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A semiphenomenological cluster theory is developed for the dynamics of systems with a conserved (one
component) order parameter, which is not limited to small deviations from equilibrium. Concentration
fluctuations of the binary system are parametrized in terms of clusters of various "sizes" l; these fluctuations
decay by cluster reactions and cluster diffusion. The cluster difFusivity D, is estimated using the master
equation for atomic exchange processes, and is confirmed by recent computer simulations of Rao et al. Close
to equilibrium the nonlinear set of kinetic equations is reduced to a Fokker-Planck equation for the
concentration of large clusters, which contains an effective chemical potential produced by the small clusters.
Due to the conservation law this potential slowly varies with time. From this equation, we obtain as special
cases the critical behavior of the diffusion constant both in solid and liquid binary systems close to T„and
the Lifshitz-Slyozov theory of grain growth (below T,). Additional terms describing the coagulation of large
clusters have to be included in the latter case, however. At intermediate times the Lifshitz-Slyozov mechanism
may even be neglected. A dynamic scaling solution of the coagulation equation predicts that the typical linear
dimension should increase of: t ""+" in d dimensions, in agreement with our previous heuristic arguments. The
results are compared to computer simulations and to experiments on real systems. For the nonlinear
relaxation above T„both scaling analysis and cluster dynamics give identical predictions. %'e also compare
our approach to other theories of spinodal decomposition, deriving them in a unified way by factorization
approximations of a rigorous kinetic equation, and thus elucidate their validity.

I. INTRODUCTION

The nonequilibrium behavior of two-phase sys-
tems, such as gas-liquid systems, liquid binary
mixtures, solid metallic alloys, etc. , has been
investigated in some detail both experimentally'~
and theoretically, '~' concentrating upon critical
phenomena"' "and the phase-separation kine-
tics."'" ' By now the critical dynj. mics treated
in linear response seem quite well understood for
these systems, and several alternative mechan-
isms have been proposed to account for the (non-
linear) relaxation processes associated with phase
separation: spinodal decomposition, """growth
of zones by condensation and evaporation, ""
nucleation, ""and coagulation, ' "while computer
simulations"'" "—which present the most clear-
cut "experimental data" on these processes —do
not allow us to draw such clear distinctions be-
tween these various mechanisms. As a conse-
quence, these approaches have various short-
comings (cf. Befs. 20 and 26 for a discussion),
and a more-general treatment is needed.

In the present paper we attempt to give such a
treatment, reformulating the dynamics in terms
of "clusters" which represent order-parameter
fluctuations. This concept has been described in
detail in Refs. 27 and 28, where it was applied to
stochastic models without any conservation laws
(Glauber modei2'). Here we generalize this ap-

proach" including the conservation law for the
order parameter, which is appropriate for the
systems under consideration. %'e thus obtain a
unified theory for the nonequilibrium behavior
of binary systems, which contains critical relax-
ation, nucleation, the Lifshitz-Slyozov mechan-
ism, "coagulation, etc. , as special cases. There-
fore, the conditions of validity of these various
mechanisms are elucidated. Moreover, new ex-
plicit predictions for the time evolution of the
cluster size distribution, structure function S(k, f),
etc. , are obtained, which will be compared both
to experiment"" and computer simulations. "

In Sec. II we formulate our basic microscopic
stochastic model (Kawasaki's' "spin-exchange"
model with a conserved order parameter), derive
the exact kinetic equation for S(k, f), and briefly
rederive various approximations proposed by the
current theories of spinodal decomposition. ""
We also present a scaling analysis of S(k, f) for
temperatures T above the critical temperature
T,. In Sec. III we formulate our cluster-dynamics
approach, and obtain (i) the critical relaxation in
linear response, (ii) the nonlinear relaxation above
(T,), (iii) the Lifshitz-Slyozov mechanism below
T, for general dimensionality d, and (iv) the co-
agulation terms and their consequences. Section
IV contains our conclusions, while the size depen-
dence of the cluster diffusivity D, is derived in
the Appendix. A brief preliminary account of some
of our results was already given in Ref. 22.
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II. STOCHASTIC MODEL OF BINARY SYSTEMS AND ITS
PROPERTIES

A. Exact kinetic equation for S(k,t) in the Kawasaki

spinwxchange model

As usual, we approximate a binary solid mix-
ture by a pseudospin (Ising) model. Thus for the
moment we neglect aQ elastic strain effects due
to the lattice misfit of the atoms, and disregard
inhomogeneities.

In the Kawasaki' spin-exchange model, a spin
p. »

=+ 1 is associated with a lattice site occupied
by an A atom, while p. »

=-1 is associated with a
lattice site occupied by a 8 atom. In this model
if one assumes an ideal crystal lattice, the relax-
ation then proceeds by direct interchange of neigh-
boring atoms. " Here we consider it as a model
of solid mixtures, being well aware that in real
systems the direct interchange is rather unim-
portant in comparison with the indirect interchange
via vacancies, etc. We emphasize the point that
most of our cluster treatment applies to this more-
general situation as well, and can even be used
for liquid mixtures, since the details of the lattice
structure nowhere enter our calculations.

In this model the distribution P(u„. . . , u„, t)
describes the probability that at time t the first
spin has the value p.„etc., and the Nth spin the
value p, N. P evolves according to a master equa-
tion

d
dt P(ui ~ ~ ux t)

Q w(i l&)P(u-, . . . , u, , t)~ ~ ~

t»

+ QQ )) {))P'""{p„.. . , p„, t) .
'

(2.1)
In this equation the first sum (i) runs over all N
lattice sites, while the second sum (I,) runs over
the z nearest neighbors of i, with which an inter-
change of atom i may take place. W(i-l, }de-
scribes the transition probability that an inter-
change occurs per unit time. P"")is the prob-
ability for a state where atoms at sites i and I,

are interchanged. The transition probability S'
must satisfy a detailed balance condition with the
thermal equilibrium distribution

P,(u„. . . , u„){){:exp( 3C/k-s T),

where the Hamiltonian K may be represented by
an Ising model

){:=-I; z,g, u, ga-p+), .{,, .
d(We)

(2 2)

&&({u (t)j)) = g &({u 't)P(u„. , u, t).
l&m~

(2.4)

A quantity of particular interest is the Fourier
transform S(k, t) of the spatial pair-correlation
function

S(k, t) =g exp[ ik (r; —r&))

x [(u, (t) ui(t)) —(u,.(t))(u~(t))] . (2.5)

Note that Eq. (2.5) refers to an equal-time corre-
lation but it nevertheless depends on time t if
we consider a relaxation process far from thermal
equilibrium. The various theories of spinodal de-
composition" "are concerned with the time evo-
lution of S(k, t) . In order to obtain an exact kinetic
equation for S(k, t) in our model, one simply puts
A({u })=u, , u& in Eq. (2.4), takes a time deriva-
tive, and inserts Eq. (2.1). A tedious but straight-
forward calculation then yields the exact result

The "exchange constants" J»~, the "fields" H„and
the background term X, can be related to pair po-
tentials {t)„„(r&—r,.), P„s(r,.—r&), and {{))ss(r,—r&)

between the various atoms in a well-known fash-
ion." Qur choice of transition probability is

W(i —I,) = (-,'r, )[1—tanh(53C/2k+ 7)], (2.3}

where 7, is a parameter which sets the time scale
(it will depend on the activation energy of the
atomic difusion process), and MC is the change in

energy produced by the interchange. Equations
(2.1)-(2.3) specify the model completely (including
conservation of order parameter). Averages of
any quantities A({u }) are then calculated from

d
rs dt (u{ug) = — ((u{—ug()uy) — (u{(ug —u) ))

i

1{{—gy)g, tan) „,~, , z, g — I z„, p„+){;—H, ,},
i 9 m(A») m(41»)

1
+ (1 —u&u, ,)u&tanh P ~~ u — Z ~ » +&~ - H), ~

m(gf) m(A lg)
(2.6)
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In the derivation of Eq. (2.6) we have made use of

Eqs. (2.2} and (2.3) and the symmetry relation

(P(P() = Q P(P(I'(P(r ~ ~ ~ r P((r t)
lf fft»

B. Derivation of various approximations from the exact
hierarchy of equations for the correlations functions

In this subsection we show that the various the-
ories of spinodal decomposition" "are obtained
from the exact Eq. (2.6) by various factorization
assumptions.

( ((((iP'"('(((x, . . . , t(„,t) . (2.7}~ ~ ~ ~ ~

f'm»

As expected, Eq. (2.6) is not a "closed" equation
but contains higher-order correlation functions.
In order to get a tractable kinetic equation for
S(k, t) one has to approximate these higher-order
correlations in some way.

1 —t((((.(, = 1 —( (()', tanhx =x, (2 6)

and also consider spatially homogeneous inter-
actions (which lead" to H, =H... etc ) T. h.en we
find an equation which contains pair- correlation
functions only

1. Cuhn-Hilliard theory

The simplest approximation is obtained if we put

Z(t it(() (t"( t(() — Z(t((t(() — ((((((( ) +
1- ((()'

~~m @~V~ — ~r, ~ &~~~ +

(2.9)

j{()=g Je er)('k (r, —rr)], (2.12)

as well as the range of the interaction R,
2

Ho P(0)]-k g u( (
— ~)

g(~g) 2d

Then Eq. (9) reduces to an equation of the Cahn-
Hilliard-type"

(2.13)

Considering a hypercubic lattice in d dimensions
with lattice spacing a, for simplicity, we may ex-
pand as follows:

8
(P((((()=~((((P()+ ((o+ (t((P()+ ' ' '

(2.10)

Z ~( (p p() =~(0)(((((((y)+&''v'((((((, )+ ),
ffl(44)

(2.11)
where we have introduced the Fourier transform
of the exchange Z(k),

yield the desired kinetic equation for S(k, t) [Eq.
(2.5)], i.e.,

r, —S(k, t) = —2a ko1 —(1—((()') —'d 2 TC

e() —((r&*) r R k') k(kr& '. ,

(u)' =1 —T/T. . (2.16)

Equation (2.15) therefore predicts (exponential)
enhancement of fluctuations with k -0 for concen-
trations of 8 atoms cs —= —,'(1 —(t()) within the spin-
odal curve.

