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Brownian motion in a polarizable lattice: Application to superionic conductors
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We discuss the Brownian motion of a set of interacting particles. The general problem is formulated in terms

of generalized Langevin equations and the frequency-dependent conductivity o.(co) is computed from the

velocity-velocity correlation function. In particular we consider a case pertaining to superionic conductors. We

apply the formalism to a system consisting of a polarizable periodic sublattice built up of one ion species and

oppositely charged mobile ions. Approximate solutions for cr(co) are derived by choosing the simplest analytical

memory functions which fulfill all asymptotic conditions. We show that lattice polarizability leads to structure

at the transition frequency from diA'usion-controlled to oscillation-controlled properties. The formalism is

applied to n-Agl. The different interactions in superionic conductors, i.e., eA'ective potential seen by mobile

ion, lattice polarizability, and correlation of jumps of mobile ions, can be split and studied separately in their

respective characteristic frequency regimes.

I. INTRODUCTION

Superionic conductors are solids characterized
by an ionic conductivity comparable to liquid elec-
trolytes. ~ Despite their technological importance
in modern electrochemistry, not much is known
about the factors which determine the ionic mobili-
ty 17

The remarkably high conductivity of this class
of solid compounds is a consequence of two facts:
First the barrier height for diffusion is rather
small, since barrier heights of the order of kT
are not uncommon, and second essentially all ions
of one species are mobile. From a theoretical
point of view, this is a situation of formidable com-
plexity; before any progress can be achieved, it
is necessary to introduce rather dramatic simpli-
fications.

In previous papers we have investigated a rather
simple model which neglects polarizability of the
lattice and correlated jumps of the ions. ~' In this
model we considered the Brownian motion of a
particle in a rigid periodic potential. The particle
is described by a Langevin equation. Coupling to
the thermal bath is provided by a friction term and
a stochastic driving force.

A continued-fraction expansion technique similar
to the well-known Mori technique for Hamiltonian
systems can be applied to such problems. ' It was
found that the exact solution can be approximated
by a simple exponentially decaying memory func-
tion. '

With regard to application to superionic conduc-
tors, the model has two major drawbacks. It ne-
glects the polarizability of the lattice and corre-
lated jumps among the mobile ions. Lattice po-
larizability leads to structure in the frequency-de-
pendent conductivity c(~) at the transition frequency

from diffusion-controlled to oscillation-controlled
behavior. Correlated jumps on the other hand af-
fect a(&o) at &u ~ r„', where v~ is a characteristic
residence time. '

In general, &„' is much smaller than all relevant
lattice frequencies. Hence the effect of correl. ation
on o(&u) can be split off and treated as a separate
problem independent of the dynamics of the lattice. '
This, however, is not true for the lattice polari-
zability.

It is the purpose of this paper to introduce a
model which describes Brownian motion of a parti-
cle in a polarizable periodic potential. As opposed
to the rigid-potential model' we no longer are able
to give exact solutions. Instead we will use an
approximation which contains all essential physi-
cal features and which has been successfully
tested in the rigid-potential case.

We proceed as follows: In Sec. II we investigate
a set of N-coupled Langevin equations describing
N-coupled particles. Following Kubo's matrix
notation' we introduce the memory-function form-
alism and, by making use of the fluctuation-dissi-
pation theorem, express the current-current cor-
relation functions and o(ur) in terms of memory
functions.

Based on this formalism we discuss in Sec. III
the case of a lattice builtup of two oppositely
charged ions per unit cell of which one species is
mobile, whereas the other provides a fixed sub-
lattice. From general physical arguments a num-
ber of asymptotic conditions for the memory func-
tions can be found. We introduce a set of simple
analytical memory functions which fulfill the as-
ymptotic conditions. From this set, o((u) is com-
puted. At this point the model only includes the
ionic (displacive) part of the polarizability. In
Sec. IV we generalize the model to also include
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the electronic part and apply it to experimental
results on n-Agl.

To sum up (Sec. V) we have introduced a model
which aQows us to take into account lattice polariza-
bility. This is particularly important in the case
of AgI-type superionic conductors.

II. GENERAL FORMALISM

The correlation matrix C is defined as

C;y(t) = (x (t)x;(o)e"'"*' "') .

