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The global phase diagram in a five-dimensiona1 parameter space is described for a model which can be

thought of as the "regular-solution" model of a ternary mixture or the mean-field approximation to a spin-1

Ising ferromagnet with a general nearest-neighbor interaction (the Blurne-Capel model). The model possesses

three fourth-order critical points (known from previous work) which are connected to a total of nine lines of
tricritical points. Four manifolds of four-phase coexistence occur along with three manifolds of double critical

points and six manifolds of critical double-end points, The locations of all significant features of the phase

diagram are described qualitatively, and quantitative results are provided for some of the manifolds of lower

dimension. Computational procedures are described which permit a detailed exploration of any portion of the

phase diagram which may be of interest.

I. INTRODUCTION

In this paper we describe the entire global phase
diagram for a model three-component system
which has been the subject of a number of papers
on phase transitions and higher-order critical
points in complex systems. The model (defined in
detail in Sec. II below) may be thought of in various
ways: as the mean-field approximation to a spin-1
Ising magnet with the most general type of single-
ion and exchange interactions, as a "regular mix-
ture" of three components, as a model of phase
separation in ternary alloys, as a model of a mix-
ture of two compressible fluids, etc.

Our concern is not the physical applications of
the model, but rather the mathematical structure
of its phase diagram which may be thought of lying,
in a rather natural sense, in a five-dimensional
space of thermodynamic parameters (Sec. III).
Previous authors' "have described selected por-
tions of this five dimensional space in greater or
lesser detail. We, on the other hand, present an
overall description of the phase diagram showing
its qualitative behavior in all regions of the pa-
rameter spac e and prov iding quantitative informa-
tion about some of the salient features.

Such a qualitative understanding of the phase dia-
gram is of considerable importance in practical
applications of the model. One can hardly expect
the three-component model to provide detailed and

correct quantitative information about any particu-
lar system, not only because the values of the
parameters (in the model) appropriate to real sys-
tems are unknown, but also because the model is
a considerable oversimplification of physical real-
ity. Thus in particular the critical points in the
model are "classical" and do not take proper ac-
count of statistical fluctuations. However, one
might still expect it to yield correct qualitative

features of phase diagrams of real systems, such
as the connectivity of various coexistence and
critical surfaces, in the same way that the mean-
field model of a ferromagnet or the van der Waals
model of a fluid yield phase diagrams with a co-
existence line terminating in a critical point, in
agreement with experiment. It may, of course,
turn out that in some circumstances the three-
component model unexpectedly gives qualitatively
incorrect phase diagrams. This would itself be
quite interesting and might indicate (for example)
hitherto unobserved types of critical phenomena.
Such a possibility provides yet another motivation
for working out the qualitative features of the
global phase diagram of the model in detail. Fur-
ther remarks on the extent to which, and the man-
ner in which, the three-component model phase
diagrams may be expected to agree with experi-
mental observations on real fluid mixtures and
other systems are found in Sec. V.

The three-component model is in a certain sense
(Sec. II 8) a generalization of the mean-field ap-
proximation of the usual Ising model, or the cor-
responding lattice gas, to the next simplest situa-
tion. It is also closely analogous, though not iden-
tical, to a particular form of the van der Waals
model for a binary mixture (Sec. IIA). Indeed, a
certain portion of the global phase diagram for this
van der Waals model has been calculated previ-
ously by Scott and Van Konynenburg, "and our re-
sults show an important resemblance to (as well
as significant differences from) the van der Waals
case.

There are, of course, some practical difficulties
in attempting to present an overall view of a phase
diagram in a five-dimensional parameter space.
Our approach is to focus attention on the features
of highest codimension (in the notation of Ref. 12),
such as tricritical points and points of four-phase
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coexistence, which occur on smooth manifolds
(surfaces) of relatively low dimensionality in the
parameter space. The value of this approach is
apparent from an analogy with the phase diagram
of a pure substance, consisting of two-phase co-
existence lines connecting various triple and crit-
ical points. Given only the locations of the triple
and critical points (the features of highest codi-
mension in this case), together with the knowledge
of which points are connected to which, one would
have a good qualitative understanding of the struc-
ture of the diagram, though not enough information
to reconstruct it accurately in detail.