(2.15)

This is precisely the result of Cahn and Hilliard, "
since in the molecular field approximation [which
is equivalent to Eq. (2.8)], the critical tempera-
ture is given by ksT, =J(0) and the equation of the
spinodal curve in this case" is

d
"er «& kl (ekr-((e-e(=&')e

~» -(I-(t()')»tt'&' (t ((()g(0) , J(0)
B B

(2.14)

which is solved by Fourier transformation to

2. Cook's theory

Equation (2.15) does not even allow for a nonzero
S„(k) in thermal equilibrium (which is the steady-
state solution of the kinetic equation). The reason
for this failure is that Eq. (2.14) does not make
any sense for i =j, of course (Q(o() =-1). Therefore,
a term ~5,~ has to be added on the right-hand side
of Eq. (2.14). It turns out that a treatment of fluc-
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tuations consistent within this approximation is
obtained if Eq. (2.14) is replaced by

I-(I-&u)')
k T

d J(0)
B

K. BINDER

Equation (2.21) is still exact in the limit
i r, —r;i-~, but it contains higher-order correlation func-

tions. An assumption which generalized Eq.
(2.1V) is due to Langer et al. ,

"

(
1 — (p. ;p )+ ~ (4 p&4, p&) , ~ ~ ~

B m(yf) B

—(1- (P)') R'&' (p, ,pi) —ksT5„. ~(0)
k~T

(2.1V)

Fourier transformation of Eq. (2.1V) yields the
result of Cook"

S(k, )) -2a', k' (1 —=(1 —(y)')

=(p, p. ,)A(t) ksT&-(), (2.22)

where A(f) is a function which depends on time,
while in Eq. (2.1V) it was a constant. If one wants
to determine A(t) in a sort of "self-consistent"
manner, one has to supply Eq. (2.22} with further
assumptions on the probability distribution
P(p„. . . , p, „,f), as discussed by Langer et al."
If we accept Eq. (2.22), Eq. (2.21) is solved again
by Fourier transformation

+ (1 —(p)') —' R'k' S(k, t) —ks T 7, —S(k, f}=-2a', k'

(2.18)

which has the familiar Ornstein- Zernike expres-
sion as equilibrium solution

k~T
1 —(1 —Q) )T,/T+ (1 —(i(,})(T,/T)R~k

(2.19)

3. Theory of Langer et al.

A better approximation is obtained avoiding Eq.
(2.8) but using the Taylor expansion equation
(2.10) in Eq. (2.8). This yields

(p(p~) =2@ V~ (p(yy) —~ (p pq)
(~]) k~T

+ I ) ~ (4;ll,.k lli)+' ' ')
m(1f S) B

(2.20)

where V'& means a gradient with respect to r&,
and the dots represent higher-order terms in the
expansion of the tanh function. Expanding then
also the second term of Eq. (2.20) with the help of
Eq. (2.11) gives

d

, 'Z(0) z(o)=2s()Vi R &y(p(pi)+ 1 — (,p(p~)
B B

+ ~ k T (P(P), l)
m(0k) B

(2.21)

~R k +A t Sk, t —k~T

(2.23)

It is seen that the factor in front of the k' term
depends on the type of approximation made [cf.Eqs.
(2.18) and (2.23}]; therefore, one is on the safe
side if one replaces it by an adjustable constant.
Then Eq. (2.23) becomes precisely the equation
proposed by Langer et al." The important point
is, however, that our derivation of Eq. (2.23) is
quite different from that of Langer et al." The
latter is based on the assumption of a coarse-
grained free energy, which is defined in terms of
a coarse-grained smoothly varying order param-
eter. Since the coarse-graining length must be
much larger than the lattice spacing but smaller
than the correlation length $ of thermal fluctua-
tions, "the original derivation" is valid only for
temperatures close to T„and even the quantita-
tive choice of the coarse-graining length is am-
biguous. Our derivation does not suffer from this
drawback: this fact may explain why Eq. (2.23)
gives a quite good account of data" at tempera-
tures as low as T =0.6T, . The crucial point is to
provide a physical justification for Eq. (2.22), of
course: Firstly, one may argue the correlation
(l), l), p p,) which ,is a function of three distances
r& —r„r,. —r, , r& —r becomes a function of one
distance only as the limit ir& —r, i-~ is taken,
since the lattice points r, , r... and r are all close
together. Secondly, since the spins p. „p, , andl)&

are highly correlated, and both ((p, ,p«p. }p&)
and (p, , p, ~} contain p, &

linearly, it is plausible that
the r& dependence of both quantities is the same.
Then Eq. (2.22) results. Clearly, these arguments
are not completely convincing: but this fact will
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be not too surprising, as we find that Eqs. (2.22}
and (2.23) are, in general, not correct, although

they accurately describe the early stages of the
process. Thus we derived various previous ap-
proximations in a unified way, which allows us to
see more clearly the limitations of these ap-
proaches.

S(k, t) ~ k'2$(tk3)+$(k, ~). (2.26)

Equations (2.23) and (2.26) yield [S' =dS(x}/dx]

mined below; A„ is a constant and S(x) is a scaling
function]

C. Behavior of S(k,t) for large times

Here we consider the asymptotic behavior of
$(k, f) as t-~ for the various approximations de-
rived above. The approximations (2.14) and (2.17)
are not useful in this case, since they imply un-
limited exponential increase of fluctuations within
the spinodal curve, Eq. (2.16}. This increase is
limited due to the neglected nonlinear terms, how-
ever. A nonlinear version of the Cahn-Hillard
equation"'" can be obtained for the local order
parameter (p, ,(t)) by a derivation" from the master
equation [Eq. (2.1)] similar to the one presented
above, however. This equation reads"'"'"'"

J(O} 1 Z(O) ' ),
k, T '3k T If

R v (p, (f)).
B

(2.24)

No exact solution of Eq. (2.23} can be obtained be-
cause of the nonlinear term. But the asymptotic
behavior of Eq. (2.23} can be understood extending'2
an argument of Langer. " It is assumed that in the
late stages of the process the state of the system is
described by spherical grains of B-rich phase on
the background of A phase. One then uses Eq.
(2.24) to study the time evolution of one single
grain. One uses polar coordinates, putting the
coordinate origin in the center of the grain. Then
stationary inhomogeneous solutions of Eq. (2.24)
are found, which describe the "concentration pro-
file" of the grain. Now linearizing (p, (t)} around
this concentration profile, the smallest eigenvalue
of the resulting linear equation can be estimated. "
On the basis of such a treatment one finds that the
volume I/' of the grain increases with time as"

(2.25)

neglecting logarithmic corrections which come
into play for d =2.

Next we discuss the asymptotic behavior of the
equation due to Langer, Bar-on, and Miller, "
Eq. (2.23). We assume that for f -~ the behavior
of A(t) can be represented as a power law, A(t)
-A„t'~+A(~) for t-~. Now we attempt a scaling
solution [a„a„a,are scaling powers to be deter-

z,k'2"3 'S'(x) = —2a', (T,/T)R'k "2$(x)

2ggk 2 3 lx~1$(x)

Equation (2.26) solves Eq. (2.2V), if

a2+ a, —2 = 2+ a, = a2 —a,a, &0,

(2.27)

since then the extra k factors cancel. From Eq.
(2.27) we conclude that a, =4, a, =--,'. The expon-
ent a, can be determined from the sum rule

—Q S(k, t) = 1 —(p}',
k

which gives a, = —d. Hence we have shown that
Eq. (2.26) may be a solution of Eq. (2.23} [it is
not proven, of course, that Eq. (2.26) is actually
the a,symptotic solution]. Accepting Eq. (2.2V)

would imply a growth law for the volume different
from Eq. (2.25}, however:

(2.28)

(2.29)

We shall see later that Eq. (2.25) also results from
the Lifshitz-Slyozov theory and its extensions.
Thus the resulting Eq. (2.23) is presumably in-
accurate, since it leads to the questionable Eq.
(2.29}

D. Scaling theory of S(k,t) for T& ~~ T,

While Sec. II C was concerned with the behavior
of S(k, t) at temperature quenches &T which led
from a temperature T,. in the one-phase region to
a temperature T&= T, —4T in the two-phase region
[Fig. 1(a)], we now consider quenches were both
T, and Tz are in the one-phase region [Fig. 1(b)].

First we introduce a formal solution of the mas-
ter equation (2.1) in terms of a"Liouville operator"
I (Ty)

(2.30)

where Pr((p, g) is the distribution which is the
equilibrium solution of the respective master equa-
tion [L'r'Pg(p, j}=0], and we have made use of
the initial condition T = T; Defining p(k).
=N '~'Q, e'"'&p, , Eq. (2.5) may then be cast in
the following form:
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FIG. 1. Concentration-temperature phase diagram of

a mixture showing temperature quenches AT of a sample
wi, th concentration C~ which lead to phase separation (a)
and which lead to critical relaxation (b). Phase separ-
ation ends up with coexistence of two macroscopic
phases which have the concentrations of the points A, jp.

-"x "y "~

FIG. 2. Qualitative behavior of the eigenvalue spec-
trum (XI (k)) of the time evolution operator L for a
binary mixture.

( Ty)
S(k t)-Sr(k)= g en t

{v()f))

eigenvalue spectrum of I.' ',

I.(')q =yy (2.33)

x (P,({&I(k)))—P.,({&I(k})}]

x [p, (-k) —&p.&][p,(k) —&&I&],

(2.31)
where we have subtracted the final thermal equil-
ibrium [lim, .„S(k,t) =Sr (k)].

Instead of keeping the variables tI(k) fixed and
let the probability develop in time, one can con-
sider the equivalent situation where the probabil-
ity is kept fixed and one lets the variables p, (k)
develop in time." Then Eq. (2.31) may be written

S(k, t) = g (P,({u(ko}-P,({& (k))})
{v (tt) )

x exp(-L' &'t) [&I(-k) —&&I&][@,(k) —&&I&]

+Sr (k). (2.32)

In order to proceed further we make use of the

which behaves qualitatively as shown in Fig. 2,
following Kawasaki. ' There is one hydrodynamic
branch». , =Dr(k)JI', where DQO) is the diffusion
constant of the system, while the rest of the spec-
trum (which we have drawn as several discrete
branches rather than a continuous band for sim-
plicity) is separated from the origin by a gap. As
a consequence, in the hydrodynamic regime
k-0, t-~ the relaxation due to all higher eigen-
values X, will have died out, and the relaxation
due to the lowest eigenvalue X, dominates. We
thus find the asymptotic behavior of S(k, t) in Eq.
(2.32) for t -~ by taking only Xo into account In.
this case the eigenfunction P is nothing else but
p, (k) —&&I&, however. ' This statement can be ver-
ified considering the equilibrium relaxation func-
tion S"(k, t), which is the Fourier transform of
a time-displaced correlation function

S' (k, t) —= &&I(—k, p)&I(k, t)) —&tI&a = Q Pg{tI(k)))[&I(-k)—&&I&]e [tI(k) &&I&]
{v(&)]

Z P ({(k))}(tt(-k)—&&I&)(&I(k) —&&I&]e
'r'"'~'

{u ()f))

=[&&u( k)tI(k)& &&I&a)e-or&'»'&=Sr(k}e or&"&+I II P.
Similarly, Eq. (2.32) leads to

S(k, t) = g (Pr ({&I(k)/}—Pr ({&I(k)))][p,(-k) —&&I&][tI(k) —&&I&]e ~t +Sr (k)
{u(&)) f Tf

Ie&
(1 e- rf( &PI) (k)

k 0,
Tg t-~ .