Equation (2.3) can be now rewritten
N

S(k, t) = Q Q,~C, , = TrQC,

(2.5)

(2.7)

(2.9)

In this section we discuss the general problem
of the motion of ¹interaeting charged particles
described by N-coupled Langevin equations. "'"
We are mainly interested in the frequency-depen-
dent conductivity which we calculate by using tech-
niques pioneered by Kubo." Before we start dis-
cussing examples of physical interest we briefly
reformulate Kubo's matrix formalism for corre-
lation functions and introduce a memory function
ansatz for the coupled Langevin equations. The
frequency-dependent conductivity o(&u} is then ob-
tained from the current-current correlation func-
tion.

We consider a system of N particles described
by their masses m,. (i = 1,. . . , N), charges q„and
coordinates x,. The current of the ith particle at
the time t is

j,.(t) =q, x, (t) . (2.1)

The total wave-vector-dependent current is then
given by

(2.2}

S (k, t) = (J(k, t)Z(k, 0))
N

= Q q, q, (x,(t)x, (0)e""~"~'), (2.3)

k being the wave vector. The current-current cor-
relation function for the whole system is

where Tr indicates the trace operation. The prob-
lem is then reduced to the calculation of the corre-
lation functions (2.7).

We now consider a system of N interacting par-
ticles described by a set of equations of the form

m, x,.+ g F„(x,-x,.) =0, (2.9)

(2.11)

wher~ E,&
represents the interaction between par-

ticles.
Equations of this form using realistic interaction

potentials and up to several hundred particles have
been numerically solved in the case of liquids. " "
However, we want to avoid the use of large com-
puters and hence proceed in a different way. We
replace the set of nonlinear equations (2.9) by the
following set of linear equations:

m x (t}+I' x,.(t)+ P M &(x —x ) =f (t) . (2.10)
jag

In the above set of coupled linearized Langevin
equations, I',. represents a damping and f, repre-
sents a stochastic driving force." The nonlineari-
ties in Eq. (2.9) are represented by the stochastic
driving forces f, ." The memory-function opera-
tors M, ~

are defined by

where the average (' ' ') is taken over an ensemble
in thermal equilibrium. According to the fluctua-
tion-dissipation theorem, we ean write the total
conductivity of the system in terms of the corre-
lation function (2.3) as

o(k, (u) = e'"'S(k, t) dt =1 ",„, S[k, ~]
8 0 B

(2.4)

where EB and T are Boltzmann constant and tem-
perature, respectively. S[k, ~] is the Laplace
transform of S(k, t):

S[d d]= J d' 'd(k, ()dt.
0

(2.5)

It is convenient to introduce a matrix notation: Let
Q be the matrix of charge with matrix elements
given by

where M(t) is the so-called memory function.
Equation (2.10) is linear and the current-current
correlation function, or o((u), can be readily cal-
culated in terms of the M&&. In simple cases the
asymptotic form of the M, ~

for large and small t
follows from physical arguments. There is hope
that simple analytical expressions for the M, ~(t),
which fulfill all asymptotic conditions, will pro-
duce approximate solutions for the correlation
functions and for o(u). We note then that causality
poses additional constraints on the choice of the
memory function. The M;, (t) have to be such
that the poles of a response function are located
in the lower complex half-plane.

We now introduce the matrices M* (mass) and
E (interaction) and the vectors F (force) and V
(velocity) by defining their elements as follows:



15 BROWNIAN MOTION IN A POLARIZABLE LATTICE. . . 46N

Mfq=mPq, V, =z, , F, =f, ,
(2.12)

The systems of equations (2.10}can be now written
in a compact form as

M*' V+E' V=F . (2.13)

M* C+E.C=0. (2.14)

(Causality requires, in fact, that (f,(t}~,(0))=0.}
A Laplace transform of Eq. (2.14) results in

B[u&] C[&u] =M* C(0) . (2.ls)

The matrix B[u] is defined by

B[~]= i&uM-*+ E[+]. (2.is)

C (0) is formed by the elements (2.7) at the time
t=0.

