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We consider critical systems, such as the percolation problem, whose symmetry permits an invariant

interaction of third order in the fluctuating fields $. In the renormalization-group approach one is naturally

led to look for infrared-stable fixed points which yield a expansions in 6 —& dimensions, with c = 3 as the

physical value. Since the Gaussian fixed point becomes unstable to $' interactions for & &2, it is important to

check that the fixed point obtained in the c expansion remains stable to such perturbations. We report the

calculation to first order in E of the corrections to scaling induced by (stability with respect to) $' interactions

in a general class of such theories. The results indicate that $' interactions remain irrelevant in the percolation

problem.

I. INTRODUCTION

The basic philosophy underpinning most uses of
the renormalization group (RG) is that universality
of critical behavior will arise from the existence
of a. suitably stable fixed point (or set of fixed
points) of the RG transformation. This philosophy
is implemented by studying the RQ in simple mod-
els which have the correct qualitative features to
describe the physics. One should then verify that
the fixed point obtained in the simple model is stable
to perturbations of all other permissible interac-
tions, so that universality of behavior is ensured.

Field-theory models are particularly suited for
realizing these ideas' because the various types of
interactions can be ordered according to the num-
ber of powers of the field Q and the total number of
derivatives, and this ordering corresponds to their
likely importance for critical behavior. One is
therefore led to consider simple models in which
only the lowest power of non-Gaussian (anharmon-
ic) interaction is considered, e.g. , the usual Lan-
dau-Ginzburg-Wilson Hamiltonian

II= d"x ~ V'Q '+~x {t)'+—g

for short-range, O(n}-invariant problems (here (t(;

is an n-component field, Q'—= {t},Q, , and d is the di-
mension of space).

Within the framework of the Hamiltonian (1.1), a
RG transformation' can be set up which yields, for
example, an expansion for critical behavior as a
power series in E, in 4 —E dimensions. The criti-
cal behavior is independent of the precise value of
pp becaus e the fixed point is s tab le to Q

' per turba-

tions.
The signal of the appearance of an E expansion

around four dimensions is given by naive dimen-
sional analysis. Taking (1.1}as the reduced di-
mensionless Hamiltonian, one readily checks that
an interaction

+{1,m) d tt
& O g l 0 ym (1.2}

is dimensionless provided that

[+((,m)] [p]d-(-m(d-2) l 2

where A denotes the wave-vector cutoff in the theo-
ry, with dimension (length) '. In particular in E(I.
(1.1)

The appearance of a positive power of A when d &4

is reflected in the instability of the Gaussian (free
field, allg =0) fixed point to P' interaction, and
the appearance of a nontrivial Heisenberg, fixed
point which can be controlled in the E expansion.

More generally, the Gaussian fixed point is sta-
ble to perturbations of the type (1.2) provided that
d —I ——,'m(d —2) &0, i.e. , d(2m —I) & m —l. There-
fore, for critical behavior in three dimensions the
additional interaction which is most likely to be
dangerous is Q', which is marginal for the Gaus-
sian fixed point. Hence, one should check that the
Heisenberg fixed point is stable to all interactions
(1.2), with particular attention paid to P'.

The program of evaluating the stability proper-
ties of the Heisenberg fixed point is fairly well de-
veloped in field theories with four main approxima-
tion schemes —straightforward E expansion, ' the
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approximate recursion formula, ' 1/n expansion, '
and expansion in E', in 2+&' dimensions' using the
nonlinear Hamiltonian of the Goldstone modes (n

v 1).
In this article we consider this program for theo-

ries with fII)' invariants, which dominate critical
behavior (in the same sense that (f)' dominates in d
=4 —e above). The Gaussian fixed point is unstable
to Q' interactions below six dimensions, and so one
naturally searches for an E expansion in 6 —& di-
mensions with e =3 as the physical value. (Hence-
forth E will refer to 6 —d, unless otherwise sta-
ted. ) Apart from the problems of convergence
when & =3, and of thermodynamic stability in such
Q' dominated theories, the question of the stability
of the nontrivial fixed point to perturbations of Q4,

Q', and Q' interactions is rather pressing. There
are also fewer tools to attack the problem than in
Q' dominated theories: no simple approximate re-
cursion formula is known (since t} is now nonvan-
ishing at lowest nontrivial order in e —note the
paper by Golner in Ref. 4, however), simple 1/n
expansions do not exist, in general, and the sym-
metry group is frequently discrete, so that there
are no Goldstone modes. We appear to be left only
with the possibility of E expansion.