Our results are presented both numerically and
in terms of graphs giving projections and sections
of various parts of the phase diagram. The ma-
jority of the graphs employ "field" variables" in
contrast to the mixture of "field" and "density"
variables traditionally employed for multicompo-
nent mixtures. The latter, while providing the
most convenient representation of experimental
data, make it difficult to separate intrinsic fea-
tures of the global phase diagram from those which
are "accidental" consequences of the choice of co-
ordinates. It should be noted, however, that the
numerical techniques which we (and others) have
used to explore the global phase diagram also yield
phase diagrams in the mixed variables used to de-
scribe experiments.

The earliest studies of the three-component mod-
el of which we are aware are the two papers' of
Meijering which present a complete mathematical
formulation of the problem and a number of phase
diagrams. In a subsequent paper' Meijering noted
all the important features in the symmetric section
Z, ~ (our notation, Sec. II). Many of his results have
been subsequently rediscovered by others. Va.rious
authors' ' have investigated the three-component
model as a mean-field approximation to a spin-1
Ising magnet. We are indebted to Mukamel and
Blume' and Krinsky and Mukamel" (the latter
consider the analogous four-component model) for
certain mathematical techniques. Recently
Lajzerowicz and Sivardiere" have discussed a
number of applications of the three-component
model (plus "antiferromagnetic" analogs not in-
cluded in the three-component model as we define
it) to a variety of physical systems and have cal-
culated a number of phase diagrams. Omitted from
the above listing (and our bibliography) are a large
number of papers devoted to applications of the
three-component model to various systems, but
which do not contain any essentially new informa-
tion on phase diagrams.

An outline of the remainder of this paper is as
follows. The three-component model is defined
and its relationshiy to mean-field theories is dis-

II. THREE-COMPONENT MODEL

A. As a three-component mixture

Consider a ternary mixture or alloy containing
N„, N„and N, moles of three different compo-
nents, and

N=N„+N, +Ng (2 I)

moles altogether. A phenomenological ("regular
solution" ) model of this mixture is obtained by as-
suming the Gibbs potential G has the form

G =N[ayz +Sxz +8xy +R T(x lnx +y lny +z lnz)],

(2.2)

where a, b, and c are phenomenological "energy
parameters" and x =N„/N, y, and z are the mole
fractions of the three components. It is convenient
to divide this equation by NRT to obtain (G =G/
NR T):

6 =ayz +bxz +cxy +x Lnx +y Lny +z lnz,

where

a =8/RT, b =b/RT, c =8/RT

will also be called energy parameters.

(2.3)

(2.4)

cussed in Sec. II. Table I presents a comparison
of our notation with that of some previous investi-
gators.

Section III is the heart of the paper. It begins
(Sec. IIIA) withadiscussionof thesectionsandpro-
jections used to present the global phase diagram,
and the permutation symmetry which permits opti-
mum use of the information presented subsequently.
An overview (Sec. III B) of the global phase diagram
is followed by a detailed qualitative discussion
(Secs. III C and IIID) of its various features, in-
cluding a tabulation (Table II) of some of the en-
tities occurring in different parts of the parameter
space. A selection of numerical values for various
prominent features of the pha, se dia. gram is pre-
sented in Table III. A discussion (Sec. III E) of
topological properties of the phase diagram con-
cludes this section. Some of the most important
topological information is presented in Table IV,
which gives a list of manifolds, apart from ordin-
ary critical points, of dimension less than or
equal to three (codimension two or greater).

Section IV (which should be omitted on a first
reading) describes the mathematical procedures
we have used to investigate the phase diagram.
Certain unedifying details concerning tricritical
points are consigned to the Appendix.

Finally, a brief discussion of some matters
which should be kept in mind when comparing the
three-component model with real systems is pre-
sented in Sec. V, concluding the paper.
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This model is said to show multiple-phase co-
existence provided the minimum on the right-hand
side of the equation

Equation (2.5) implies that

vt. = vx —v»)

v(v„v,) = min (G —v,x —v, y) (2.5) V2 =
Vy —V») (2.10)

is achieved at more than one point in the triangle

x&~0) y» 0) x+ye&1 (2.6)

for a suitable choice of v, and v, . In taking the
minimum in (2.5), z is to be replaced by 1 -x —y,
since the sum of the mole fractions is one:

provided v„, v„and v, are evaluated using (2.9)
for x and y at the minimum (or any of the minima)
of the right-hand side of Eq. (2.5).