Multiplying Eq. (2.13) from right with the matrix
of the i,.(0)e"'*~ "s', and taking the thermal average,
we have

mV+ 1 i+ M(i —t')x(t') dt' =f(t), (3.1)

which results in a frequency-dependent conductivi-
ty

the situation which applies to superionic conduc-
tors such as o. -AgI. '

We discuss the problem in two steps. First we

describe the sublattice of immobile ions by a
rigid potential, derive o(~) using a simple mem-
ory-function approach, and compare the thus-ob-
tained approximate a(u&) with exact solutions.
Having gained confidence in the memory-function
technique we apply it to a more complex and more
realistic situation fow which no exact solutions
exist. In this second model the lattice potential
is no longer rigid and interaction between the dif-
ferent ion species is included. This is particular-
ly important for experimental systems with large
polarizabilities such as o'. -AgI.

The first model was discussed in previous
papers' ' and will be treated only briefly. In terms
of a memory function the generalized Langevin
equation for a particle in a rigid potential is'a

C,,(0) = (H(0))S„=(KaT/m, )&, (2.17) o((o) =q'(-i(um +F+M[(u]) ', (3 2)
having made use of the equipartition principle.
From Eq. (2.15) we obtain

C[&u]=B '[&u] M*'C(0) . (2.18}

Inserting now (2.18) into (2.8) the frequency-de-
pendent conductivity becomes

o(k, &u) = TrQ'C[&u]
1

B

1
Trq B-'[~] M+ C(0)

B

Trq B '[~]- (2.19)

The problem is therefore reduced to the calculation
of the matrix elements of B '[~]. In the general
case this is an N XN matrix and the explicit cal-
culation is possible only for a very small number
of particles. In some cases, however, symmetry
can simplify the problem. For example, if trans-
lational invariance is present the problem becomes
equivalent to that of the normal mode of a periodic
system and the size of the matrix is reduced to
the number of atoms in the unit cell."

M(f) =mHe-"' (3.3)

where &0 is an effective resonance frequency.
This form of the memory function also reproduces
the first terms of a continued fraction expansion
for the nonlinear problem. ' The corresponding
conductivity is

where M[+] denotes the Laplace transform of M(f)
For a harmonic potential (3.1}has to describe a
damped oscillator which requires M(t) =c&0. In

the limit of exclusively frictional forces which is
the classical Brownian-motion picture, " (3.1) has
to represent a diffusion equation which results in

M(f) =as(i).
We are interested in the Brownian motion of a

particle in a periodic potential in which the poten-
tial barrier for diffusion is comparable to k T.
Equation (3.1) thus has to include both oscillatory
and diffusive aspects. In particular, we require
(3.1) to describe an oscillating particle at t -0 and

a diffusing particle at t- ~. The simplest choice
of M(t) which fulfills the above asymptotic condi-
tions is"

III. BROWNIAN MOTION IN A LATTICE a(~) =q'[ i&em+ I'+-m&o', /(-i&u+y)] '. (3.4)

In this section we discuss the Brownian motion
of a particle in a solid in terms of simple phenom-
enological models. The basic assumption is that
the solid is built up of at least two species of ions
of which one species is allowed to diffuse whereas
the others provide a stable framework. This is

v =1/y characterizes the transition time between
oscillatory and diffusive motion. (Note that this is
not identical to the average residence time. ')

It can be shown that (3.4) represents a good ap-
proximation of the exact solution obtained from a
generalized continued fraction expansion. A more
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detailed discussion can be found in Ref. 6. We
have presented this model mainly to demonstrate
how a simple analytical memory function which
fulfills the appropriate asymptotic boundary condi-
tions can lead to a good approximation of the cor-
rect e(&u). Our aim is now to apply the same pro-
cedure to a more complex situation for which no

exact solutions exists.
In the following we construct a model which

specifically pertains to superionic conductors and
includes lattice polarizability. We consider a
system with two oppositely charged ions per unit
cell. One of the two ion species can diffuse while
the other provides the fixed lattice. As in the
previous example the response of this system is
characterized by two asymptotic regimes. At
high frequencies we are dealing with a standard
k =0 optical phonon in which oppositely charged
ions are oscillating against each other. For
symmetry reasons the problem reduces to a two-
particle problem. " In the low-frequency limit the
mobile ion species fulfills a diffusion equation
and the symmetry argument no longer holds. How-
ever, as long as the jump rate of the particle is
small compared to all characteristic lattice fre-
quencies, we may, in the low-frequency limit,
describe the lattice by an effective potential. This
approximation is justified for virtually all experi-
mental systems except for hydrogen in some tran-
sition metals. " Our phenomenological model thus

includes three entities: the mobile (x„m,) and

immobile ions (x„m,), and in the low-frequency
limit, the effective lattice denoted by index 3. As
indicated above in this regime the diffusing parti-
cle is moving in an effective rigid potential and the
generalized Langevin equations for x, and x, be-
come

m,x, + r, x, +M»x, +M„(x, -x,) =f„
~ ~

m~, + I', x2+M»x2+M»(x2-x~) =f2,

(S.5a)