We shall use renormalized perturbation theory of
composite operators and apply the BG to calculate
the anomalous dimensions (critical exponents) as-
sociated with P' perturbations of Q' theories to
first order in E, in 6 —E dimensions.

The outline of the paper is as follows. In Sec. II
we calculate these anomalous dimensions in a class
of theories with a single P' and two independent P4

invariants of some symmetry group of which the
fields (II); form the basis of an irreducible repre-
sentation (i.e. , there is only one quadratic invari-
ant q);P;). The usefulness of the equations of mo-
tion is particularly clear in this general case. In
Sec. III we shall review the percolation problem as
providing an example of the above, and show that
our calculations do support the stability of the non-
trivial fixed point to P' perturbations. The reduc-
tion of the general case to the situation where
only one (II) invariant exists is given in the Appen-
d 1X.

II. ANOMALOUS DIMENSIONS OF P OPERATORS IN y

DOMINATED THEORIES

Our notation is generally that of Ref. 7; p, is an n-
component real field which transforms according
to an irreducible representation of some symmetry
group, so that (II)'= Q, Q; is an invariant. It is as-
sumed that there is only a single invariant trilin-
ear in, the fields, ' and the corresponding tensor is
Q, » (symmetric in interchange of any pair of in-
dices). Repeated index summation convention is
always understood. Special cases of this Hamilto-
nian can be used to describe the isotropic to nema-
tic phase transition in liquid crystals, '" the per-
colation problem' ""(where the dimension of
space d =3), and possibly as models for strong in-
teractions of elementary particles" in d = 4. In
each of these cases we are interested in the criti-
cal behavior of (2.1), i.e. , the behavior when wave
vectors q and the "physical mass" m (inverse cor-
relation length) are very much less than the cutoff
A, which is implied in (2.1) (e.g. , as a bound on q).

For interesting values of d one cannot obtain the
critical behavior by straightforward perturbation
in the bare coupling go because it has a natural
length scale given in terms of A. We write

P3-4/ 2 (2.2)

y —,„~))( )8„—l)(n( )) r,'"'(q;, u)=o. ().))~ ~

Here the tensor indices are dropped for clarity.
The parameter u is the dimensionless renormal-
ized coupling constant, defined by the normaliza-
tion condition

according to Eq. (1.3), where u, is dimensionless
and O(1). For d&6, the power of A is positive,
and its dimension is cancelled by the corresponding
power of q or m, giving an arbitrarily large di-
mensionless expansion parameter u, (A/m)' "~ ' or
u, (A/q)' '~'.

This is a typical situation for setting up an E ex-
pansion in 6 —a dimensions, and has been studied
for specific cases by several authors, ""and for
the general case (2.1) in Ref. 7. We shall use the
conventional RG equations for the massless (m =0)
vertex functions, which are dimensionally regular-
ized and renormalized at a symmetric momentum
point of magnitude p. ." They are

A. Critical behavior of P interactions
I' (q; u, t(, ) i,2 „2=u p

'C
(2.4)

We start by reviewing briefly previous work on
the critical behavior of systems described by a
Hamiltonian of the form

H = d"x —,
' Vy) +-,'~,y +—g, q, ,„y,.y,.y„. 2.1

The functions p(u), v(u), and )7(u) have been cal-
culated' up to two loops using the 't Hooft renor-
malization scheme for the general model (2.1). We
are going to calculate the anomalous dimensions of
P4 operators only to order a, and hence quote only
the one-loop results"
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p(u) = u [--,'e + (-,
' n p)u'+O(u', eu')], (2.5)

t}(u) = —,
' nu'+O(u', eu'),

(1/v)(u) —2 =—', nu'+O(u', eu') .

(2.6)

(2.7)

Here & =6 —d, and a and P are the results of the

tensor contractions

and

1 2 1 2
=@5 (2.8)

@i&jk@i2kl@i3lj ~i&i2i3 (2.9)

The tensor forms of the right-hand sides of these
equations are dictated by our assumption that 6;j
and Q, ,» are the only inva. riant (symmetric) two and

three tensors —indeed this is a crucial require-
ment for the existence of the RG equation (2.3).

In this formalism the critical behavior can be ob-
tained as a power series in & if there exists an in-
frared stable fixed point, i.e. , there exists a u*

such that P(u*) =0, and P'(u*) &0. From (2.5} we

see that

and

u*' = 2e/(n —4P) + O(e')

p'(u*) =&+0(e') .

(2.10)

(2.11)

Thus, to first order in E, a real fixed point exists
if n —4P &0, and if it exists, it is infrared stable.