For drawing phase diagrams (Sec. III), it is con-
venient to introduce the variables (closely related
to activities)

x +y+g = 1. (2.7) r„=e""/g, g, =e "b/K, K, =e "b/K (2.11)

=A Tv„ (2.8)

and its analogs, are given explicitly by the formu-
las

v„=br +cy+lnx -w,

v„=as +cx + lny -w,

v, =ay+bx+lnz -w,

w =Aye +bxz +cxy,

(2 9)

If the minimum is achieved at x„y, and x» y» we

say that two phases with these compositions co-
exist, or that for this particular choice of the
parameters a, b, c, v„and v, there is two-phase
coexistence. A geometrical interpretation is ob-
tained by assuming the function 6 defines a
curved surface over the x, y triangle (2.6). When
two phases coexist, there is a plane tangent to the
6 surface at the two points in question. It has
slopes v, and v, in the x and y directions, respec-
tively, and lies below the t" surface at all other
points.

Likewise three or more phases are said to co-
exist if the minimum in (2.5) is achieved simulta-
neously (fixed v„and v,) at three or more points
or, equivalently, if there is a pl, ane tangent to the
6 surface at the points in question and lying below
it elsewhere. Strictly speaking, the t.quilibxium
Gibbs potential divided by NRT is not G, but its
convex hull whose graph is obtained from that of
6 by replacing the curved surface with a straight
line between pairs of coexisting phases, or a flat
triangle between three coexisting phases, etc.
Note that adding a constant or terms linear in x
and y (or z) to the right side of (2.2) or (2.3) has
no effect on phase coexistence apart from adding
constants to the values of v, and v, (and z) at which
it occurs.

In place of v„v„and m it is often convenient to
use variables more obviously related to the permu-
tation symmetry (Sec. IIIA) of the three-component
model. The chemical potentials, defined by

with

f =e" +e"~+e"».

An explicit formula for g„ is

x&bb+cv(x&bb+ cw +y&bb+cx +z&bb+bb)-&

(2.12)

(2.13)

Multiplying (2.2) by a positive factor has no in-
fluence on phase coexistence. Consequently we
have found it convenient, when discussing phase
diagrams, to adopt a particular normalization for
the energy parameters:

lsl + I& I
+ lc I

= 1 (2.14)

which means Isee (2.4)] that

&&=(Ill+I&l+lcl) ' (2 15)
We shall eall the parameters a, b, c, v» v»

and v "field variables" or "fields" (in contrast to
the "density" variables x, y, and z) because they
are always identical in two or more coexisting
phases. " Likewise v„, v„and v„a,nd pz fy
P, are fields. By varying one or more fields it is
possible to make two coexisting phases move
closer together until they coalesce to form a criti-
cal point, which we denote" by B. Likewise if
there are three coexisting phases, denoted by AgA.
or A. ', the fields may be altered so that two of
them coalesce while coexisting with the third to
form a critical end point BA. . Or the three phases
may simultaneously coalesce at a tricritical point
C. Other possibilities arise if various points as-
sociated with four-phase coexistence A' are al-
lowed to coalesce": a critical point coexisting
with two phases BA', two coexisting critical points
or a "double critical point" B', a tricritical end
point CA, and a fourth-order critical point D.

The mathematical form (2.2) is closely related
to the Helmholtz free energy for the van der Waals

. model of a binary mixture with constant b param-
eter and the a parameter a quadratic function of
composition. " However, N is to be interpreted as
the volume, x and y as the numbers of molecules
of types 1 and 2 per unit volume divided by their
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maximum values, and z In@ in (2.2) is to be re-
placed by (s —1) Ins. If z Ins is left unchanged,
(2.2) may (with the above interpretation) be thought
of as a phenomenological mendel of a binary mix-
ture, though with somewhat different properties
from the van der Waals model.

