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Dynamic structure factor for a ferromagnet in the scaling region to first order in e = 6—d
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The dynamic structure factor for a model ferromagnet is calculated to order c = 6—d for T ) T, . The dynamic

shape function is extracted from the structure factor and plotted for various values of a and x = kg, where g is

the correlation length and k the wave number. In the vicinity of T, and for c ~ 0.95 peaks appear which are

characteristic of sloppy spin-wave modes.

Ma and Mazenko' (MM) have previously dis-
cussed the critical dynamics of a model ferro-
magnet. The order parameter in their model is
the spin density.

relation function C(k, (d),

(S,'((d) S„'((o')}=-2vC(k, (o) 5, , 6, , 6((o+ (d'}, (I)

can be calculated from the response function using
the classical fluctuation dissipation theorem

which is a three-component vector field. L is the
volume of the d-dimensional, system, and A is a
wave number cutoff. S obeys the equation of mo-
tion

C (k, (d) = (2/(())ImG (k, (()) .
It is convenient to write the response function

in the form

G '(k, (d) = -[i(()/k'I'(k, (d)]+ x '(k),

(8)

(8)

—=XS xH I'V H+$8t (2)
where I'(k, &u) is called the generalized transport
coefficient and x(k) is the static susceptibility:

where H(x, t) is the local magnetic field; X and I'

are constants, and $(x, f} is a Gaussian random
noise. The local magneti' field H is derivable from
from a Ginzburg-Landau free energy F[S] and is
the sum of an external applied field h and the field
generated by the spins:

(3)H(x, f) = h(x, f}—
aS(x, f)

'

)"[s]=—fd"*[(vs)' r,s' —, (s ) ], (

where r, = a(T —T,) and a and u are positive con-
stants.

These equations of motion are specified by the
parameter set

i]. =(X, r, ;u, k), I-=x/r . (5)

By using renormalization-group (RNG) techniques,
MM have determined that this model obeys dynam-
ic scaling to O(e} and have furthermore found a
nontrivial fixed-point structure for the parameter
set [Eq. (5)]. Using these fixed-point results one
can set up a perturbation-theory calculation in
a= 6 -d valid in the scaling region. This perturba-
tion theory is developed in terms of the response
function G(k, (d) defined by

(S,(~})= G(k, ~) k;(~)+ O(k'), (6

where z is the vector component index. The cor-

x())=J) c(),, ~). (10)

The static susceptibility remains of the Ornstein-
Zernicke form to O(e)

x '(k) = k'+ $ ',
where $ is the correlation length.

The result of MM for the generalized transport
coefficient I'(k, (d) to O(e) for T~ T, is given by
[see Eqs. (5.6)-(5.8) in MM]:

I'(k, (d) = I'(I+ Q (k, (d)},

where

(12)

X*'= 96m'g, (14)

Once the integral [Eq. (13)] has been evaluated,
it is a straightforward matter to extract the cor-
relation function, and, consequently, the shape
function f„(v) defined by

~'q [(k -q}'-q']'x(q) x(k q)-
k' (2v}' n(k, q, ~)

(13)

&(k, q, ~) = -(&~/I') + q'x '(q) + (q —k)'x '(q —k)

(13a)

X* is the fixed-point value of X determined by RNG
to be
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C(k, (d) = [y(k)/(d(k)] f,(v), (15)

where x=k$, v=(d/(d(k), and (d(k) is the charac-
teristic frequency defined below.

Recent similar calculations by Freedman and
Mazenko (FM)' for the antiferromagnet structure
factor have revealed peaks in f," at and above T„
where T„ is the Noel temperature. These peaks
resemble those observed in the isotropic antifer-
romagnet RbMnF, by neutron scattering. ' We
were therefore encouraged to carry out a more
thorough analysis of the ferromagnet case to see

if it also would show peaks in the shape function.
All the integrals in Eq. (12), except for one,

which was subsequently evaluated on the computer,
have been performed analytically. In this analysis
we have extracted all logarithmic divergences
analytically. The result for the generalized trans-
port coefficient is

I'(k, z) = I'[1+—,
'

e 1nA (+ -,'& ln2

+ ~&A(xt v)+ )'6 cI(xs v)],

where &(x, v) is given by

1 3(t ~ 3)' 4(t ~ 3)' (1+-,'s' ~ s)' 3(t+3)' 4(t+3)' (1 ~ —,'s' ~ 3)')
x Siva' (8ivt)'x' 2s(1 —s)' Sivtx' (8ivt)'x' 2s (1 s)'

~+ 2 8(~+ 2)' 4(f+ 8)' (~+ 8)' (1+ 2x'+ s)' ln(-,'+ —,'x'+ -,'s)
+ ln

4 Sivfx' (8ivi)'x' 8ivtx' 2s(1 —s)'~ ~ ~

(1+ —,'x' —s)' 4 1 x' s
+ ln —,—+———

2s(1 —s)' x' 2 4 2 (17)

with

s = (1+2ivtx')'~'

t=1+x,
v = (d/rk'(1+ x-') .