The critical behavior will then be characterized
by the exponents q=@(u*), v= v(u*), etc. For ex-
ample, the p, dependence of the massless (critical}
vertex functions is given by

F,'"'(q; u, i ) - u'""f(q) (2.12)

S. Renormalization of Q4 operators

We shall consider here the case where the sym-
metry group of the Hamiltonian permits two Q4 in-
variants, an O{n) inva, riant

for q«p, .
The low-q dependence of I'z'"'(q;u, i») is now ob-

tained by dimensional analysis. There are addi-
tional powers q

"" ' ' for each external field of the
vertex function over and above what one would ob-
tain in a naive dimensional analysis which neglect-
ed p, .

The remainder of this section is concerned with
the calculation of the new anomalous dimensions
associated with Q' interactions. These will enable
us to tell whether or not such interactions are like-
ly to change, e.g. , the result (2.12).

and a second invariant denoted by

FO' -=F;jk)4;0; 4k% i (2.14)

This assumption is valid for a wide range of mod-

els; in special cases there is only one Q4 invariant,
SP', and the reduction to this simpler case is con-
sidered in the appendix.

We consider the Hamiltonian (2.1) with the addi-
tional interactions

1
—,A4 d x soSQ + foF (2.15)

[s, and f, are dimensionless, cf. Eq. (1.3)].
The effect of these new interactions is obtained

by expanding the Boltzmann factor e " in powers of
the new interactions. At zeroth order one obtains
the vertex functions I'"' of the original Hamilto-
nia. n (2.1). At first order in the new interactions,
the additional term corresponds to an N-point ver-
tex function with an insertion of the operator (2.15},.
to be calculated with the original Ha, miltonian (2.1).
Some low-order graphs for these new vertex func-
tions are shown in Fig. 1.

The fact that the insertions (2.15) have a negative
power of A for d&4 indicates that they are likely to
give a behavior which is no more singular than that
of the original vertex functions. However this na-
ive expectation is clouded by the fact that the

graphs in Fig. 1 represent an expansion in a large
coupling, effectively u, (A/m)' ' as before.
Therefore we must set up RQ equations for the
vertex functions with operator insertions, in order
to establish that they are indeed very much smaller
than the original vertex functions. Further, in or-
der to establish the behavior in E expansion, we
must renormalize these new vertex functions in six
dimens ions.

The theory of renormalization of composite op-
erators such as SP' and FQ' is well established. "
The central theorem is that one must simulta-
neously renormalize all operators which have equal
or lower naive dimensions, and the same trans-
formation properties under the symmetry group of
the Hamiltonian. The theory has been applied
mainly in two circumstances: (a) for operators of
dimension less than or equal to those in the Hamil-
tonian itself, where the number of operators to be
considered is rather small"; and (b) for operators
of arbitrarily high dimension, which belong to an
irreducible representation which is different from

SQ' = S,,„P,P,P»P,—= (Q')',

where

S &»r
= &(6'g5»'i+ 6ii6y»+ 6i»6it) ~

(2.13a)

(2.13b)
FIG. 1. Low-order graphs contributing to a three-

point vertex function with insertion (2.15).



4660 D. J. AMIT, D. J. WALLACE, AND R. K. P. ZIA

A, (x) =(1/2! ) p '[C!(f&(x)]', (2.16d)

A, (x) = (1/2! ) p, 'P,.(x)C! 'P, (x), (2.16e)

A, (x) = (1/3! ) p
'~'

[Q,,~g, (x)P, (x)$~(x)], (2.16f)

A, (x) =(1/2!)p, 'Cl[g,.(x) OP,.(x)], (2.16g)

A, (x) = (1/2! )!j, ' C!'[P'(x)]. (2.16h)

Here we have introduced explicit powers of p. to
make all eight operators of the same naive dimen-
sion in 6 —E dimensions. denotes &,&, . The N-
point vertex function with an insertion of operator
A, is denoted by I","'(p; q;u, p), where p is the ex-
ternal momentum flowing in at the insertion. Since
we are considering the massless theory the bare
mass rno is determined by the other parameters.
The dependence on p, comes from two sources.
First, from the definition of the bare dimension-
less coupling constant, namely:

(6-d) i 2
go -BOP.

and second from the explicit p. dependence of the
inserted operators.