(2.34)

(2.35)
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Equation (2.35}holds throughout the region outside

of the coexistence curve in Fig. 1. %'e now assume
that T~ is close to T, and (t&,) is close to zero.
Then we can make static and dynamic scaling as-
sumptions'4 [e = ~(Tt —T,)/T, ~]

Sr (k) =e~S(k)), $ =e f(e ~(t&)), (2.36)

D„(k)=eD(kt'). (2.3'7)

Here S(x), $(x), and D(x) are scaling functions,
which reduce to critical amplitudes'4 for x = 0,
and have the asymptotic behavior for large x,

R(x) =Sx '+" g=$x~~~ D=Dx' & (2.38)

where we have made use of the scaling relation"
between the exponents y, &l, and v [y = v(2 —&)}].

We now use Eqs. (2.36)-(2.39) to make specific
predictions on S(k, t) [Eq. (2.35)]. For k-0 we

find

serting Eq. (2.35}and carrying out the k summation

in Eqs. (2.41) and (2.42). It must be noted, how-

ever, that the dominant contribution to Eq. (2.41)
does not come from regime k$ «1 but from re-
gime k$» 1. Hence we use the expansion of

S(x) =Sx ""+gx '""" "+.. ~
1 7

which is valid" for large x, and replace Z, J(k)
by const x f dx, where the integration is extended

up to some cutoff of order a, '. This yields

a0~
E ~ dkk" 'Sk '+"+&'

Tf
0

m]'o A

x dkk~ &S k &~'&-&&~~ (2 43)
0

E(t) —E &x:e " dkk' 'S(0)e '" "'
Tf

0

t ~, -k (t)&«1, (2.44a)

S(k, t) =Sr (k)

+ [e"D(0)Sr.(k)+S(0)D(0)]k t, k)«1,
(2.39a)

and
a-&

E(t) —E &x: dkk' 'Sk ""e
f

S(k, t) =Sr (k)

+k2 "DSr.(0)+BDk t, kt'»1. (2.39b)

k~(t)cc(e"t) ' ' k (t}$«1,
k~(t)«t ' " "' k (t)$»1

(2.40a)

(2.40b)

The crossover from Eq. (2.40a} to (2.40b} occurs
for times t, ~& """'. In practice, it may be im-
possible to identify both growth laws separately
and one may rather observe effective values for
the exponent a in the k (t) «: t' law which depends
on e and lies in between Eqs. (2.40a) and (2.40b),

1 j.—q ~a~-4
Next we obtain the behavior of the energy

Er=

= gg d&p'"'"&""(t&(-k)t (k)), (2.41)

which is again time dependent in a quenching ex-
periment:

E(t) =Er + Q j(k)[S(k, t) —Sr (k)].
k

Ty
(2.42)

The time dependence of E(t) is thus obtained in-

Hence we predict that the initial curvature is al-
ways proportional k't and does not depend on tem-
perature in a critical manner. In general, S(k, t)
at fixed t will have a maximum at some value
k (t). Equation (2.35) always yields a maximum
for Dr (k)k't being of order unity. This condition

Tf
yields

t-~, k (t)$»1. (2.44b)

From Eq. (2.43) one finds that E r =Er + const
Tf Tg

x &', which is correct. The constant depends
on the cutoff, and thus cannot be obtained reliably.
In Eq. (2.44), on the other hand, the cutoff be-
comes unimportant as t- ~ and one hence finds,
assuming

~
T; —Tt

~
/T, » e,

E(t) E cxf &&'+ «»t~t k (t)$«1, (2.45a)

E(t) —Er «t +" ~ "
) k (t)$»1. (2.45b)

In linear response (~T, —Tt~/T, «e), Eq. (2.35)
yields a factor

~
T, —Tt

~
e in Eq. (2.45a).

The crossover from Eq. (2.45a) to (2.45b) again
occurs for times t, ~ E """'. If we have Tf = T„
a single law [Eqs. (2.40b) and (2.45b)) would, how-
ever, be observed.

We now compare Eq. (2.45) to the computer ex-
periments. & 4 For d=2 and Tf —-1.1 T, they
gave a law E(t) —E r « t ~ with b =—,'„while for
d =3 this result was b=O. V9. We interpret these
values in terms of a crossover from b, [=(d —2
+ &l)/(4 —&l)] = —,', to b (=—'d) = 1 for d = 2 and b, —=0.266
to b =1.5 for d =3, using q = 4 for d =2 and" q =0.05
for d =3. Indeed, we estimate t, ~ 5600 at d =2 and
t, ~350 at d =3, if we put the prefactor in the rela-
tion t, ~ &

"' "' equal to unity, which should give
at least a rough order-of-magnitude estimate.
The resulting values t, are indeed comparable
to the periods of observation in Refs. 23 and 24.
In the experiment on real substances E(t) is hard
to measure. It has been shown, "however, that
for t -~ the energy has the same behavior as the
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(t) a-
&

v&1-9&/2t-1/2 k (t)$ « 1

k (t)cct ' " "' k (t)g»1,

(2.46a)

(2.46b)

electrical resistivity: p(t} —pr ~E(t) —E r/ ~

surements of the electrical- resistivity changes

are thus suggested. Of course, the annealing of

lattice defects created by the quench may obscure
the behavior of an ideal system to which we re-
strict ourselves here.

We emphasize the point that due to the use of

Eq. (2.37) the above ana. lysis is restricted to solid
binary mixtures. If we write, more generally,
Dr (k) =e" ""D(k)), other systems can be treated

Tf
in an analogous manner: while we have z =4 —q

in the above ca.se,"we have z = 2(6-») in an iso-
tropic ferromagnet, "and z -=d+ —,', (4 —d} in a liquid

binary mixture. " In the case a ferromagnet Eqs.
{2.40a) and (2.40b) are replaced by
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FIG. 3. (A) Clusters of
l B atoms (full dots) on a
background of A atoms
(open dots). The drawn
contours measure the
sizes of the surface area
of the clusters. (B)
Stochastic interchange of
atoms leads to cluster re-
actions and cluster diffu-
sion.

(t) ~ t 1/[d+(4 d)/19) k (t)(&& 1 (2.47b)

and the crossover occurs for t, ~E
For the energy, we obtain, in the case of the iso-
tropic magnet,

E(t} E ccrc v &~/'&&'-9&/2t d/' k (t)$«1f
(2.48a)

E(t) —Er ~t ' '49' " "', k (t)$»1. (2.48b)

In the case of the liquid mixture we finally obtain

E(t) E ~ ~-v~ (dv/2)[d 2+ (d-4)/19]t 4/2
Tf

k.(t) $ «1, (2.4Sa)

E(t) E CC t-(d-249&/[d+(4-d)/19)
Tf )

k (t)(»1 . (2.49b)

We are not aware of any measurements in iso-
tropie ferromagnets by which Eqs. (2.46) and
(2.48) would be tested.

III. TIME EVOLUTION OF THE CLUSTER
CONCENTRATIONS

A. Clusters and their reactions

In this section we reformulate the dynamics of
the system in terms of a kinetic evolution of the
cluster Pattern, as done in Paper I. A "cluster"
labeled by coordinates (I,X, s, . . .) is defined as
a group of l B atoms, such that each atom is a
nearest neighbor of at least one other atom of the
cluster. By x we denote the center of gravity of

the crossover occuring at t, ~& """'. In the
liquid mixture we find instead

(t) ~ ~-v[d-2+(4-4)/)9)/2t-1/2 k (t) $&& 1 (2 47a}

the cluster, by s the surface area of its outer
contour, etc. [Fig. 3(A)]. If only enough cluster
coordinates are specified, each state of the sys-
tem is described by any desired degree of accu-
racy. By this coordinate transformation in phase
space (from the set of coordinates (t[,) considered
in Sec. II to a set of clusters coordinates) we thus
keep the full information on the system. "'" We
are not interested in this full information, of
course, but will be interested rather in the con-
centration of clusters with coordinates (f,x j at
time t, which is denoted as n, (x, t), where the bar
means that an average over all other cluster co-
ordinates is taken, and in n, (t) = J dxn, (x, t), where
the integration is extended over the total volume
of the system.

If atomic exchange processes are now taking
place, the cluster pattern evolves in time [see
the examples shown in Fig. 3(B)]. Some exchanges
will lead to "cluster reactions" (where the coor-
dinate I a.ssociated with the cluster is changing),
others lead to "cluster diffusion" only (where co-
ordinates of the cluster other than l are changing).
The cluster reactions are also accompanied by
cluster diffusion [the center of gravities of the l
a.nd I+1 cluster in the example shown in Fig. 3(B)
are a bit different]. Since it is assumed that the
atomic exchanges occur at random [governed only
by some transition probability, e.g. , Eq. (2.3)],
it is clear that the displacements of the cluster
centers of gravity produced in this way will be
random in direction. Hence these movements of
the clusters will add up to a diffusion and not to an
inertial propagation. "

From the master equation describing the atomic
exchange processes [e.g. , Eq. {2.1)] one may de-
rive a master equation describing the time evolu-
tion of the cluster pattern. Similarly as in Sec. Q
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it was attempted to derive a closed kinetic equa-

tion for moments of the atomic distribution func-

tion like S(k, f), one may attempt to derive a
closed kinetic equation for suitable moments of

the cluster distribution function, as e.g. , n, (t).
The derivation of such an equation is completely
analogous to the case, where the order parameter
is not conserved (see Paper I). The result is, for
l&1,

";,(f)=g" (" W(f, f)
dt ' )~ n„,,

Wl-l' l'
2 . n, , nor

ni t n

n),
(3.1)

For / =1, a similar equation holds, only the terms
containing sums over l' running up to l —1 have to
be omitted. We now discuss the physical meaning
of the terms on the right-hand side of Eq. (3.1),
explaining also the notation.