(s.5b)

B»[m] = -imam, + r, +M»[tu]+M»[&u],

B„[(u]= i&em, + r, +M„[(o]+M„[&u],

B„[(u]= B„[ur] = -M „[~].
With q, =1 and q2=-1, Eq. (2.19) gives

(3.5)

-i(u(m~+ m2) + r, + r~+ M, 3[&@)+M2, [m]
detB

(3.7)
The dc conductivity c(0) is then explicitly given by

where M» describes the coupling between the two
oscillating sublattices, M» is the coupling to the
rigid potential, and M» ensures stability of x, at
t- ~. The formalism of Sec. II can be now directly
applied to this problem also if the system (3.5) has
the extra memory functions M» and M» compared
to the system (2.1). The matrix B[u] defined by
the Eq. (2.16) has, for the system (3.5), the follow-
ing matrix elements:

r, + r, +M„[o]+M„[o)
=(r, M„[0]+M [o])(r,+M„[o] M„[o])+M'„[o] (3.3)

We have now to choose appropriate memory func-
tions in Eqs. (3.5) to fulfill the following asympto-
tic conditions:

(a) At high frequencies (t-0) (3.5) has to de-
scribe a damped harmonic oscillation of the two
particles x, and x,. This requires

M„(t) = m, uP»(1 —yt)e "',
M»(t) =m, (cP~2yte ~,
M„(t) = m, (u'» (I —e "') .

The Laplace transforms are

(3.9)

M»(0) =M»(0) =0 and M»(0) =c &0.

(b) In the low-frequency diffusive limit (t- ~),
we require diffusion for x„complete decoupling
for x, and x„and no diffusion for x,. This is ful-
filled if M»(~) =0, I,"M»(t)dt =0, M»(~) =0, and
M»(~}=c&0. We also require that, in the limit
x, =0, Eq. (3.5a) has to be identical to Eq. (3.1).
This implies M»(t)+M»(t) =M(t).

The simplest choice of the M, &
which fulfills all

the above conditions and also deviates as little as
possible from the exponential form of M(t), which
was found to yield a very good approximation in
the single-particle case, is

M„[(u]= m, (o'„y/(-i ~+ y)',

M„[(u] =m, (u2»[ i(u/(-i-(u+y) ],
M»[&u] =m2ur2»y/-its(-i&u+y) .

(s.lo)

IV. APPLICATION TO EXPERIMENTAL SYSTEMS

In this section we compare the model discussed
in Secs. II and III to experimental results on super-
ionic conductors. Before we can do this it is
necessary to study in somewhat more detail the
physical significance of the formalism developed
in Sec. III and introduce a generalization.

The situation discussed in Sec. III roughly cor-
responds to &-AgI. a-AgI possesses a disordered
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I

E
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b

parameters and need not be discussed.
The oscillator strength, however, can be calcu-

lated in terms of the model parameters. Hence
polaron effects on the oscillator strength have to
be discussed.

First we restrict ourselves to the discussion of
the oscillatory part of the motion. For a silver
ion moving in a rigid potential the oscillator
strength S is given by

I

500

mq
o((d}d(d = ——.2m (4.1)

50
I

100
I

«50 200
~(cm «)

250

FIG. 1. Frequency-dependent conductivity of z-AgI
(T= 453'K) (solid line) derived from a Kramers-Kronig
analysis of reflectivity data. The dotted line shows a
fit based on a rigid-potential model [Eq. (3.4)] with the
parameters (expressed in frequency units of cm ) coo
= 105 cm ', I'/m~= 45 cm ', and y= 53 cm '. Note the
good fit at ~ & 20 cm ' and the strong deviations at cu