The vertex functions I",'"' are not multiplicatively
renormalizable. The fact that the operators A,
couple to operators of lower dimension gives rise
to terms which behave as A' and A' in the pertur-
bation expansion of these vertex functions. Only
the part which is logarithmically divergent can be
renormalized multiplicatively. The higher diver-
gences have to be subtracted as in Ref. 17. Or, al-
ternatively, one can define new vertex functions,
which are derivatives with respect to the external
momenta of the original ones, such that only log-
arithmic divergences remain. This is often done
when one considers BI'"'/Bk' in the usual Q' theo-
ry. The A' term in I'"' is independent of momen-
tum, and thus BI'"'/Bk' is multiplicatively renor-
malizable.

In ou r cas e we def ine

that of any others operators of the same naive di-
mension, so that no mixing of operators occurs. "

The only exception to these cases known to us is
the calculation of the correction to scaling expo-
nent of Heisenberg models in 2+& dimensions"
where five operators mix and in fact there are
technical complications over and above those which
we face here.

The eight linearly independent operators of the
same naive dimension which we must consider can
be written:

A, (x) = (1/4! )Sg'(x), (2.16a)

A, (x) = (1/4! ) FQ '(x), (2.16b)

A, (x) = (1/3! ) p,
'~'

Q...&f&,.(x)p, (x)CI Q,(x), (2.16c)

«1» «2»Sj j j j r. +r, j jj r. =
1234 12 34

8 8 8I «3»q
8$ 8' 8g

I «4»g I (2)8 8
a jlj2 8n2 8n2 ajlj2 &

&1 &2

I (4)
jlj2j3j4

I (3)
ajlj2j3

(2.17a)

(2.17b)

(2.17c)

L =I —m, I=~(3m+1, —l,),
hence

6 = ~ (m + l, —l ~) (d —6) =L (d —6) . (2.18)

At d =6 all terms of all the new vertices diverge
logarithm ically.

The renormalization can be performed in the fol-
lowing way: First the vertices are rendered di-
mensionless via

I'«b» -6 (lb-4)/2 I «b» (2.19)

Then the renormalization matrices are defined as

I'„",(p;q;u, p) =Z.,Z""I',"(p;q;u, ; p), (2.20)

where the bare functions have been dimensionally
regularized. Z is the conventional wave function
renormalization cons tant.

The matrix Z„ is determined by imposing the
normalization conditions

I'„",' ( p; q; u, p, )
~
„=6,', (2.21)

where ~, means that the vertex function is evalua-
ted at the symmetry point p, appropriate to the
particular vertex type. For example, I"," contains

(2.17d)
1 2

etc. Note that the decomposition in (2.17a) is
unique. The combination of derivatives is de ter-
mined by the combinations which appear in the
operators. We have displayed explicitly the tensor
indices of the original vertex functions I'"'.

These new vertices have logarithmic integrals
only. To see this one has to perform the power
counting for a term of mth order in the perturba-
tion expansion of I'," . One first notes that A, has
l, fields and 8 —2l, powers of momentum, where l,
is the number of factors of the field in A, . Cor-
respondingly, there are 8 —2lb momentum deriva-
tives applied to I",' ', in order to obtain I",', with
lb the number of external legs of the vertex.

If a graph has I. loops and I internal lines, then
power counting gives

5 = Ld —2 I+ (8 —2l, ) —(8 —21~)

=Ld —2 l+ 2(l —l,)

for the difference between the number of momen-
tum powers in the numerator and in the denomina-
tor. In terms of m we have
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FIG. 2. Graph contri-
buting to F~ ~ . The mo-

1
mentum p is carried by the
vertex insertion.

I4I i I5I

graphs like Fig. 2; the symmetry point here means
q', =q', =q', =q', = p'= p' and (q, +q,)'=(q„+q,)'=etc.
=

& p.', satisfying the constraint

2(ql+q,'+q,'+q!+P') = Z (q, +q,)',
pairs q, p

obtained from momentum conservation.
With the normalization conditions (2.21), the di-

mensionless Z„can depend only on the dimension-
less u and on E, since the theory is dimensionally
regularized. The BG equations obeyed by I'~"'b are
obtained by taking i2B/B p of Eq. (2.20), holding g,
constant. The result is

x,~e
FIG. 3. Matrix of graphs contributing to j. ~b~ in

Eq. (2.25). An extra stroke on a leg indicates a factor
q~. Empty entries indicate that either at this level the
corresponding vertex is not generated, or that it has no

pole in e.