(i) The first term accounts for the gain of l clus-
ters due to all splitting reactions I+I'-(l, I') [i.e.,
the inverse reaction to Fig. 3(B), middle part].
The cluster reaction matrix W(l, I') is the number
of such reactions per unit time in thermal equili-
brium, while n„,. is the value of i„,gt) in thermal
equilibrium, if we consider a state in the one-
phase region. It is inherent in the derivation of
Eq. (3.1) (see Paper I) that both quantities can be
extended into the two-phase region, a.lso (for in-
stance, by analytic continuation of n, ), since the
cluster reactions depend on local conditions of
atomic arrangement only, and not on the global
state of the system. The physical properties of
both quantities will be considered later. Note that
the evaporation of single atoms is included by the
l'=1 term.

(ii) The next term describes the loss of I clus-
ters due to all splitting reactions I —(l —l', I'}.
The factor —,

' accounts for overcounting pairs of
(I', I —I') in the summation.

(iii) The third term describes the gain of / clus-
ters due to all coalescence reactions (I', I —I'}.
A detailed balance condition has been invoked to
relate the rate of these processes to the inverse
ones, considered under (ii). Note that the conden-
sation of single atoms is included by the l' = 1
term.

(iv) The last term describes the loss of l clus-
ters due to all coalescence reactions (l, l') -I+I'
[cf. Fig. 3(B)]. It is obvious that the rate of all,
coalescence processes is proportional to the ac-

tual concentrations n, (f), n, .(t) of the clusters in-

volved in these processes, and hence Eq. (3.1) is
a nonlinear set of coupled differential equations
for the n, (t).

It should be noted that the cluster diffusion does
not show up explicitly in Eq. (3.1). If one general-
izes the above treatment to n, (x, f) which yields

—n, (x, t) =DP n, (x, f)+ ~ ~ ~, (3.2)

then in addition to cluster reaction terms of simi-
lar structure as in Eq. (3.1) [represented by the
dots in Eq. (3.2)] one has a diffusive term account-

ing for the processes of Fig. 3(B), lower part.
The cluster diffusion constant D, depends on clus-
ter size l and will be estimated in the appendix.
Integrating Eq. (3.1) over the total volume and

omitting unimportant surface terms leads back to
Eq. (3.1), of course.

Reactions involving three or more clusters at
the same time are neglected in Eq. (3.1). Both
Eqs. (3.1) and (3.2) are based on the assumption
that the use of only one cluster coordinate (I}
provides a sufficiently accurate description. An

extension of the treatment to the case of many co-
ordinates is possible, '~" but will not be consid-
ered here. Also, it was invoked that the atomic
exchange processes (and hence the cluster re-
actions) satisfy detailed balance conditions, even
if the state of the system is far from thermal
equilibrium. We do not think that this assumption
is a serious one, however: (i) in the considered
systems all other degrees of freedom (like lattice
vibrations, etc.}come much quicker into thermal
equilibrium after the quench than the local con-
centration variables. (ii) The rate of atomic ex-
changes depends on local atomic configurations
only, and not on the global state of the system.
The various geometrically possible local atomic
configurations occur both in equilibrium states
and in situations far from equilibrium (their prob
abilities of occurrence are somewhat different,
of course).

Finally, we have assumed that the concentra-
tion of the minority phase (the B atoms) is low
enough, such that no clusters of infinite size ap-
pear on the lattice. If one wants to treat the re-
gion close to the critical point, where the concen-
tration is higher, one may avoid the occurrence
of clusters of infinite size ("percolation prob-
lem"") by using a definition of clusters different
from the one given above (see Paper I and Refs.
28 and 41).

Concluding this subsection we emphasize that
Eqs. (3.1) and (3.2) are not restricted to models
where atoms on a lattice are directly inter-
changed. Adjusting the reaction matrices W(l, l')
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and diffusivity D, suitably, a description of liquid

mixtures or of solids with indirect interchange
via vacancies may as well be obtained.

c~= ln, t
lA

the conservation law des/dt =0 implies

(3 3)

B. Nucleation-coagulation equation

In this subsection we derive an approximate
equation, which is somewhat easier to handle than

Eq. (3.1) and which serves as a basis for our sub-
sequent discussion of the Lifshitz-Slyozov the-
ory." Considering any approximations it is very
important not to violate the conservation law for
the total concentration c~. Since we have

{n,,j. What actually happens is that due to the
buildup of large clusters the supersaturation of
the environment decreases during the course of
time. Hence the ratios n, ,(t)/n, , are smaller than

unity and t.ime dependent.
It is intuitively appealing to speculate that the

small clusters {n„(t))correspond to some equil
ibrium {n„(bh)},where the parameter b,h charact-
erizing the supersaturation is now a function of
time t. This conjecture would also be consistent
with the computer simulations. " Then one ex-
pects that the concentration of the large clusters
n, (t) obeys a Fokker-Planck equation such a,s Eq.
(3.7a): However, now not the concentrations of the
original supersaturated state {n,,) at t =0 enter,
but rather the concentrations of the actual super-
saturated state {n„(&h(t))}:

dn, (t)
dt

(3.4) ski, (t) s s n, (t)= —R,(Lh)n, (nh) —
( „) . (3.7c)

Inserting Eq. (3.1) into Eq. (3.4) and using the
symmetry relation

W(l, l'} = W(l', l), (3.5)

it is a matter of nearly straightforward algebra
to show that Eq. (3.4) is fulfilled as an identity.
This result is nontrivial, since Eq. (3.1) is al-
ready approximate, as discussed above.

We now proceed to consider approximations
valid for large l » 1. Standard nucleation theory"
is obtained by making the following approximations:
(i) one makes Taylor expansions around l,

The time dependence of 4h is then obtained in this
picture by imposing the conservation law, Eq.
(3.4}, as additional condition.

Next we put this idea on a more quantitative
basis, using Eq. (3.1}. First we note that the de-
pendence of n, (hh) on h should be exponential.
Thus we may define 4h by requiring

n, (Ah) = n, exp(-lb h), (3.8)

since detailed balance is then fulfilled for arbitrary
reactions l+ l'= (l, l'}:

n„,,(t) n,(t), s n,(t), „e' n, (t) (3.6a)
„n, , (n.h) n, (~h) n„(~a)
j 7n, ,, n, nr»

(3.9)

W(l —l', ll) = W(l, l') —l' 8$'
(3.6b)

(ii) The deviation from equilibrium of n, gt)/n, . is
neglected in the nonlinear terms, i.e., one puts
there n, , (t)/n„=l. This leads to the well-known
results (see Paper I and Ref. 20) of the Fokker-
Planck-type:

irrespective of the time dependence of bh. Equa-
tion (3.9) should hold in any equilibrium state.
We now assume that n, , (t) may be approximated
by n„(Ah} in the nonlinear terms of Eq. (3.1),
which yields a quasilinear set of equations in the
n, (t), namely,

, , n, , &a

sn, (t) a s n, (t)
r (3.7a)

(3.7b)

L' l /21 —
(t)

( )
W~„(l —l', l')

&'" n

Contributions to the reaction rate which come from
the regime [l/2]&l' & ~ have been neglected. It is
easy to see that this standard nucleation equation
does not satisfy the conservation law, Eq. (3.4).
This failure has a simple physical interpretation:
it has been assumed above that the concentration
of the small clusters {n,.(t)), with which one con-
sidered large cluster interacts, are that of the
supersaturated metastable one-phase equilibrium

where

n, (t)
( h)

W~„(l, l'), (3.10)

W»(l, l') = exp[-(l+ l')hh]W(l, l'). (3.11)

Using now an expansion similar to Eqs. (3.6) in
Eq. (3.10) one immediately obtains Eq. (3.7c) in-
stead of Eq. (3.7a), with
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1

R,(hh) = /" W~„(l, I'}.
I I'=1

(3.13) „'= —„R,(~h)n, (~h) —,

It remains to determine hh. Use of Eq. (3.10) in

(3.4) yields the condition

e t' a-nP W(I
=j. l '=1

l'W(l, t') n~+r(t . (3.13)
l'=I 5+1'

If we normalize n, h =0 such that the [n,) in Eq.
(3.8) are those of the one-phase state at the co-
existence curve [point A. in Fig. 1(a)], then ah-0
for late times and it is legitimate to use e ' ~"

= 1 —I'Ah. Expanding also the terms n». (t)/n„„
with Eq. (3.6a), one obtains an explicit formula
for &h,

egg(t)
nh(t) = — R, nr R, n& Bl

(3.14)

where we have introduced the relative derivation
from equilibrium

g, (t) =n, (t)jn, —1. (3.15)

The interpretation of the result Eq. (3.14) is as
follows: in the final thermal equilibrium we would
have coexistence of a background of the A-rich
phase [with B concentration according to point A
in Fig. 1(a)] and infinitely large domains of B-rich
phase [with B concentration according to point B
in Fig. 1(a)], Then the concentrations of all clus-
ter sizes in the A-rich phase would be in equili-
brium. At finite times, the domains of the B-
rich phase have finite size (I) and must thus be
considered as l clusters, producing strong de-
viations of n, (t) from equilibrium. This deviation
from equilibrium produces in a "seU-consistent"
manner a supersaturation Ah(t) [Eq. (3.14)], with
which the small clusters are in equilibrium.

The treatment presented so far still suffers from
an inconsistency, however: in Eq. (3.10) we have
replaced all n„(t) by n, , (hh) in the nonlinear
terms, although we have assumed that the very
large clusters (I) are not described. by this "equil-
ibrium" [otherwise there would not be any evolu-
tion, due to Eq. (3.9)]. A better approximation is
obtained if we allow for this replacement of n, , (t)
by n,.(Ah) only for 1 & I' & I„where the cutoff I,
satisf ies the condition 1 « l, « l . The reactions
involving clusters with l' & l, can be approximated
differently: splitting away of such large clusters
is a very improbable event, and hence can be safe-
ly neglected. In addition, sums may be replaced
by integrals in the regime l'&l, . Thus for l & l,
we obtain

+ — dl' W(l —/', l')
2

„n,,(t} n, „(t} n, (t}
p Pl

~

&& dt'W(t, t') '
nr~

C

(3.16)

while Eq. (3.7e) remains valid for / & I, . Now

R,(&h) is defined by
C

R, (&h) = I"W~„(t, I').
n, hh

(3.17)

The field 4h is again determined implicitly in
terms of then, (t) by the conservation law (3.4).
Equation (3.16}is the central result of this sub-
section, and will constitute a basis for our further
discussions.

sg, .(t)

C. Diffusion and relaxation close to thermal equilibrium

In this subsection we investigate the decay of
small fluctuations in thermal equilibrium states
by using our results for the cluster dynamics,
Eqs. (3.14), (3.7c), and (3.16}. Our goal is to
show that this treatment reproduces the behavior
of S"(k, t) known from other methods. ""There-
by it is shown that the approximations of the pre-
vious sections are not too serious, and a connec-
tion between S"(k,t) and the dynamics far from
equilibrium is established.