8. As the mean-Geld approximation for a threeeomponent
lattice "gas"

We suppose that the volume occupied by the "gas"
is divided into cells whose centers form a regular
lattice. Each cell contains one and only one mole-
cule, which may be of tyye 1, 2, or 3, If the jth
cell contains a molecule of type n, PP) is equal to
1, and otherwise it is zero. We suppose the ener-
gy is of the form'

q
-& Q Q E Q P(~)Pt s)

C g {gj)

(2.16)

where' is the coordination number of the lattice,
E~& =8 8„ is minus the energy of interaction if mol-
ecules of tyye ~ and P are in nearest-neighbor
cells, and (ij) denotes a pair of nearest-neighbor
cells with each pair included in the sum only once.
In the mean-field approximation the free energy E
for a system with N cells is given by'

mized with respect to the A.~ with the p,. and E 8
held fixed,

»{)
= min (F/NkT). (2.23)

This is obviously equivalent to minimizing the
left-hand side of (2.22) at fixed v„v„v„a, b,
and c, which in turn is equivalent to (2.5) with the
ident ification

(2.24)

Combining (2.10) and (2.24) one obtains, at the
minimum

C. As the mean-field approximation for a spin-1 Ising magnet

The spin variable S& on the jth site of a lattice
can take on the values 0, 1, and -1, and the ener-
gy is assumed to be

In such a lattice-gas model it is always possible
to regard one of the components, say e =3, as
"vacuum", in which case one has a crude model of
a compressible binary mixture in which each cell
may be vacant or occupied by at most one molecule
of type 1 01 2.

F/N=kT QA, „lnA ——+PE»)A. A»)
a 2 n 8

—Q &a&n)

where k is Boltzmann's constant and

(2.1V)

X=-q 'Z Q S)Sg -q"'E S»S~
&0) &4j

-q-'C p(S,'S, +S, S,') -EQS, +d, QS, .

(2.26)

v, = (p, , + ,'E„)/kT, -

v, = (»), + ,'E„)/kT, -

v, = (p, + &E»)/kT;

(2.20)

~.=(PI », (3.18)

the thermal average of P)» or the probability that
the /th cell ls occupied by a molecule of type Qf is
assumed to be independent of j. We shall not con-
sider cases where (PP)) depends on j. Upon making
the ldentlf icatlons

(2.19)

The first two terms on the right-hand side de-
scribe nearest-neighbor dipolar and quadrupolar
exchange, while H is a magnetic field (in suitable
units) and 6 a crystal-field splitting. The term C
is normally absent in magnetic systems, but is
introduced here to allow for the most general
mathematical form of nearest-neighbor interac-
tion.

By expressing the S, in terms of the P;") intro-
duced above through

(2.27)

a = '(E +E„2E„)/k—T, -
b = '(E„+E,—2E„—)/kT, (2.21)

and noting that (5„») is the Kronecker 6)

P(a)P)8) Qa) 6 (2.28)

c = ,'(E „+E„—-2E„)/kT;

it can be shown that

G -gv, -yv„-zv, =F/NkT. (2.32)

Mean-field theory requires that F/NkT be mtn»-

one can rewrite (3.26) in the form (2.16), and the
mean-field approximation for the latter applies,
with ayproyriate changes of notation, to the form-
er. Note that we are not considering the yossibil-
ity that (S&) may depend on the site j; i.e. , we are
deliberately excluding the yossibility of antifer-
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TABLE I. Comparison of notation with that of some previous authors.

This
paper Meijering ' pel b

Mukamel and
Blume

Mukamel and
Krinsky ~

Sivardiere and
Lajzerowicz ~

C

v '
P2
V

(p,„-p,,) /RT
(p, -p,) /RT

p, /RT

-'n
2

~ n
2

2n
n (1/2+P -y)

(1/2-P -V)
E/NkT

-'(1+~-I )2

—(1-0 -p)2

(J+K-2C)/2kT

(J+Z+2C) /2kT

2 J/kT
5 -(6 -H)/kT
a -(6+H)/kT

Q/NkT

-' (Q+~
—,
' (Q -I)

1-Q

(Eo+ E2)/2kT

«,+E,)
(E (+ E 2) /2kT
b + p3+T
a+ p)/kT

y/kT

Ao

(J+E' -2L)/2kT

(J+Z +2I )/2kT

2JPT
b+ (D+ a)/kT
a+ (D -H) /kT

y/kT

x„=-' (Q +~)
2

xc=- (Q2

x~= 1-Q
' Reference 1.

