Other
interesting features are the actual time taken for
the diffusion and the intermediate "shapes" of the
central portion of the emission profile. A com-
parison of the figures indicates much more rapid
diffusion when the initial excitation is closer to
the center of the equilibrium profile. This is the
case, clearly, because of the dominating effect of
the Gaussian density of states g(E). The larger
the density of states in the vicinity of the initial
pulse, the more rapid the diffusion process. In
fact, the predicted change of the time scale with
initial excitation line position may be one of the
more crucial tests of our theory. The peculiar
shape (see, for example, the case of initial excita-
tion at r = 11, Fig. 3, where the profile for inter-
mediate times is a skewed triangle) predicted for

T=400 T=500 T =600 T=700

T=800 T =900 T= 1000 T =1500

FIG. 4. Same as Fig. 1, but with r =21, the position of
the equilibrium emission line center. Transfer takes the
shortest time for this value of the initial excitation en-
ergy
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the line profile at intermediate times can be easily
checked experimentally.

Figures 1-4 clearly display the dominating in-
fluence of the Gaussian density of states on the
time evolution of the line profile. Our exact re-
sult in Sec. III, appropriate to a constant density
of states, is misleading indeed if one has Gaus-
sian behavior for g(E). The sensitivity of the
evolution of the line profile to the exact character
of g(E) points to the importance of experiments on
systems where the equilibrium inhomogeneous
emission profile may depart from Gaussian.

angular} density of states leads to a monotonic
broadening of the initial sharp-line excitation pro-
file, with the interesting property that the broad-
ening rate is nearly independent of the number of
diffusion steps involved. When the equilibrium
line shape is Gaussian, the energy dependence of
the transfer rate is overwhelmed by the exponen-
tial character of the density of states, and the
latter becomes controlling. There are interesting
features associated with the explicit time evolu-
tion of the emission line profile.

V. SUMMARY

We have examined the temporal character of
two-phonon-assisted energy transfer in inhomo-
geneously broadened lines. We have used the
I orentzian dependence of the energy-transfer rate
on energy mismatch, calculated in I, to obtain
explicit solutions to the Motegi and Shionoya equa-
tion. ' We have found that the character of the
density of states strongly affects the time develop-
ment of the emission line profile. A flat (rect-
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