I(x, v) is given by

t(s ")= 41'(1'(3-3)-33-3 (3 3) ~ )b'*-43 ~ 43)"*
B

(18a)

(18b)

(18c)

»'+&(5 -@-4&-2iv++ 2)]'"[y' -y(P - I) -2iv(P+ 8)] '" 4(y P)'-
2y' -y(P - I) - »v(P+ 2) v'[y' y(P -1) -2-iv(P+ 2)]

(19)

where

P =1+4x-'. (19a}

Eq. (20) to O(e) as

I'(k, (d) = f'[I+ t) t+ zE ln2+ —e&(x, v)+ 'EI(x, v)] . —
We have evaluated I(x, v) numerically. Following
an elementary exponentiation we may rewrite Eq.
(16), correct to O(e), as

I'(k, (d}=F(A$)' '[1+—,'g ln2+ —,'eA(x, v)+ —,', D(x, v)].

(20)

This result maybe used to calculate the renormal-
ized physical transport coefficient' f'

(22)

By our choice of renormalization, Eq. (22} should
accurately give the behavior of I'(k, m) for small
x and v. In order to properly treat the large x and
v behavior, certain exponentiations are necessary
so that the results are in agreement with the scal-
ing predictions of the RNG. That is, I'(k, (d) must
obey the relation'

I = limr(k, w) = r(At)'"(I --,'e). (21) r (k, ~, P') = 5-"'-"I'(kk 5'~ 5 &-')
Qw 0

0

We see from Eq. (21) that the transport coeffic-
ient diverges as $' ' as T-T,. We take I' to be a
number fixed by experiment. We can now rewrite

where z and g are exponents to be determined. The
static RNG determines q to be identically zero for
d&4, and zero to O(g) for d~4. The exponentiation
procedure used here follows the guidelines of FM.
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f„(vj
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necessary to define a characteristic frequency.
We follow FM and choose the characteristic fre-
quency, &o(k), in terms of the v-independent fac-
tors in I'(k, (d)k' times the inverse static sus-
ceptibility

(g(k) = k'f'(1+x') 'l'X '(k)

k4~ /2(f(/gn»)(J + x-2)1~ &4

Then as x-0
(k) = k'$ '&,

while at T,
(d(k) = k' '"(~/t'")

This choice of &(k) is consistent with the dynamic
scaling form &o(k)=k'f(x) with z=4 ——,'e. The na-
tural frequency variable is then

(d (d

k
-I t2(-/~6(2)(1+»-2) - I (27)

FIG. 1. Shape function plotted vs v for & =0.0, x
arbitrary, (solid line) and for & =1.0, x = (dashed
line) .

Note that our case is slightly special since the v's

always occur with a factor of x'.

Since we work to O(e), we can consistently replace
the v's in Eq. (17) given by Eq. (18c) with the v

given by Eq. (27}.
Taking Eq. (15) together with Eqs. (26) and (27),

we find that the shape function is given by

r(k, ~) = r(»', fvx'). (23) f„(v)= (2/v)Im(1 —iv/W(x, v) '. (28)

f(n, )=)n(1+x')+-,')n(1—
1+x' (24a)

has the property of giving correctly all small and
large x, v limits of I'(k, (d). ' We may then write

I'(k, (d) = f'[I+ —,
' e+ —,'e ln2+ —,', U(x, v}+ —,'&4(x, v)

+ oaf(x, v} --,'e f(x, v)]. (25)

It is now a simple matter to exponentiate the log-
arithms in 1 ,'t f(x, v) and re-w-rite Eq. (24) in a
form consistent with the RNG scaling predictions
to O(c):

In order to carry out the appropriate exponentia-
tions we need to separate out the logarithmic terms
in I'(k, (d) governing the various large and small
x, v limits. We have found that the quantity

I" (k, (d}= f'(1 - ,'e f(x, v)), - (24)

with W(x, v) given in Eq. (26a).
f,(v) is plotted in Figs. 1-4 for various values of

x and a. Its behavior may be summarized as fol-
lows.