C. Calculation of y, b to order e

9 8

ay, aup +P—(u) —243—)(u)

—,'e(4 —l, ) 6„—y„(u) &",' = 0, (2.22)

where

y„= Z„p,—Z„'+-2'e Q Z.,(l, - 4)Z„'. (2.22)
& ~0

The second term on the right-hand side comes
from the explicit p, dependence of A, and I'. Z„ is
obtained as a power series in the bare coupling
constant g3 by combining Eqs. (2.19)-(2.21). We
find

z '=z'~» I zab a (2.24)

The possibility of inverting Eq. (2.21) makes the
normalization conditions a somewhat more elegant
approach in this case, than that of minimal sub-
traction of & poles.

In Secs. II C and IID we shall give some details
on the calculation of the one loop contribution to

y,b, and discuss the diagonalization of this matrix
to obtain the anomalous dimensions and the explicit
solution of (2.22).

We start this section by making a preliminary
simplifying remark. Operators such as (2.16f)-
(2.16h) which are total derivatives can simply be
neglected. They do indeed require renormalization
amongst their ou/n vertex types (and this is just the
renormalization of the lower-dimensional opera-
tors without total derivatives}, but are not overall
divergent when inserted into the other vertex types
(2.19). Therefore only the five operators (2.16a)-
(2.16e) and vertex types (2.19) need be considered.

The bare vertex functions I",'" have a, 6, contri-
bution from tree diagrams. The one loop graphs
are shown in the matrix of graphs Fig. 3. An extra
stroke on a leg at a vertex indicates a factor of q'
from the derivatives in Eqs. (2.16). This factor of
q' exactly cancels the massless propagator 1/q'.
Some contributions in the third and fourth columns
are therefore independent of external momenta and
give zero when the differentiations in Eqs. (2.17}
are done. In particular the momentum dependence
of the graphs in the last two columns is such that
all off-diagonal elements in the last column are
zero. The form of Z„means that we need consider
only the first four operators and vertex types. Ex-
plicit calculation gives"

rb[

1+6 g(') p 'p33/e

6 g(')P 'P/3/e

6g2t3 33/2y /e

12Z3 p
"

y3/&

6@&&P P3f/e

1 + 6g3i2 pff/6

sg".p ""-/y~f
12g(') 0"yf/&,

lg. p "/e
p go/, K/6

1+ 3830'P/&,
g3i2 3E/2P/g

2 A'3 P O'/&

(2.25)

Only the divergent (1/e) pa. rts of the graphs are
exhibited. Finite parts do not contribute to y„at
this order. Note that all elements are indeed di-
mensionless. The coefficients p„, etc. , arise

from the tensor contractions in each graph, and
are defined as follows:



4662 D. J. AMIT, D. J. WALLACE, AND R. K. P. ZIA 15

(Qi ii'Qi jk iklkik k Pfs i&i&i&i4 Pff i&iki&ik I
1 2

(2.27)

(2.28)

(2.29)

(Q .. . , Q.F " ) =kQ

(Qi ii Qi ik Qikkl Qi4li k &s i&iki&i4 & j i&ikikik ~
1 2

where 8 means the tensor is symmetrized, as in,
e.g. , Eq. (2.13b).

It is now straightforward to use Eqs. (2.23} and

(2.24), the known form' of Z,

Z = 1 —
k goP Q/e+O(gk)

and u'=g,'p, '+O(g,') [from Eq. (2.4)] to obtain

yah

6u'p —3cyu2

6Q Pfs

-Bu'y,

12Q4y,

6u'p, f
6Q Pff ~ 3QQ2 1 2

-Bu' yf

12Q4 yf

3 u1

2KQ
1

2 1 23Q13~4QO ——QM
1
9

——un —61 2
6

(2.30)

Terms of higher order in E and u' are of course
omitted in this matrix.

D. Eigenvalues of p, b

In the remainder of this section we set u equal to
its fixed-point value (2.10). The diagonalization of

y„ is then simplified because two of the eigenvec-
tors can be obtained by using the equations of mo-
tion. The first use is easy to see: in the deter-
minant of y, b

—&5,» add 2 u of the 3rd row to the
4th. The fourth row then becomes

3 3 3 3 3 3
0) 0) 2Q p —

8 Q Q —4EQ —2~Q,

The third element is ——,'u(e+X) when u has its
fixed-point value (2.10). Therefore, one of the ei-
genvalues is A. = -E. The particular combination of
rows to obtain this result corresponds to

3A4+2QA3,

i.e. ,

(1/2!)P '!-!Q,;(!-!4'i—k u P" '
Q;,kit', if'k).