&20cm '.

sublattice of mobile Ag' ions and an ordered
(cubic} sublattice of immobile I ions. The two
asymptotic features of the model, an optical mode
in the infrared caused by the coupled oscillation
of Ag' and I ions, and a dc conductivity due to dif-
fusive motion of Ag', are clearly observed. "

In an earlier paper' we have applied the rigid-
potential model to o'-AgI and shown that it leads
to a very good fit of the observed o(ur) except at
low frequencies ~here structure is observed
which is impossible to reconcile with the model'
(see Fig. 1). A main shortcoming of the rigid-po-
tential single-particle model is that it neglects
lattice polarizability which is known to be impor-
tant in n-Agl. This was exactly the sta, rting point
for the construction of the model of Sec. III which
is the simplest model able to include lattice polar-
izability.

However, as it stands, the model includes only
part of the total lattice polarizability. By con-
struction we have included the relative nuclear
motion of the Ag' and I ions in the oscillatory
regime but not the polarizability of the ion shells.
We now show that within the spirit of the pheno-
menological model also effects of shell polariza-
bility can be included by a rather trivial generali-
zation.

Lattice polarizability, in general, affects oscil-
lator strength and frequency of optical modes and
the barrier height for diffusion. Dynamic polaron
effects" "which may lead to correlated jumps,
have been excluded in the derivations of the model
and are unimportant in superionic conductors. "
Within the model-oscillation frequency and barrier
height for diffusion (dc conductivity) are adjustable

In the model discussed in Sec. III also anions take
part in the motion and

S = ',~q'/m,

where the reduced mass m is given by
~1 1 1

PFL Pl+ + ~1 ~

(4.2)

(4.&)

However, shell polarizability of the ions further
complicates the situation. "" It leads to a dynamic
charge (Szigeti charge) q* different from the true
charge and a local field E* different from the ex-
ternal field E. For instance, for the transverse
mode of a diatomic cubic crystal it is found

E*/E = .'(e „+2), —
(4 4)

where E „denotes the high-frequency dielectric
constant. The oscillator strength is thus enhanced
by a factor

K = (m„,/m)(q*/q)'[3(&„+2)]', (4.5)

m* = m (q/q*)'[3/(e „+2)]', (4.5)

or what is equivalent to treat m, as a freely ad-
justable parameter which takes care of local fields
and Szigeti charges in the oscillatory regime. For
instance, in the case of AgI the effects of reduced
mass, local field, and Szigeti charge result in an
enhancement of the oscillator strength by a factor

with respect to oscillation of silver ions in a rigid
potential. Experimentally, E is about 4 for a
n Agi whi-ch together with e„-5 results in q "/q
~ o

So far we have been talking about oscillation.
All above corrections do not apply to diffusion.
The quantities which determine the dc conductivity
of a classical particle are the true charge q, the
external field E, and the mass of transport is the
bare mass of the mobile particle.

Obviously there is a transition from dressed
oscillation to bare diffusion of the mobile particle.
The crucial assumption now is that we can treat
this transition exactly parallel to the tra, nsition
from oscillatory to diffusive motion discussed in
Sec. III. If this is correct we can include polariza-
tion effects trivially by repla, cing rn by
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of 4 which can be accounted for by taking m, =m„,
1

and m, =3mA, .
Figure 2 shows the result of a fit of Eq. (3.9) to

the experimentally observed conductivity of O.'-AgI.
Except for the parameters of the oscillatory re-
gime m„&„and I", the fit contains only one ad-
ditional parameter y which is fixed by the dc con-
ductivity. Keeping in mind that the experimental
accuracy in determining o(&u) below -20 cm ' is
rather poor, the fit is well within experimental
error.