(a). For e«1, f„(v) is a Lorentzian centered
about v= 0 for all values of x.

(b). For x«1, f„(v) is a Lorentzian for all values
of &.

(c). For x» 1, fluctuation induced peaks start

2.0

r(k, (u}= f'(I+ x') '~'W(x, v) (26)

8ivx' "~
1n(, )= (1—1+x'

&& 1+ 2f ln2+ 6+ 4(e)+(x v)+ 8 el(x v)

1 2 1 Sioux'
+ ~tin(1+x )+ Sc ln 1—

1 +x

(26a)

I.O 2.0 3.0 4.0

I

5.0

In order to extract the shape function, it is
FIG. 2. Shape function plotted vs & for & =2.0, x =~,

(solid line) and for e =2.0, x =2.5 (dashed line).
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FIG. 5. Ratio r = f„(~0)/f„(0), where vo is the peak

location, is plotted vs & for x=~.

FIG. 3. Shape function plotted vs v for & =2.5, & =

(solid line) and for ~ =2.5, x =1.0 (dashed line).

appearing when g = 0.95. As g increases, these
peaks steadily become more pronounced as can be
characterized by the increasing ratio r =f,(v, )/
f,(0), where v, is the location of the peak. (See
Fig. 5.)

(d). For a fixed value of e ~ O.S5, the peaks first
appear at a value of x which is g dependent. The
peaks initially appear near v=0 and move steadily
outward for increasing x until saturation occurs
and the peak location remains constant. The value
of x where saturation occurs is also & dependent.
As the peaks move outward from the origin with
increasing x, they become more pronounced (r in-
creases) until again saturation occurs at some e-
dependent x.

Wegner has performed a calculation on both
the isotropic ferromagnet' and antiferromag-

I.O 2.0 3.0 4.0 5.0

FIG. 4. Shape function plotted vs & for & =3.0, x=
(solid line) and for & =3.0, x =1.0 (dashed line).

net. ' Beginning with the microscopic Ham-
iltonian and utilizing mode-coupling techniques,
he derives implicit fourfold integral equa-
tions for the self-energy. These equations
are subsequently solved self-consistently on a
computer. His results for the antiferromagnet
are in qualitative agreement with those of FM,
while his results for the ferromagnet differ sub-
stantially from ours in that no peaks are seen to
occur in the shape function.

There are, however, difficulties with the ap-
proach Wegner has used. Only the "simplest" con-
tributing diagrams to the self-energy are retained.
This mode-coupling approach is then hindered by
the lack of a small parameter, and there is no
guarantee that the more complex diagram will not
significantly alter the results.

It is true that mode-coupling calculations give
the correct exponents which characterize the di-
vergent transport coefficients, but there is no
perturbative control over the coefficients of these
divergences. It is these coefficients which will be
important in calculating the shape functions.

These difficulties are avoided with a RNG ap-
proach. One of the main contributions of the RNG
has been to show how to develop a, systematic pro-
cedure for carrying out mode-coupling calcula-
tions. The introduction of the small parameter z
allows one to perform a consistent perturbation ex-
pansion.

The RNG also offers some insight into a com-
parison of the ferromagnet and antiferromagnet
results. According to the RNG, the fluctuations
for the ferromagnet are stronger than for the anti-
ferromagnet as evidenced by the need to work near
six rather than four dimensions. Consequently,
the fluctuations of the neglected more-complex dia-
grams in an expansion like that of Wegner's ren-
der the calculation less reliable for ferromagnets
than for antiferromagnets.
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There is, of course, no reason why our results
should be believed when we extrapolate to a = 3.
We have included this case in our calculations be-
cause our results remain physically reasonable
and indicate how the strength of the fluctuations
grow as we increase g. These results for the fer-
romagnet are qualitatively different from the re-
sults of FM for the antiferromagnet in one respect.
At T, the ferromagnet peak is considerably sharper
than that of the antiferromagnet. In three dimen-
sions at T, we have r = 1.5 for the ferromagnet

in contrast to r = 1.15 for the antiferromagnet.
However, the ferromagnet peaks have not been ob-
served experimentally. We have compared our
results to available experimental data on Ni, ' and
Fe.' For Ni, at a momentum transfer of k=0.075
A ', our equations predict that the peak should
occur at an energy transfer of I=0. 4 meV. For
F„with Q = 0.05 A"', the corresponding energy
value is 8& = 0.04 meV. We do not believe these
peaks could have been observed by these workers
given their experimental resolution.
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of Chicago.
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