The combination in parentheses vanishes according
to the classical equations of motion, corresponding
to the Lagrangian (2.1), with u, replaced by u and
the mass set to zero. At the order of one loop
these replacements can be made. In general one
has to use the implications of these equations on
the renormalized vertices with the insertions of the
operators which enter the equations of motion.
(See, e.g. , Refs. 17 and 14.)

Guided by this remark we look for an eigenvector
for a remaining 3 x 3 determinant obtained by a
similarity transformation aligning the "4th axis"
with the first eigenvector:

16 u'p„—3 n u' —X

6u pf,

-8 u'y,

6Q Pf
6 Q pff —3 @Q2 1

-8 u'yf

3Q
1

3KQ
1

2 53QP~12QQ

(2.31)

The corresponding operators are (1/4! )Sifik,

(1/4! )Fatti', -(1/3! )ti '~'Qif'Clf [Eq. (2.16)]. They
are linked by a naive equation of motion

0 =Qiikif';$, (Opk —k u!i" 'Qk, p, p )

=Qi»4'i/i Hp» —k up' '(Q;, kQk, ~)pip, p, p~.
c(=-A —2p, uA, —2pf QA2,

where the P's are defined by

kP, y kiiP& =—,'(a+2P),

4r, =6p, P, +(6p, , 2P)P„—
4r =(6P —2P}P +6' Py

and the fixed-point equation (2.10).
'These identities, as well as

1
P..=k(~+2P.), P.f = ,'P„-

(2.33a)

(2.33b)

(2.33c)

(2.34)

(Q,ikQki )k ——P, Sii,„+Pi F,, (~ . (2.32)

Now take therefore the combinations (—2P, u)
&& (1st row) —(2P~u) x (2nd row}-(3rd row). It is
straightforward to show that the three terms thus
obtained have a common factor —,

' nu' —E —A. , using
the algebraic identities

can be obtained by manipulations amongst the ten-
sor definitions (2.26)-(2.28} and (2.32}. For ex-
ample, putting (2.13b) into the left-hand side of
(2.26) and using (2.32) on the result, one arrives at
(2.34).

Summarizing these results, there are two eigen-
values
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~= -6+—QQ

(2.35a)

(2.35b)

itive A. would be a warning, indicating the possible
existence of a dangerous relevant operator.

while the remaining eigenvalues are solutions of
the equation

O=det
5u'p„- A,

u'(6pz, —~P,)

5'M Psg

u (6pyy —g (x —KPy) —A,

(2.35c)

which is obtained from (2.31) using the identities
(2.33) and (2.34). Although in general, no further
simplification occurs in the solution to this quadra-
tic, it can be shown that the roots are always real.

A proper analysis of the equations of motion
would be required to establish if (2.35a) and
(2.35b}, in the form -e and -e+q [cf. Eq. (2.6)],
remain eigenvalues of y„at higher order in per-
turbation theory.

Given the set of eigenvalues X, it remains to
write down the conditions for irrelevance of the Q4

interactions. Of all the types I' which are multi-
plicatively renormalizable, I'"' (i.e. , 5 = 1, 2) alone
is a simple vertex function. So, for clarity, we
consider I""', where n denotes an insertion of that
linear combination of operators A, which corre-
sponds to the eigenvector numbered n.

Consider these functions at the critical point
(zero mass). Eq. (2.12) implies

III. SPECIFIC EXAMPLE —ASHKIN-TELLER-POTTS MODEL

Particular examyles of the class of Hamiltonians
(2.1) yield many interesting models. The five-
component field belonging to the L =2 representa-
tion of O(3} is the order parameter in the model for
the nematic to isotropic transition in liquid crys-
tals', an E expansion exists in 6 —E dimensions,
although it is perhaps unlikely that it controls a
second-order phase transition in three dimen-
sions. " The (fq ' —1)-dimensional adjoint repre-
sentation of SU(N) can also be studied" as a, model
for the strong interactions of elementary pa. rticles
(with d = 4, e = 2 a.s the physical value); it is re-
markable that to first order in E, a real infrared
stable fixed point exists only for SU(3) and SU(4).