In thermal equilibrium states the cluster dis-
tribution n, and all moments ln„Pn„etc. , are
strongly decreasing functions of l for l ~ l„where
l& corresponds to clusters with linear dimensions
of the correlation length E of concentration fluc-
tuations. " If we choose a cutoff l, somewhat larg-
er than /„ the coagulation events in Eq. (3.16) are
clearly rather unimportant and may be neglected
[i.e., we may use Eq. (3.7c) for all cluster sizes].
In addition, we may put in linear response, using
Eq. (3.15) and n, (4h) —= n, [1+g', (t)],

n, (t) 1+g,(t)
n, (d h} 1+g',

and also invoking Eq. (3.8), we find

g', (t) =exp[-&h(t)l] —1 = bh(t)l . — (3.19)

Combining Eqs. (3.7c), (3.18), (3.19), and (3.14)
we get the desired linear equation for g, (t),
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It is convenient to introduce a vector notation de-
fining a scalar product

(f l&;&
= (((ls& pf(=(-&&:(»n, , (3.21)

st Ig(t)) = LIg(t-)), (3.22a)

where f(l) and g(l) are functions which vanish for
l- ~. Then Eq. (3.22) can be rewritten in terms of
an effective "Liouville operator" L,

is normalized, cf. Eq. (3.23)], it is seen that this
is a solution of Eq. (3.20) with X, =0. From Eq.
(3.25) one then finds

Ao(k) =k &(I&OID&$&&&
= k g l'D, ni g l'n, . (3.27)

g=y

Hence we have found an eigenvalue spectrum of the

type shown in Fig. 2. Equation (3.27) is exact if
D, =D (independent of l), while it otherwise holds
in first-order perturbation theory only. Note that
the solution

with the matrix elements of L in the / representa-
tion being given by

1 8
L = Rrn,l!' n gE

l' L'

g, (k, t) = -t&,h(k)l exp( Drk'-t)

=g, (k) exp( Drk'-t),

with

(3.28a)

a
x ~t& Rsn& R&nn& Bl'tt

(3.22b) Dr = Q l'D, n, Q l'n,
1= 1. l= 1,

(3.28b)

It is easily proven that L is a Hermitian operator
(i.e., (f ILg& =(gILf&), replacing the l summation
in Eq. (3.21) by an integral and integrating by
parts. 44 Therefore, L has real and nonnegative
eigenvalues (A.,). Denoting the normalized eigen-
function by jg, &, we have

i I(I;& =&, Ig,&,

A]~ 0, i=0, 1, 2, . . . (3.23)

Now we consider the spatially inhomogeneous
case, where the diffusive term [Eq. (3.2)] must be
included. Introducing the Fourier transforms

;-„.-„n,(x, t) -n,
g, (k, t~ = dxe'

nf

and the associate vector Ig(k, t)&, one immediately
finds that Eq. (3.22a) has to be replaced by

satisfies the initial condition that for t 0 there
was thermal equilibrium in a "field" (proportional
to the supersaturation) ah(k). Using Eq. (3.28a)
in Eq. (3.4) immediately yields nh(k, t) = nb(k)
x exp( Drk't). -Clearly, for large enough times
the relaxation due to the higher branches A,„ i
=1,2, . . . 3, . . . (Fig. 2) has died out, and the be-
havior of the relaxation function is then S' (k, t)
=Sr(k) exp( Drk't), i.e-. , Eq. (2.34).

Recently, Ackerson et al."interpreted the
Rayleigh linewidth in light scattering of fluids in
terms of a cluster model. These authors used
Eq (3.2) b.ut erroneously omitted all cluster re-
action terms [i.e., they put L =0 in Eq. (3.24)].
Since then the various cluster sizes may decay un-
coupled from each other, and the decay constants
D&q' depend on cluster size, they obtain a nonhy-
drodynamic struc ture func tion

—„I g(k, t)& =(-L -Dik') Ig(k, t)& . (3.24) S"(k, t) =Sr(k) exp( D'k't't't')-

For k- 0 the operator D, k' may be considered a
small perturbation, and hence one finds from per-
turbation theory that the eigenvalues of -L -D&k'
are

h, (k) =~, +g, ID, k'y,.&, (3.25)

and the solution of Eq. (3.24) is expanded formally
as

Ig(k, t)& =Q Iki& &Oilg(k, t)&

=Q e "IC &&a;Ig(k, 0)& . (3.26)

A general solution of the above eigenvalue prob-
lem has not been found. But the lowest eigenvalue
Ao and its eigenfunction (1&0(l) can be found: putting
g, (l)~g', ~l [hh(t) in Eq. (3.19) cancels out if (l(t)&

by averaging over the cluster size spectrum. This
result which contradicts hydrodynamics is incor-
rect, of course, and does not agree with experi-
mental observation. " In our treatment it is seen
that the cluster reactions provide a coupling be-
tween the various hydrodynamic decay modes
D,q' of the clusters, and therefore the asymptotic
decay is dominated by the typical cluster size
l&, D~= D, . Such a behavior was already sug-

K

gested in Ref. 22.
We now discuss the critical behavior of the dif-

fusion constant D~. Close to the critical point
(T,~ca'") (Ref. 47) the cluster concentration n, sat-
isfies a scaling assumption (see Paper 1)"

n =l 2 t~ n(ei &a~ (p&lit )

where P, 5 are the critical exponents" associated
with the order parameter &p& =— (cs -cs" )/cs'" and
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n is the "scaling function" associated with n, . It
will be shown in the Appendix that the behavior of

D& for a solid mixture close to the critical point
can be approxima, ted by"

For t -~ only contributions k- 0 matter; then

J k e-DTA t(x J 0 g 0

—D~L -(~-1/ ~) (3.30a)

From Eqs. (3.29) and (3.30a) it is seen that for
e-0, (p) 0 the main contribution to the summa-
tions in Eq. (3.2&b) comes from I-~. Thus, one

may replace the summation by an integration

and hence

e-'~" 'k'-'dk~L D,t -" ',
0

(3.36)

(3.3'I)

EfL L Dfnf dL L'n,

(3.31a)

which corroborates Eq. (2.45a). [Note that in the
critical region, we have

with D(x) the appropriate scaling function. Equa-
tion (3.31a) is equilvalent to the dynamic scaling
result equations (2.36) and (2.37), as expected.
Next we consider the behavior of the interaction
energy E after a small quench (5T) of the temper-
ature. In thermal equilibrium, E z is represented
with the help of Eq. (2.41) in terms of cluster con-
centrations

BT 0

as can be seen from Eq. (3.29).]
In a fluid or liquid binary mixture, Eq. (3.30a}

is replaced by Stokes' law

(3.30b)

where V, is the cluster volume and q„ is the vis-
cosity. Using V(~l"'~' (see Paper I) yields

E~= Jk p. -k p. k

J k Ln]g (3.32)

D~= dLL D, n
0

(d-2)u (i )
D ~ )

dL L'n,

(3.31b)

where g, (k) describes the response of the cluster
concentration to a field h(k) varying with wave
vector k (see Paper I). Equation (3.32) can be
cast in a form analogous to Eq. (3.3} rearranging
the double sum

neglecting the weak singularity of the viscosity. "
Equa, tion (3.31b) agrees then with Eq. (2.4 la), as
expec ted.

D. Lifshitz-Slyozov theory and the asymptotic time dependence
of the cluster size distribution

L&jBo s
T 1

=1

n, = n)li a/8 Q J(k)g, (kg--
b

(3.33}

In Eq. (3.33) a factor I'~ was taken out arbi-
trarily, in order that n, has the same scaling
structure as n, [Eq. (3.29)] in the critical region
(cf. Paper I, where Eq. (3.33) was suggested on a
more tentative basis). From Eqs. (3.32) and
(3.33), we find

Having established that Eq. (3.16) provides. a
useful description of the dynamics of fluctuations
in thermal equilibrium states, we now apply it to
the nonequilibrium situation of Fig. 1(a).

First we make several approximations, by
which Eq. (3.16} is reduced to the Lifshitz-Slyozov
theory, "which we generalize to arbitrary dimen-
sionality. %e a,ssume that the coagula, tion terms
are unimportant in the late stages of the process
and neglect the ah dependence of R, (nh), replacing
R, (hh) by R, (0). We assume that the bh dependence
of n, (ah) is that of the classical-nucleation theory"

Er =E r +6T Q I'~ 8

f )=1 BT n)(sh) =noexp(ahf fol' ' )- (3.3&)

=Er +5T Q I Q Z(k)g)(k)
k

and using now Eq. (3.2&a) we further find

(3.34)
where no and f, are constants (f, is proportional to
the surface tension). Then we obtain

BPl~ 8—+ —n (t)R (0) &&(t)-f 1- —I ' =0
et eL

p g ( p

(3.39)
B(t) E+(Tg( 'Q=J(k)g, (K) ' (1.35)

l=y
where we have neglected the "diffusive term"
a' n, /al' in comparison with the "drift term" of the
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nucleation equation. This neglect is legitimate if
one wants to describe the growth (or shrinking) of
supercritical (subcritical) clusters with sizes l

differing from the critical size" I, * sufficiently,
i.e., (l -1*}'Z'»1, where the "Zeldovich factor"
Z behaves as Z ~ / '. For /, L ~-~ this condition
becomes valid for the whole size distribution.
Again the time dependence of t),h(t) is found from
the conservation law, Eq. (3.4). We now estimate
R, (0) similarly as done in Ref. 17 for d =3. We as-
sume that in the final stages of the process the
clusters are simply spherical domains of volume

V„ i.e. , measuring lengths in units of the lattice
spacing

V, = l/&ca = U,r', /d, (3.40)

where hc~ is the concentration difference between
points /i, B in Fig. 1(a); U4 is the surface of a d-
dimensional unit sphere; and r, is the cluster
radius. The current of B atoms which impinge
on the cluster surface per unit area is then

sc e(r) (1)czcc D&
, r =r& l

(3.41)

The total current, and hence R, (0), is obtained by
multiplying j with the cluster surface area, which
yields R, (0)(xr, '/r, or, with Eq. (3.40},

R, (0) =R'l' 'i' (3.42)

where R' is a constant. %e now look for a scaling
solution of Eq (39), i..e., we put

n, (t) =t'n(lt *), l-~, t-~ (3.43)

where x, y are exponents which we determine be-
low, and n(z) is the appropriate scaling function.
Equation (3.4} implies y = -2x, since now the sums
may be converted to an integral

0 = — dl ln(t)
d

dt

Hence Eq. (3.43) is indeed a solution, if

x =d/3, (3.47a)

the same nesult as Eq. (2.25) [cf. Eq. (3.40)].
Equation (3.46) then yields the scaling function
n(z) [c(y)=3y' "-y-2y' "'1,

(3.47b)
3R' f,(1 —1/d) zi'

, n(z}=0, z z, ,

where A is a constant determined byw

n(z)
A

5l k

ca=ca "+ dzzn(z) .
0

Figure 4 shows the resulting n(z) for d =2. Equa-
tions (3.47) and (3.43) show that the linear dimen-
sions of the clusters increase ~t' ' independent of
dimensionality d. Applying methods similar to
that of Ref. 17, it can be shown that Eq. (3.47} is
obtained from Eq. (3.39) as an asymptotic solution,
irrespective of the initial condition.