The key difference between the single-particle
rigid-potential model and the model discussed
above is the shoulder at v-15 cm ' which is a
direct consequence of the transition from oscilla-
tion of the effective particle to diffusion of the bare
particle. If one looks how the shoulder evolves as
a function of temperature' then at first sight one is
tempted to assign it to anharmonicity. As the tem-
perature is raised from T =0 in the I3-phase of
AgI, side bands start to develop on the low-frequen-
cy side of the TO optical mode. The side bands
gradually increase in number and intensity with in-
creasing temperature until they ~ash out in the
&-phase and form the shoulder at ~-15 cm '. One
thus is tempted to argue that the structure at (d

-15 cm ' is due to a combination band as a conse-
quence of anharmonicity. This statement is true
to the extent that in superionic conductors anhar-
monicity is of crucial importance. In fact an ele-
mentary particle jump requires the superposition
of a large number of phonons and in this respect
a particle jump is the ultimate anharmonic event.
Hence it makes no sense to talk about anharmonici-
ty in superionic conductors in terms of low-order
multiphonon processes as given by perturbation
theory. A microscopic model of the transition
from dressed oscillation to bare diffusion has to
involve strong anharmonicity. In our model strong
anharmonicity is phenomenologically included by
construction (requirement of bare diffusion at,
t ~).

The model discussed above and in Sec. III is es-
sentially a single-particle model in the sense that
interaction among the mobile ions is only incom-
pletely included. Since the barrier height for dif-
fusion is a freely adjustable parameter, the part
of the interaction which contributes to the average
barrier height is trivially included. However, we
have neglected correlated jumps of particles.

Correlated jumps" affect o(u) at tu ~ &uz where
&~ = ~R is a characteristic residence time of a
particl. e. For o. -AgI, ~~ is estimated to be -1 cm '
assuming random jumps. On the other hand, if
backward correlation would be dominant, &~ could
easily be -15 cm ' and a shoulder would be ob-
served at ~- ~„. Nevertheless we do not believe

I

10

~(cm )

I

&00

FIG. 2. Frequency-dependent conductivity of u -AgI
(T= 453'K, solid line) is reported in a logarithmic
scale to illustrate the structure at cu - 15 cm '. The
dotted curve is the fit calculated from Eqs. (3.5} and

(3.9). The fit parameters are I',/mj= I"2/m2=62 cm ',
Q) f2 50 cm ', and y= 24 cm '. As described in Sec, IV,
m&=m~ and m2= 3m~. The fit is within the numerical
accuracy of the Kramers-Kronig transform. The struc-
ture at - 15 cm ' is due to the transition from oscillation
of the dressed particle to diffusion of the bare particle.

the structure at co-15 cm ' in n-AgI is caused by
correlated jumps. First, model calculations of
backward correlated jumps (double-well potential)
lead to rather poor fits." Second, we know based
on absolutely general grounds that a transition
from dressed oscillation to bare diffusion exists,
e.g. , there necessarily exists a structure due to
such effects and the only question is whether cor-
relation effects are superimposed. To further
clarify this question, experimental studies are in
progress.

V. SUMMARY AND CONCLUSIONS

The phenomenological model introduced in this
paper allows for the first time a comprehensive
discussion of o(~) in the full frequency range. In
the optical-phonon regime the mobile particle os-
cillates as an effective particle with effective
charge in a local field. At low frequencies the
particle is diffusing with its bare properties. We
are thus dealing with a transition from an excita-
tion localized in k space (optical phonon) to an ex-
citation localized in real space (diffusion jump).
The structure observed in o(&u) at this transition is
a direct measure of the importance of effects of
lattice polarizability (local fields, effective charge,
effective mass). This of course is strongly re-
lated to the polaron problem in that the same inter-
actions which affect the polaron contribution to
the activation energy for diffusion also determine
local fields and effective charges.

The prime achievement of the model is that we
have essentially reduced the exceedingly complex
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problem of the motion of strongly interacting par-
ticles in a polarizable lattice into three subprob-
lems governed by different interactions. The op-
tical-phonon regime can be discussed in terms of
a single effective particle in a rigid effective po-
tential. Polarizability effects show up and can be
sutdied at lower frequencies at the transition to
diffusive behavior. Effects of correlated jumps
finally become important at ~ & v~' which is usually
at much smaller frequencies. For instance, in
&-AgI the restrhahl frequency is at -100 cm ', the
shoulder due to lattice polarizability is at -15
cm ', and &~'-1 cm '. We can thus define fre-

fluency regimes in which c(&u} is primarily con-
trolled by an effective single-particle potential,
lattice polarizability, and correlated jumps of mo-
bile ions, respectively. This represents a tre-
mendous conceptual simplification and sets the
stage for further progress in understanding the
factors controlling ionic mobility in solid electro-
lytes.
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