The strongest evidence for a model whose & ex-
pansion in 6 —E dimensions does control physics is
found in the percolation problem. " This can be
formulated as the n =0 limit of the generalized
Ashkin-Teller-Potts model, "which consists of an
n-component field, with a symmetry group S„„(the
permutation group of n+1 objects). The field theo-
ry version of this model" contains trilinear cou-
plings, with an invariant tensor which can be writ-
ten

1'"'(q;;n*, u) = u'"&(q;) . (2.36) n+l

q...= g e, e,.e,', (3.1)

1""'(q&,n*, u) = u'"k " f(q;/k) . (2.37)

Let k be a scale of the momenta q;, then dimen-
sional analysis prescribes the dependence of I'"'
on k. It is

where e,' (n =1,2, . . . , n+1) are a set of n+1 vec-
tors, of length (n)'~' to the n+ 1 vertices of the
"tetrahedron" in n dimensions. They are normal-
ized to

On the other hand the solution of the renormaliza-
tion-group equation for I'"', at the fixed point,
gives

e, e8= (n+ l)6„8—1,
c=l

and satisfy

(3.2)

1'."'(q, ;P;n*, u) = u'"' G(q;;p). (2.38) n+l

If the insertion is at zero momentum, dimensional
analysis gives

I'~" (q, ; 0, u *, u. ) = u'"'" k '" " g(q, /k) . (2.38)

2 —c —A. &0. (2.40)

In particular the Q4 interactions are irrelevant for
the nontrivial fixed point in the dimension in which
they are marginal for the Gaussian fixed point (d
=4, e =2) if all the X 's are negative. Thus, a pos-

But it is just this vertex which gives the coefficient
of g in 1""', where g is the coupling constant
with which A enters the Lagrangian. Hence ir-
relevance is the condition that as k-0, for q, /k fi-
nite, (2.39) vanish faster tha. n (2.37). That is,

ge, e, =(n+1)6,.&,
Ot =1

(3.3)

All tensor contractions in graphs can be evaluated
using (3.2} and (3.3). The e expansion of this mod-
el has received much attention; a real infrared
stable fixed point exists" for n &—', . There is evi-
dence that for n =0 this fixed point may indeed con-
trol behavior in the percolation problem in three
dimensions. '""It seems unlikely that the exist-
ence of a fixed point in e expa, nsion for n =2 has
anything to do with the continuous transition pre-
dicted for n ~ 3 in two dimensions. "

In all of these field-theory models, dominated by
Q' interactions, there is always the problem of the
thermodynamic stability of the ground state. This
has been much discussed in the above references
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(see also Ref. 24) but we know of no convincing
treatment of it.

Modulo this problem, we can calculate the effect
on the last model due to perturbations by the Q4 in-
teractions, (P'}' and F,,»P;P, P,P„where

F ai= Qe(e7sPer ~
(3.4)

using the general results of Sec. II. The tensorial
contractions in Eqs. (2.8), (2.9), (2.26), and (2.27)
are calculated using Eqs. (3.2) and (3.3}. The re-
sults are

n = (n + I)'(n —1),

P = (n + I)'(n —2),

p„=—,'(n+ I)'(n —3),

,pf= ', (n +-1),

p~, = (n y 1)',

pj's =(n+1)'(n —2) .

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e}

(3.5f)

The explicit value of the fixed-point coupling [Eq.
(2.10}]is

u*' =2m/(n+ 1)'(7 —3n) +O(e') . (3.5g)

(This is positive for n &—', as mentioned before).
Substitution into Eqs. (2.35) gives the eigenvalues

6+O(e-), (3.6a)

(3.7)

We note first that all of these eigenvalues are
negative, which is at least an indication that the
Q' fixed point remains stable to Q' perturbations
down to four dimensions, where the Gaussian fixed
point becomes unstable [see the remarks after Eq.
(2.37}]. Even for c =3 and 4, the stability condi-
tion (2.37) is satisfied for all the eigenvalues (3.7),
although it would be remarkable if the & expansion
turned out to be a reliable guide for these large
values of E. Nevertheless taken at their face value
these results do indicate that P4 interactions will
not change the results obtained previously by ne-
glecting them, and that the Q' fixed point is phys-
ically important.

By contrast let us consider the n = 2 case briefly.
There is still a fixed point in the E expansion, ac-
cording to Eq. (3.5g}. When n =2 there is only one
Q' invariant and we use the results of the appendix

X = -~+a(n -1}/3(7—3n) iO(e'}, (3.6b)

a, = [e/3(7 —3n}][19n —47

+(8ln' —186n+889)'~']+O(c') .

(3.6c)

For the percolation problem we set n =0 and obtain

to obtain the roots

(3.8)

[The last root is also obtained as the root A, in Eq.
(3.6c) when n =2.]

The convergence of the E expansion is of course
even more unreliable here, because the typical ex-
pansion factor e/(7 —3n) is in no reasonable way

small. However, one may note a qualitative dif-
ference between Eq. (3.8} and Eq. (3.7): In Eq.
(3.8} there is a positive root which shows one of the

eigenvalues even starting off in the wrong direction
for stability.