A complementary approximation is obtained
neglecting the nucleation-condensation term in Eq.
(3.16) and taking rather the coagulation terms into
account. If one makes a scaling assumption for
the reaction matrix

zdz n(z)
0

(3.44)

From Eq. (3.39), we now obtain similarly for
&h(t), using Eq. (3.44) and integrating over l by
parts

kh( )f (1 (—
&

d(, (t)R(D)( i f d , (I l(, ( ))(0
0 0

=cf 1 ——t
1 -r/g

1 0 (3.45)

where c, is a constant. Then inserting Eq. (3.43)
into (3.39), we get (n' =dn/dz)

1
yn —xzn'=f, 1 ——R't' '" (nz' '

(z—' —c )1

(3.46)

0.25 0.50 0.75
--ziz,
1

FIG. 4. Normalized scaling function g{yzp)/g
= exp(- 7 [51n(1 —)(y) + 3)( y/(1 -)ty) —41n(1+ zzl y)])/(y
+2/vy —B) fcf. Eq. {3.47b)] for the cluster size distri-
bution according to the Lifshitz-Slyozov mechanism in
two dimensions.
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(3.48)W(L, L') =n, n, L'" W(L/L'),

where v is a. new exponent and W(x) is a sealing
function, one finds that Eq. (3.16) is again solved
by Eq. (3.43), with y=-2x, and

x =(1-v) (3.49)

and the sealing function n is now determined by the
equation

g I

yn —xzn' = dz'z'"W, n(z')n(z -z')
0

z'

-n(z) dz'z'"W —,n(z') .
0

(3.50)

%hile an explicit solution of the nonlinear equation
(3.50) is much more difficult than in the case of
the linear equation (3.46), and hence not attempted
here, we rather estimate the exponent v and hence
x, using Eq. (3.49). At very low temperatures,
the diffusivity of clusters is due to atoms evapo-
rating from the cluster surface and reimpinging
there again (cf. Appendix). This leads to Eq.
(All), i.e. , D, ~L' ' ' . The mass zm which is
incorporated per unit time At into a L cluster is
then given by

at
= L'(D, ./n')n, .(&), (3.51)

x =d/(d +3), (3.53)

which was suggested in Ref. 22 on the basis of
more-heuristic arguments. Thus the typical size
of clusters increase as L~ t ~~ '".

At temperatures intermediate between the T - 0
and T - T, limits, B clusters contain a nonzero
fraction of "holes" (i.e., A atoms). The center of
gravity of a B cluster is then shifted more quickly
by diffusion of these A. atoms within the cluster

where b, is the average distance between the L

cluster and the L' clusters in the system. From
the fact that the total mass fraction in the clusters
is of order unity, and that L and L' have the same
order of magnitude [this is implied in the scaling
assumption, Eq. (3.43)], we conclude that o,
=CL", where C is a constant of order unity: the
average distance between the clusters is of the
same order of magnitude as the linear dimension
of the clusters. From the identification

Am —
( ) W(L L )

n/(L) n/ (L)

Zt "' '
n, n, .

and Eqs. (3.48) and (3.51), we immediately predict
[~ /m~ LL'" W(L/L')n, (L)]

L'"o-L" ' D ~L' ' v= 3/d (3.52)

since W(L/L') is also of order unity for L= L' Equa-.
tions (3.49) and (3.52) then imply

than by the above surface rearrangement mecha-
nism. This leads to Eq. (A12), i.e., D~ o: L'

and Eq. (3.52) is replaced by v =-2/d; Eq. (3.49)
then implies

x =d/(d +2) (3.54)

At temperatures T T, and concentrations near
the critical concentration it is necessary to inter-
pret our cluster coordinate L as the excess number
of B molecules in the cluster, rather than the total
number (or cluster volume v}, in order to avoid
percolation difficulties. '- Using" V, o(: L"' ', one
has b, =CL' "', and [Eq. (3.30)] D, , cc 'L

Equation (3.51) then becomes

(L)~t
~ LI1/ ~-2(l+ 1/5) d—

(L)l' (3.55)

d
1+1/5 4-tL (3.56)

implying [Eq. (3.43)] that V, behaves as L

and the linear dimension V,
' behaves as t' ' ",

which is the same result as obtained from the
scaling analysis, Eq. (2.40b). For d = 3, Eq.
(3.56) gives x= —', .

Equations (3.53)-(3.56) are restricted to solid
binary mixtures. For fluids or liquid binary mix-
tures, on the other hand, the use of Eq. (3.30b) in
Eq. (3.51) readily yields for T far below T, [V, =L,

Eq. (3.40}] that v =0 and

x=1 (3.5'l}

It appears that in this case for d =3 the diffusion-
coagulation mechanism and the condensation-
evaporation mechanism [Eqs. (3.38)-(3.47)] give
the same value for the scaling power x, while for
solid mixtures the diffusion-coagulation mechan-
ism is much slower [Eqs. (3.53), (3.54}, and
(3.56)]. We also note that for T-T, due to V,
~ l"' ' we get

x+(1+1/5) ', (3.58)

implying that the volume V& increases with t, and
the linear dimension with t', in agreement with
Eq. (2.47b).

%e next turn to the asymptotic time dependence
of the interaction energy. For t-0, interaction
energy different from the ground-state energy is
associated with the surfaces of the clusters only.
Since for a compact cluster [similar to Eq. (3.40)]
we have for this energy E„

i.e. , v =1/5 —2/d(1+1/5), and hence [Eq. (3.49)]
x =d/[d(1 —1/5) +2(1+1/5)]. Using the scaling re-
lation" tL = 2 —d(5 —1)/(5 +1), this result ean be re-
written
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the excess energy is Eq. (3.43),

(3.59) since [Eqs. (3.43) and (3.44)]

dl ln, (t)~ t*, I-~

(3.60)

Hence according to the Lifshitz-Slyozov condensa-
tion mechanism we would obtain, from Eqs. (3.47)
and (3.60),

(3.61)

while the cluster diffusion-coagulation mechanism
yields at low temperatures [Eqs. (3.53) and (3.60)]

E(f) -E(-) (3.62)

and at intermediate temperatures [Eqs. (3.54) and

(3.60)]

E(t) -E( ) (3.63)

(3.64)

assuming that the energy/(excess atom) is pro-
portional to the square of the excess concentration
of the cluster. ~' Equations (3.64) and (3.43} yield

E(f) E( )~ I-2&l(4-n)(&+4) (3.65)

Since 2d/(1 +5) =d —2+)), Eqs. (3.65) and (3.45b)
agree.

The results, Eqs. (3.62)-(3.65), apply again to
solid mixtures. For fluids and liquid binary mix-
tures, we find from Eqs. (3.57) and (3.60),

E(f)-E( )~f '", (3.66)

while for T- T„Eqs. (3.64) and (3.58) imply that

E($) E( ) $- I( + ) I ( + )/ (3 67)

Equation (3.67) agrees with Eq (2.49b) [n. ote that
we have disregarded the weak divergence of the
viscosity here, which contributes the correction
term —,', (4-d) in Eqs. (2.47) and (2.49)]. Again we
note" that the electrical resistivity behaves as
P(f) -P( ) E(f) -E(™).

E. Observability of the grain growth laws: Comparison with
experiments and computer simultations

In Sec. IIID we have derived growth laws for the
time dependence of the average grain "size" I (t),

Although at intermediate temperatures the clus-
ters contribute also a bulk term to the interaction
energy, Eq. (3.60) is nevertheless valid: the total
bulk interaction energy of the clusters is propor-
tional to the total cluster volume, which is con-
stant [Eqs. (3.40) and (3.44)]. For T —T„Eq.(3.59)
breaks down, however, and has to be replaced by

(3.68)

which are given in Eqs. (3.47), (3.53}, (3.54), and

(3.56) for solid mixtures; in Eqs. (3.57) and (3.58)
for liquid mixtures and fluids; while Eqs. (3.61)-
(3.67) give the analogous results for the energy
(or electrical resistivity}. We now consider the
question, in which regimes of cluster size and

temperature these growth laws can actually be ob-
served.

It is obvious that the Lifshitz-Slyozov condensa-
tion-evaporation mechanism [Eqs. (3.47) and
(3.61)] provides the quickest relaxation in the case
of the solid mixture. Hence one expects that this
mechanism must dominate, at least asymptotically
for t-~. At this point it is important to recall,
however, that in our treatment we have not con-
sidered the "lattice misfit" of the two constituents.
This lattice misfit clearly leads to elastic strain
fields of long range. Ultimately these fields tend
to destroy the host lattice ("loss of coherence""},
i.e., the surface of the grains become crystallo-
graphic grain boundaries such that the lattice
points of the B-rich grain no longer correspond to
lattice points of the surrounding host matrix of
A. -rich phase. Clearly further studies are neces-
sary which investigate the influence of this elastic
interaction on the grain growth behavior before
this loss of coherence occurs. While in the liter-
ature" it is claimed that a broad evidence for the
l(t)~ I ~' law [Eqs. (3.47} and (3.68)] exists, only
a few examples (e.g. , Ref. 52) are really convinc-
ing: most of the results are either inaccurate or
restricted to too short time intervals and there-
fore consistent with both Eq. (3.47) and (3.53),
(3.54), as demonstrated in Ref. 26 (Fig. 3) with
the data of Ref. 53. Other data, ' on the other
hand, imply definitely smaller values of x, which
are comparable with Eqs. (3.53) and (3.54). In the
case of fluids or binary mixtures, there is no
difference between Eq. (3.47) and (3.57) for d =3.
Nevertheless a consideration of the Prefactors,
which were not considered explicitly in Eqs.
(3.47), (3.57) showed' that in the case of the 2-6
lutidine-water mixture it is the coagulation mech-
anism (3.57) and not the condensation mechanism
(3.47) which is dominant. Figure 9 of Ref. 1
demonstrates that quantitative agreement between
the experimental data and Eq. (3.57) is obtained.
In addition, the coagulation mechanism" has a
mell-known application in the formation of clouds
of water drops in a supersaturated atmosphere. "
But in this case, as well as in the case of droplet
growth by condensation" the situation is clearly



15 THEOR Y FOR THE D YNAMICS OF CLUS TERS. '' II. . .

more complicated, since the aeeeleration of drop-
lets due to gravity and their interaction due toelec-
tric charges has to be taken into account, as well
as large-scale hydrodynamic flows. It is possible
that the latter are responsible also for some un-
explained puzzling features occuring in the inter-
mediate stages of the phase separation experiment
described in Ref. 1. In neither solids nor liquids
we are aware of any measurements of the energy
or electrical resistivity which are suitable for a
check of Eqs. (3.61)-(3.67)."