Reference 4. Note that only
~ Reference 7.

Reference 8 with A2=0, @2=
~ Reference 10.

Note that &„=&~+&8 and &~=

the case a =5 = -' c is considered.
4

V2+ V&

romagnetism. The relationship between the con-
stants in (2.26) and those in Sec. IIA above is
shown in Table I.

III. GLOBAL PHASE DIAGRAM

A. Sections, projections, and symmetries

One can think of the global phase diagram of the
three-component model as a set of manifolds or
curved (hyper)surfaces representing A', B, etc. ,
of appropriate dimensionality in the five-dimen-
sional field space spanned by a, b, c, v„and v, .
It is convenient to describe the global diagram in
terms of its pzpj ept&0+s onto spaces of lower di-
mensionality and in terms of sections of the com-
plete diagram obtained by holding some of the field
variables constant. We shall not employ any sec-
tions obtained by holding a density variable fixed,
but the diagram for the section itself may be
drawn using either field or density variables.

The section obtained by holding a, 5, and 8 fixed
will be called a system phase diagram, because in
the simplest physical interpretation of the three-
component model as a liquid mixture these quanti-
ties represent molecular properties which are
fixed by the nature of the system under study,
while the remaining variables in (2.2), the com-
positions and the temperature, can be altered in
the laboratory. (See Sec. V, however, for addi-
tional remarks on the relationship of this model
to real mixtures. )

Two systems in which a, b, and c have the same
ratios and the same signs give rise to identical
system phase diagrams apart from a scaling fac-
tor for the temperature. Consequently, we will

always assume that the magnitudes of a, b, and 0
sum to unity, (2.14), and the temperature is de-
termined by a, F, and c in accordance with (2.15)

A two-dimensional section at fixed a, b, and e,
or equivalently fixed a, b, c, and T, can be either
a composition or activity triangle. The former, of
which Fig. 1(a) is an example, is an equilateral
triangle with composition represented in barycen-
tric coordinates: a point inside the triangle is at
the center of mass if masses of magnitude x, y,
and z (=I -x -y) are placed at the corresponding
vertices. The latter is also an equilateral tri-
angle, Fig. 1(b), but the masses for the barycen-
tric coordinates are now g„g„and g, (=I —g, —g„)
as defined in (2.11).

In the composition triangle the edge opposite to
the z vertex, along which' =0, represents the
binary system in which the third component (mole
fraction z) is absent. The same is true of the edge
opposite (, in the activity triangle, since p, or v,

$y
( )

FIG. 1. (a) Phase diagram in the composition triangle;
(b) the corresponding diagram in the activity triangle.
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is -~ in a system in which z =0. I.ikewise the
vertices in both the composition and activity tri-
angles represent the corresponding pure compo-
nents. However, in other respects the composi-
tion and activity triangles are quite different. Be-
cause the latter is spanned by field variables, two-
yhase coexistence is represented by single lines
and three-phase coexistence by points, in contrast
to two-phase regions and three-phase triangles in
the former. Figures l(a) and l(b) represent the
same physical situation. VA'th a little practice it
is not difficult to construct a phase diagram in the
activity triangle which represents qualitatively the
same behavior (i.e. , the correct topological fea-
tures) as a given diagram in the activity triangle,
and vie e versa.

A system phase diagram in a triangular prism
with the temperature axis vertical and an activity
triangle as the base is shown in Fig. 2(a). There
are two coexistence surfaces Z, and Z, terminat-
ing on lines of critical points g, and o, , The sur-
faces intersect in a triple line v, which in turn
joins 0, at a critical end point. A section of Fig.
2(a) at an appropriate constant temperature yields
the diagram in Fig. 1(b).