More generally we remark that this is a feature
of all the cases we know which satisfy the addition-
al requirement of having only one Q4 invariant.
These correspond to n =5 [for the spin-2 represen-
tation of O(3)], n =2 (for the Ashkin-Teller-Potts
model) and n =8 [for the adjoint representation of
SU(3)]. All of these n are greater than —,

' so tha. t the
(P')' perturbations have critical exponents which
start off for small a with the sign which will pro-
mote instability in lower dimensions.

Finally we remar'k on the case n =1, which is of
some theoretical interest. In the lattice version of
the model, this corresponds to the Ising model.
Critical exponents are therefore expected to be
mean-field-like for d&4 (& &2). This is indeed the
case for the Hamiltonian (2.1) because all self-en-
ergy graphs vanish when n = 1 [by arguments simi-
lar to the n =-2 case of Q(n)-invariant Heisenberg
models" ]. The model is not Gaussian of course,
because the three-point vertex is still nontrivial.
The true Ising-model nature is reflected however
in the eigenvalue X, in Eq. (3.6c), which vanishes
when n =1.

It is reasonable to speculate that this result re-
mains true to all orders in E. Our interpretation is
that the zero eigenvalue remains down to four di-
mensions, where the P' operator therefore be-
comes marginal for both the Gaussian and nontrivi-
al P' fixed points, which may even coincide there.
One may speculate further; given these indications
that the radius of convergence for n = 1 is E = 2, and
that the numerical convergence of the E expansion
becomes poorer as n increases, then it seems ra-
ther unlikely that the E-expansion fixed point for n
=2 has physical significance.

IV. CONCLUSION

We have calculated the anomalous dimension of
Q4 operators to first order in E, for a class of
theories which have infrared stable fixed points in
6- E dimensions. We have explained the calcula-
tions in some detail, because the renormalization
theory of composite operators of high dimension,
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although well understood, has not been widely ap-
plied. The aim of these calculations (apart from
providing us with a, pedagogical exercise) was to
check whether the Q4 interactions were relevant
(destabiiizing) or irrelevant for the Q' fixed point.

The results were analyzed in detail for the gen-
eralized Ashkin-Teller-Potts model, and we be-
lieve that even the first order in E has provided
more insight than might have been anticipated.
There is strong evidence that for n = 0 the fII)' fixed
point may be the physical fixed point describing the
percolation problem, being stable to Q4 interac-
tions. There is a physically interpretable zero
anomalous dimension for the Ising case (n =1).
Correspondingly, for n=2 the (II)' fixed point, when

it exists, would appear to become unstable to Q'

interactions as d is lowered towards 4.
It would certainly be interesting to push these

calculations further by, e.g. , looking at next order
in E, or studying (II)' or higher interactions although
substantial labor would be required.

It is amusing that in this special case the values
of critical exponents to order E can be expressed
simply in terms of the number of components n of
the field, irrespective of the particular symmetry
group. From (2.33a), with P& =0, we have

2P, = n+2P. (A3)

Further taking a trace of (2.32) gives

Q;,gQ, g
= a (&+ 2)P.6;

i.e. , from the definition (2.6)

Using the equation of motion eigenvectors we ob-
tain the eigenvalues -E and -&+6 au' as before.
[As in Sec. IID, u has its fixed-point value (2.10)
in these equations. ] The third eigenvalue is then
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APPENDIX: PARTICULAR CASE OF ONE g INVARIANT

o

—Qu9

-6u Q —E
1 2

yah
-8u' y,

12u'y,

3u I3 —4u Q-pc
u'P

In some special cases (e.g. , the Potts model for
n =2) there is only one P' invariant, SP'. The form
of the RG equations is as before. At first order in
the E expansion the matrix y„ is obtained by de-
leting the second row and second column of expres-
sion (2.30):

6u pqq —3Qu 3 u2 1 j.

Combining (A3) and (A4) the fixed-point value
(2.10) is given by

ou+' = [2(n+ 2)/(3n —2)]e +O(e') . (A5)

and

ri=[(n+2)/3(3n —2)]e yO(e')

I / v —2 = [5(n + 2) /3 (3n —2)]& +0 (& ') .

(A6)

(A7)

Finally using (2.34a)

p„= 3 (o' y 2J3,),

the third eigenvalue (A2) is

Thus, provided a real fixed-point exists, the criti-
cal exponents are given from Eqs. (2.6) and (2.7):

(A1) & = [10(n+6)/3(3n —2)]e +O(e') . (As)
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