It is possible to obtain a more meaningful check
on our results compa, ring them to recent computer
simulations. """'"For d =2 these authors ob-
tained" for T/T, —= 0.6, ca =0.2,

l(t) t"', E(t) -E( ) (3.69)

which agrees well with Eqs. (3.53) and (3.62). The
agreement with Eqs. (3.54) and (3.63) would not be
as good, although a direct determination" of D)
suggests that the data should belong to the regime
described by these formulas. In some runs" ex-
tending to longer times at T/T, = 0.6, but ca = 0.5,
it was found that Eq. (3.69) holds for the energy up

to about t =7000 Monte Carlo steps/atom, while
afterwards we have E(t) E(~) cc t-'". This re-
sult may be taken as an indication that actually for
large times Eq. (3.61) becomes valid, although the

inaccuracy of the determination of E(~) due to
finite size effects precludes any definitive state-
ments. The results" for the position of the peak
k (t) in the structure function S(k, t) are also con-
sistent with Eq. (3.53), if one puts" k" (t) V, (t)
=k (t)L(t) =const, which gives [Eq. (3.68)] k (t)
~ t ' . The three-dimensional computer results"
for c~ =0.5 are

k (t) t '" (T/T, =—o 6),

k (t)cc t '" (T/T =0 8 0 9)

while the energy behaves as E(t) -E(~)cc t "up

to t= 200 Monte Carlo steps/spin, and then a
crossover to E(t) —E(~}cct '" occurs. " These
results are consistent with Eqs. (3.54) and (3.63),
and again a crossover to Eq. (3.61) seems plausi-
ble. For ca =0.2, T/T, = 0.6 it was found that

l(t) ~ t", in agreement with Eq. (3.53).""
In order to improve our understanding of these

results it is necessary to consider the interplay
of the various mechanisms: cluster growth by

condensation [Eq. (3.47)] or by cluster diffusion

and coagulation [Eqs. (3.53) and (3.54)]. Including

both the diffusion via surface rearrangement and

via diffusion of "holes, " one has (cf. Appendix)

D =[S (T)+c (T)L](n/L)', (3.71)

where a is a constant of order unity, S, (T) is the

surface area of a cluster, and c„(T)= 1 —(p) is
the concentration of "holes" in the cluster. As
l -~, we have S, (7') cc l ' '/~, but for small l, S, (T)

fy
C=S'l' with o' & 1 —1/d, as has been shown by com-

puter simulations. " Due to this enhancement of
the surface area of small clusters, and the ad-
mixture of the c„(T)l term [note that always
c„(T)«S'] the effective behavior will always be
in between Eqs. (3.53) and (3.54); the deviation
from Eq (3..53) will be the stronger the higher
the temperature. This result is consistent both
with Eq. (3.70) and with the experiment on

CuMn, -A1 alloys, where for the exponent x//d the
"effective values" 0.127, 0.172, and 0.216 at g
=200, 240, and 300'C, respectively, have been
quoted. '

%e now consider the crossover between Eqs.
(3.47} and (3.53). For that purpose the prefactors
in the l(t)cc t" law have to be estimated. This is
done rederiving Eqs. (3.4'l) and (3.53) in a, simpli-
fied fashion. In the coagulation-dominated regime,
we assume the particle radius to grow as

(3.72)

neglecting a factor of order unity. From D,
=Drf ' [cf. Eq. (All)] andi=mr, tea for d
=2, 3 [cf. Eq. (3.40)] one gets

D =D (t c v) ' "'r '

and hence

—
[D /(vd )

1+ 1/1 ]1/(@+ 3) tl/(d+ 3) (3.73)

In the condensation-dominated regime, one may
argue as follows: a grain of size / which is well
separated from other grains would be in equilibri-
um with a "field" t)h f,(1 —1/d)/l'/" [from Eq.
(3.39)]. We introduce the susceptibility X by X

=s()))/Bh =((p), „—(L)))/t)h; since ah =0 at the
coexistence curve (L)),„, one gets ())}= (p}, „
-Xf,(1 —I/d)v '/ /r, . Thus the grain would be in

equilibrium with a concentration

ca(r, ) =ca "+cX fo(1 —I/d}v '/4/r, (3.74)

Assuming as in Eq. (3.73) that the mean distance
between grains is r„and that the radius of a
neighboring grain is r, +~r, we get a concentra-
tion gradient

sca ca(r, ) -ca(r, +&r)
BV 1,g

/Ahr

R X f0 d r2(r +t r)

—,'X f (1 —1/d)v
r2 (3.75)

where furthermore hr—= r, was assumed. The cur-
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rent is then j =Dr(see/sr), and hence the change

of mass is

~ rd = U„H-'q
d l

and thus

1
f/

Xfo I v-1/dQ -3 (3 l6)"2 d

3 D~yf 1-1 $/3
&1/d (3.77)

Equating Eqs. (3.73} and (2.77) gives an estimate
for the time t where the crossover from Eq. (3.73}
to (3.77} occurs

Dp 3Dy p 1 1 d) + 3 1/d

d+3 -j.id
v2 x ., g 1 /n c )- (3/d)(1+1/d)

(3.78)

From the Ising-model susceptibility in two dimen-
sions" y=0.02554(l —T/T, ) "', one finds y(T
=0.59T,) =0.0155, and for the surface tension f, in
our units, one finds6' fo= 3.68. From Fig. 11 of
Ref. 25 one estimates D~= 0.05, and hence one finds
t„=5.10' Monte Carlo steps/atom as an order of
magnitude estimate, while the experimental value
quoted above was t,„=7 x 10'. In three dimensions
and T/T, = 0.6, y is distinctly larger than in two
dimensions, and the crossover time correspond-
ingly smaller.

Hence we have found that the behavior of l(t) is
rather given by l(t) o- P«f, with x„, starting out
with a value somewhere in between d/(d+ 3) and
d/(d+ 2), which then gradually crosses over to x,«
= 3d at large times. Therefore, it is not surprising
that the theory of Langer etal. " [note x= &d, Eq.
(2.29) ] is in reasonably accurate agreement with
the computer experiments at intermediate times,
although it fails to describe correctly the late
time behavior.

It is also interesting to apply these estimates to
real materials. Suppose that at T= 0.6T, the dif-
fusion constant is Dr=10 "cm'/sec, or, if lengths
are measured in units of the lattice spacing as
done here, Dr =-10'/sec. Then Eq. (3.77) yields,
very roughly, )', ~ (10~t}'/', and the crossover is at
t„=10 ' sec, i.e. , the crossover should occur at
r) = 5 lattice spacings (grains containing 500 atoms)
In this case the cluster coagulation would hardly be
observable in most experiments. In the experiment
on CuMn, -A1 alloys T, =360'C and at 200 C a wave-
length of about 50A was observed after 600 sec.
Supposing a diffusion constant of Dr=10 ' cm'/sec,
one would get r, o- (10 't)'/3, and crossover at t„

=-10' sec. While this latter choice yields values
of ~, in rough agreement with the experiment, one
would conclude that one is probably in the Lifshitz-
Slyozov regime, in contrast to the observation.
This numerical discrepancy indicates that Eqs.
(3.73), (3.77), and (3.78) may be too crude.

How are these predictions changed due to the
fact, that interchanges occur indirectly via impuri-
ties or vacancies rather than directly~ If the dis-
tribution of the vacancies stays unaffected by the
phase separation, then only the time scale will be
affected, and our arguments still hold. The situ-
ation is different, however, if the vacancies dif-
fuse to the grain boundaries and then stay prefer-
entially there. Since the total number of vacancies
stays constant, their density c„(t) at the grain
boundaries cannot stay constant: the total grain
boundary area decreases proportional to the excess
energy, and thus c„(t) increases: c„(t}~ P/'. In
stead of Eqs. (3.48)-(3.53) we then have t)m/t). t
= P /'I'D), /t), 'n „(t), i.e. , W(l, l') contains a factor
P/', and (3.49) changes to x=(1 —U —1/d) ', and
Eq. (3.52) then implies that Eq. (3.54) holds also
in this case.

W. CONCLUSIONS

In this paper we attempted to give a detailed theo-
ry of both the critical dynamics and the phase sep-
aration kinetics of binary mixtures, where the av-
erage concentration is conserved. In the following
we list our main results:

(i) The dynamics of both solid and liquid binary
mixtures can be described in a unique way in terms
of the concentrations of clusters n)(t), where I mea-
sures the amount of order parameter associated
with the cluster (Eq. (3.1) ], even far from thermal
equilibrium. Both for critical dynamics and the
late stages of phase separation only very large
clusters matter. Then the rate of change sn)/st
can be decomposed into two parts: a nucleation-
condensation term and a coagulation term [Eq.
(3.16) ].

(ii) Close to thermal equilibrium, coagulation
may be neglected. In linear response the nuclea-
tion-condensation term then gives rise to a hydro-
dynamic relaxation in the structure function
S"(k, t) =Sr(k} exp( Drk't) [cf. Eq. (3.28-)]. The dif-
fusion constant D~ can be expressed in terms of
the cluster diffusivity D, and the equilibrium clus-
ter concentration n, . Errors are pointed out in
related other theories which predicted a nonhydro-
dynamic structure function.

(iii) Below T, and within the coexistence curve,
coagulation of clusters dominates during the earlier
stages of the phase separation. Later on the nu-
cleation-condensation term dominates again. The
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TABLE I. Exponents xz, xz describing the asymptotic time dependence of the typical grain
volume V&(t) and the internal energy E(t), respectively: V~(t)~t ~, E(t)-E(~)fxt "&. The posi-
tion k~(t) of the maximum of the structure function varies as k~(t) tx: t ~ for d-dimensional
systems. Droplet model predictions are shown for various regimes. Note that the correlation

I
length $ diverges at 1'~ ($ ~

~
T —T~ ~

) and that the exponent g =& for d =2 and q= 0.05 for d =3.