Since it is tedious to draw three-dimensional
diagrams in perspective, it is sometimes useful
to project the principal features of a system dia-
gram along the temperature axis onto the tri-
angular base. Figure 2(b) is a projection of the
critical lines in Fig. 2(a). Once again, a little
practice makes it possible in many cases to re-
construct the essential topological features of a
system phase diagram given a projection as in
Fig. 2(b).

The projection along v, and v, onto the three-di-
mensional "energy space" spanned by u, b, and c
(which we refer to, somewhat inaccurately, as
"energy parameters"} plays an important role in
our description of the global phase diagram. One

can think of this projection in the following way.
If a particular feature of interest, such as C or
A', occurs somewhere in the composition (or activ-
ity) triangle for a given choice of a, h, and c, then
the corresponding point in the energy space is as-
signed an appropriate color. Points of one color
then form zero-, one-, two-, or three-dimensional
manifolds in the energy space, and one has a pro-
jection of certain salient features of the global
phase diagram onto a space of lower dimensional-
ity.

Due to limitations of graphical presentation, it
is in addition convenient to project the different
octants of the energy syace onto a set of eight
"energy triangles" in the following manner. For
the octant a & 0, b & 0, c & 0, we use a barycentric
representation on an equilateral triangle, Fig. 3 (a),
with weights equal to 8, b, and c at the verti-
ces. We shall call this the principal energy tri-
angle. For the octant with g ~ 0 y & 0 c & 0 the

A

corresponding triangle has weights of -g, b, and
c at the vertices. This triangle is drawn adjacent
to and to the right of the principal triangle in Fig.
4, which also shows triangles corresponding to all
the other octants. As a yractical necessity, only
a few features of the global phase diagram are in-
dicated explicitly in Figs. 3 and 4, but from these
it is yossible to form a fair idea of the overall
topological structure of the diagram, as we shall
show. We shall sometimes consider an energy
triangle as the base of a prism with vertical axis
equal to the temperature. This provides another
three-dimensional representation of the corre-
sponding octant in the energy space.

The reason for employing equilateral triangles
and the corresponding prisms for phase diagrams
of the three-component model is that they exhibit,
in a convenient way, an important symmetry of
the model. Any permutation of a, b, c accompa-
nied by the corresponding yermutation of x, y, z
leaves G in (2.3) unchanged. Thus the global phase

Ly
(b) Pb

PEG. 2. System phase diagram in a triangular prism;
(b) the critical lines in this diagram projected onto the
base of the prism.

FIG. 3. Projection of the global phase diagram show-
ing (a) the principal energy triangle and (b) the center of
the triangle on an expanded scale.
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n-Q
Qoc-b/ n-a

bc

n-Q

FIG. 4. Projection of the complete global phase dia-
gram on the eight energy triangles.

diagram is unchanged provided a, 5, c undergo
some permutation and f„g„f,or x, y, z simul-
taneously undergo a corresponding permutation.
For example, if a particular feature, such as a
tricritical point, occurs at a =n„b =o.„c=~, and

g„=p„g,=p„g, =p, (=1 —p, —p,), the same fea-
ture will also occur at a =n„5 =+3 c =o.

g P P2,
(y P 3 g P J This symmetry is clearly ev ident
in Figs. 3 and 4, and greatly simplifies the task
of describing the global phase diagram.

The global phase diagram also possesses cer-
tain symmetrical sections which are carried into
themselves by certain of the permutations just
discussed. The one-dimens ional symmetry axis
a =5 =c, P„=f,=(, = —', is carried into itself by all
permutations. The three-dimensional section Z, &

obtained by setting a = b and („=p, is invariant un-
der the simultaneous interchange of a with b and

f„and g, . The sections Z„and Z~ are defined in

analogy with Z,&.

B. Overview of the global phase diagram

Figure 4 shows a projection of certain prominent
features of the full five-dimensional phase dia-
gram on the set of eight energy triangles defined
in Sec. IIIA above. These triangles together form
an octahedron with a threefold rotation axis pass-
ing through the centers of the P (principal) and 8
triangles. Note that the edges with identical labels
are the same on the octahedron, and hence (for
example) the regions marked Q, ~ and R~ should be
thought of as adjacent to each other along the edge
a, —c, even though they appear separated in the fig-
ure. An enlarged diagram of the principal energy
triangle a, b, c appears in Fig. 3(a), and Fig. 3(b)

shows the region near the center of this triangle
further enlarged.

The solid lines which are not sides of energy
triangles in Figs. 3 and 4 are projections of lines
of C or tricritical points. Three lines of tri-
critical points come together at each of the fourth-
order critical points labeled D (with a subscript)
in Fig. 3. Elsewhere these C lines do not inter-
sect each other even though they appear to do so
in the projection (as, for example, at the center
of the principal triangle. )

The dashed lines in the principal triangle repre-
sent boundaries of manifolds of four-phase co-
existence, which will be discussed in greater de-
tail below. The dashed circle in the 8 triangle and
the straight lines which form the edges of the en-
ergy triangles represent points where certain
characteristic features of the phase diagram go to
zero temperature.

The solid and the dashed lines in Figs. 3 and 4
together divide the eight energy triangles into 40
two-dimensional regions, with the property that
within each region the corresponding system phase
diagrams are all topologically similar: i.e., the
connection of various coexistence surfaces and the
presence or absence of critical end points of var-
ious types is the same for all system diagrams.
This means that a complete qualitative descrip-
tion of the global phase diagram is available
once descriptions of the diagrams are provided for
each of these 40 regions. The regions are labeled
using a capital letter to indicate how many of the
energy pa. rameters are positive (three for P, two

for Q, one for R, and zero for S), and subscripts
which are related, as we shall see, to certain
characteristics of the corresponding system dia-
grams. The subscripts are chosen so that differ-
ent regions related by a symmetry of the phase
diagram are labeled by corresponding subscripts,
with greek subscripts n, P, y to be permuted in
the same manner (and simultaneously with) a, b,
c and x, y, z. When the permutation symmetry is
taken into account, one finds that there are only
ten distinct types of two-dimensional regions in the

energy triangles. These are listed in Table II,
together with some of the features which occur in

each region. Naturally, a complete specification
of the global phase diagram also requires a knowl-

edge of the system diagrams for points lying on the
dividing lines between the two-dimensional regions,
and the points where these lines come together.
We shall include this information in our discussion.

System diagrams for various points, which we
shall call "energy points, " in the principal energy
triangle are given in Sec. III C below, and for the
other energy triangles in Sec. IIID. We use sym-
bols such as C), X, etc. , to indicate points in an
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TABLE II. Entities occurring in different system phase diagrams. A representative ex-
ample of each of the regions in Figs. 3 and 4 is listed in the first column followed by the num-
ber s of regions equivalent to it under permutation symmetry. The third column lists a figure
or figures showing a "typical" system phase diagram and the fourth column lists each type of
entity which occurs in this diagram with a subscript to indicate the manifold to which it belongs.

Region Figure Entities in diagram ~

Qg

Qco

Qac Qca

Rx

Rcs
S„=S„

$0

5(b) 5(c) 5(e)

6(b), 6(c)

10(c)

12(b)
12(c)

12(e)

13(b)
13(c)
13(e)

(A )„(BA),
(A )I, (A4)I, (BA)y

(BA)y, (BA)~

(A')I, (A')„, (BA

(BA) g, (BA) g

(A)ca~ (BA)ca~ (BA)ac

)cps (BA4g~ ( A) gc

(A )~8, (BA)~g, (BA) g ~

(A )ca (BA)c8 ~ (BA)g c

A and B occur in all regions except S0, and have been omitted from the table.

energy triangle, and the same symbols are placed
adjacent to the system diagrams. Except u here
othevsei se noted, the system phase diagrams and
thei~ projections are schematic and not numerical-
ly accurate. Most of the features of interest in the
phase diagram must be obtained numerically and

cannot be expressed using simple formulas. Val-
ues of the parameters for some of the points of
interest are shown in Table III.