Temperature regime Solid mixture Liquid mixture

V(t)/$~ » 1
C

V (t)lg" «1
V(t)/(" «1

V(t)l(» 1

T —0

—d1
2

1/(4 ~)

1!(4 q)

d/(d+ 2)

—d
1
3

d/(d+3)

3d
1

—dI
2

(d —2+ q)/(4 —v))

(d —2+ q)/(4 —q)

1/(d+ 2)

1/(GE+ 3)

2d

XE

2d

The weak divergence of the viscosity modifies these results, cf. Eqs. (2.47b) and (2.49b).

Lifshitz-Slyozov theory is recovered as a special
case of this term, and a solution is given for gen-
eral dimensionality d. We find that both in the co-
agulation theory (C) and in the Lifshitz-Slyozov
(LS) theory the late-time behavior of n, (t) can be
represented by scaling solutions, n, (t}= t '*n(lt ")
[Eq. (3.43)]. From this result we find that both the
average grain size V,(t) and the excess energy
E(t) —E(~) [or resistivity p(t) —p(~), respectively]
can be represented as power laws = V,(t) ~ t"&, E(t)
-E(~) CC t *z. The exponents xv, xz are universal
within the same dynamic universality class, but
different cases ( T- 0, T & T„T= T„T& T,) must
be distinguished. Our corresponding estimates
for these exponents are summarized in Table I.
These results are compared to experiment and
computer simulations (Secs. IID and IIIE) where-
ever available, and good agreement is found. We
also attempt to estimate the cluster size where the
crossover between the coagulation mechanism and
LS mechanism occurs, and obtain at least an or-
der of magnitude agreement.

(iv) Near T, a static scaling assumption for n,
leads to dynamic scaling for S (k, t). In particular,
we obtain D~~&' for the solid mixture, and
D~o-&'" ""for the liquid mixture, when we ne-
glect the weak singularity of the viscosity. These
results are identical to those obtained by a direct
dynamic scaling analysis of the structure function
(Sec. IID). The latter analysis also confirms the
exponents quoted in Table I for T & T, .

(v} A kinetic Ising-model formulation which is
appropriate to the computer simulations to which
we compare our predictions is also presented, and
various previous approximations are rederived:
Cahn-Hilliard theory, Cook's theory, and the theory

of Langer et aL Our simple unified derivation elu-
cidates the shortcomings of the various approaches.
While the nonlinear Cahn-Hilliard equation leads
to a coarsening law which is consistent with the
LS theory, the theory of Langer et at. does not:
we argue that is leads to a V,(t) ~ t't' behavior.

(vi) The present treatment is still incomplete
in several respects: (a) While we tentatively put
k (t) ~ [V,(t) ]

'~' to relate the structure function
S(k, t) crudely to the evolution of the cluster pat
tern, a detailed decomposition of S(k, t) into the
contributions of the individual n, (t) remains to be
given. Also, Eq. (3.1) must be solved numerically
if one wants to study the initial stages of the re-
laxation within the cluster dynamics description.
During these initial stages small clusters domin-
ate and hence Eqs. (3.6) and (3.16) are not valid.
(b) The elastic interaction due to a "lattice mis-
fit" of the two constituents of the (solid} mixture
is disregarded throughout, as done in most of the
literature. """" An inclusion of elastic inter-
action has been performed within the framework
of linearized Cahn-Hilliard theory only. " Since
the latter has convincingly be demonstrated to be
incorrect in the case without elastic interac-
tions, ""'"there is no reason to assume that it
becomes correct when elastic distortions are add-
ed. . Therefore experiments on systems with very
small lattice misfit are desirable. (c) It is as-
sumed that the atomic exchange processes can be
described by Markovian master equations, ne-
glecting any "memory effects. " More microscopic
studies of the atomic hopping processes revealed
a non-Markovian behavior, however, at least for
the diffusion of hydrogen in metals. " It is unclear
how this will affect the behavior of the cluster dif-
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fusivity D„which is estimated on the basis of ran-
dom-walk considerations in the Appendix.

In conclusion, we nevertheless feel that the pres-
ent approach, which unifies previous theoretical
treatments and yields many detailed predictions
which have been verified by computer simulations,
is versatile enough to be generalized to these more
complicated situations as well. In any case it would
be invaluable if detailed measurements would be
performed on alloys with small lattice misfit:
there the equation of state, diffusivity, structure
function, grain size distribution and electrical re-
sistivity should be obtained at the same sample.
It is to be expected that such a comparative study
could improve our understanding of the phase sep-
aration kinetics considerably.
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APPENDIX: DERIVATION OF CLUSTER DIFFUSION
CONSTANTS IN SOLID MIXTURES

cluster surface. Next we prove that nearly all
evaporated B atoms reimpinge at the cluster again,
and calculate the shift in the center of gravity of
the cluster produced by this process. Since the
probability of reimpingement on an irregular sur-
face is hard to calculate, we only consider a flat
infinite surface; both probabilities should have the
same order of magnitude. We introduce the proba-
bility p„(p) that an evaporated B atom, whose first
step leads from the first layer adjacent to the sur-
face to the second one, is after n steps in the pth
layer without reimpinging again (i.e. , without mov-
ing into the layer p=1). If interactions of the B
atoms with other clusters are neglected, one has
the rigorous recursion relation (for square or sim-
ple cubic lattices)

p.(P) = (1/q} [p. ,(P —1}+P„,(P+ 1)

+(q —2)p„,(p}], n~ 2, (A3)

with the initial condition p, +(2) =1, p, (p=2) =0, and
the boundary condition describing impinging: p„(1}
= 0, all n ~ 2. The probability that the particle
walks n steps without impinging is obviously

n

&(n) =Q P„(p). (A4)
p =2

In the limit p-~, n-~, Eq. (A3) is equivalent to
a diffusion equation

sp„(p) 1 s p„(p)
~n q ~p

and a solution of Eq. (A5) which satisfies the initia. l
condition p, (p) = 5(p —2) and the boundary condition
p„(l) =0 is

Here we are concerned with the derivation of the
cluster diffusivity D„assuming that the basic
atomic processes are interchanges of A and B
atoms. We consider a rather isolated 8 cluster
in the A matrix (Fig. 3(A) ], and estimate the
number of B atoms N,„which evaporate per unit
time

-(p - 2)'
4 ( I

2
—exp

}
2[vq(n —1)]'~'.

and hence one obtains

P(n)~n '~', n-~,

(A6}

(A7)

where v is an attempt frequency" for the exchange
(in the computer simulations"'" '6 v = 1/q Monte
Carlo steps/atom, q being the coordination number
of the lattice}, the sum extends over surface sites
of the lattice, 2J is the binding energy associated
with a B-B bond and ~z,. the number of "broken
bonds" which would be produced by the exchange.
For very large clusters and T-O, Eq. (A1) may
be replaced by

IV = v exp[-(2J/k T)(nz)](dV )' ' 'U'" (A2)

where (nz) is an effective average of nz, over the

replacing the sum in Eq. (A4) by an integral, and
putting the upper limit of integration equal to in-
finity, since the main contribution comes from the
vicinity of p= [4q(n —1)]'~'. Equation (A7) shows
that nearly all atoms which evaporate from a lange
cluster (with linear dimension V', "» 1) will re-
impinge: in order that they get away a distance of
order V', " from the cluster, a number n cc V', " of
steps would be necessary, which occurs with very
small probability only: p(V', ') ~ V, ' '«1. The net
effect of nearly all evaporation and condensation
events is thus a shift of the center of gravity x of
the cluster. We define x by (m„, nzz are the masses
of A and B atoms)
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X= Ski Ja
—11'l~ X (m~ —m„) =—Qx, , (A8)

1

(A9)

The desired quantity ((nx,.)') is then given by

2 2

((n )2) Q Q pn(

q n
XII

(A10)

since the atoms in layer p=2 at x„hit the surface
(the point p= 1, x is adjacent to the surface} with
probability 1/q. From random walk theory it fol-
lows that p„(2,x„) is strongly peaked at x„=const
& vn for large n, i.e. ,

where the sums are extended over all lattice sites
x of B atoms within the cluster. If due to evapora-1

tion of one atom and its reimpingement one x,.
changes to x';. =x,. + b,x, , the center of gravity
changes by an a.mount of ax= nx, /&. Adding up
these random displacements b,x will yield us the
cluster diffusivity D, . In order to do this we have
to estimate the average displacement ((nx,.)') per
exchange. For that purpose we introduce the prob-
ability p„(p, x„), that an evaporated atom is after
n steps in the pth layer and in the distance x„par-
allel to the surface, without hitting the surface on
its random walk. Clearly we have

Ul/ddl -1/d/- 1 -1/d (All)

Owing to Eq. (A2) this result is valid for spherical
clusters. But clearly the effect of other shapes
will be to change the prefactor (nx',. )/d' '~~ only,
as long as the cluster is compact. In addition, for
rather small clusters the / dependence of D, may
be different, since the surface of a small cluster
is proportional" to l"with o' & 1 1/d. Then clus-
ter shapes are rather asymmetric, and conse-
quently a rather "asymmetric" cluster diffusion
may result, and D, is no longer simply related to
the cluster surface. " The available computer sim-
ulation data on D, which are taken in this range are
consistent with Eq. (All), however. Data for lar-
ger / have been obtained with a different simulation
method" and suggest D, ~ I ' instead of Eq. (A11).
This result is interpreted" by the fact that A.

atoms, which exist within a 8 cluster with con-
centration —,'(1 (p, )), may be interchanged without
cost of activation energy. This interchange leads
to a shift of the center of gravity of the cluster as
above. One thus has

g p„(2,x„}x,', = const x n g p„(2,x„)
D = vV I-(")(nx)=.'-("' I-

2 2 (A12)

= const x np„(2).

Hence the large n give a contribution of order n ' '
in Eq. (A10), since p„(2) ~n ' ' [cf. Eq. (A6)].
Since the main contribution to ((nx,.)') comes from
small n, one would have to evaluate Eq. (A10) nu-
merically.

From random-walk theory we then conclude,
combining Eqs. (A2), (A10) and using V, = I,

noting that in this case bx',. = 1. Since for T- 0 we
have (p.) =1 —2l "~ ~sr, the prefactor in Eq. (A12)
is much smaller than that of Eq. (All), since
(nz) &q. In the vicinity of T, one has to use" "
V = V/'"/' and hence"

D = —'pVe 2' /IB cl (A13)

from Eq. (A12}. In general, we expect D, to be
the sum of the two contributions from atomic ex-
changes at the cluster surfaces, Eq. (All}, and in
the cluster interiors, Eqs. (A12) and (A13}.
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