C. Principal energy triangle

1. Regions with one critical end point

Figure 5 shows a set of system phase diagrams
associated with points, hereafter called "energy
points„" in the principal energy triangle as indi-
cated in Fig. 5(a). Figures 5(b) and 5(c) show dia-
grams associated with the energy point +. The
former is analogous to Fig. 2(a) and shows a
prism with the temperature axis vertical and the
base of the prism at T =0, while the latter shows
the projection of the critical lines onto the base of
the prism, i.e. , the activity triangle. Although
Fig. 5(c) does not show the triple line or the co-
existence surfaces, it gives a convenient summary
of the information in Fig. 5(b) and is much easier
to draw.

The energy point 0 in Fig. 5(a) is obtained from
+ by interchanging a and b, and the system phase
diagram can be obtained from Fig. 5(b) or 5(c) by
the reflection corresponding to the interchange of
g„and g, . lt is shown in Fig. 5(d), the mirror

image of Fig. 5(c). Likewise the energy point X

arises from + by interchanging a and c or from 0
by a 120' counterclockwise rotation of Fig. 5(a),
and its system diagram, shown in Fig. 5(e), is ob-
tained from those of + or 0 by the corresponding
reflection or rotation. It is thus evident that a
proper use of symmetry reduces considerably the
effort required to describe the system phase dia-
grams corresponding to different energy points.

Note that Figs. 5(c) and 5(e), although distinct,
have the same general topological features. That
is, one can be obtained from the other by continu-
ous deformation without changing the fact that, for
example, there is only one critical end point and
it is connected by a critical line to the &„g, side of
the prism and by a triple line to T =0. Such criti-
cal end points will be said to be of P-type (since
the g„g, side is opposite the &, edge of the prism,
and we shall let z, P, and y correspond tox, y,
ands or a, b, and c). Critical end points of P-
type form a smooth two-dimensional surface or
manifold in the global phase diagram in a field
spa.ce, and we shall denote it by (BA) 8.

All energy points in the (interior of the) region
P & in Fig. 3 give rise to system phase diagrams
with the same general topological features shown
in Fig. 5(b), and, in particular, possess a single
P-type critical end point. However, as we shall
see, the manifold (BA)8 actually extends o. utside
the PB region. By symmetry, analogous remarks
apply to the regions P and P&, and to the mani-
folds (BA) and (BA)&.
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Cc

(0)

(d)
&y &1

(6)

~x ~

(d)
gy

(f)

FIG. 5, System phase diagrams corresponding to the
energy points shorn in the principal triangle in (a) are
shovfn schematically» (b)- g).

FIG. 6. System phase diagrams (schematic) in the
"shield" region near the center of the principal triangle;
(f) corresponds to the center of the shield.

2. Tricritical points in symmetrical sections

The energy point 0 on the l.ine separating P~ and
I 8 ill Flg. 5(R) gives I'lse 'to 'tile syIIIIIletllcRl diR-
gram 5(f) with the critical lines from the three
sides of the triangle all meeting at a tricritical
point. This point evidently falls in the symmetric
section Z, I, (see Sec. IIIA above). It lies on a line
or one-dimensional manifold of tricritical yoints
which we label C, and which extends all the way
from the D, point in Fig. 3(a) to the tricritical end

point (CA)I in Fig. 3(b). The equation for this
manifold is found in Table III.

"SAield" region

The dashed curves in Fig. 3(b), which are ap-
proximately in the form of a hypocycloid, enclose
a region which we shall call the "shield. " For any

energy point in the interior of the shield, the cor-
responding system phase diagram contains a. point
of four-phase coexistence A'„which we shall call
"type I" in distinction to "type II" discussed below.
Some representative cases are shown in Fig. 6.
The system phase diagram for 0 is shown in per-
spective in Fig. 6(b). This diagram is constructed
by starting with one in which a single critical end
yoint of type y terminates a, triple line from T =0
[analogous to Fig. 5(b)], and adding a small
wedged-shaped piece of coexistence surface which
touches the original triple line at a point of four-
phase coexistence A' between T =0 and the critical
end point. This wedge is itself joined to the other
coexistence surfaces at triple lines, so tha, t a total

of four such lines meet at the A.
' yoint.

The same system diagram is shown in projec-
tion in Fig. 6(c), but with the triple line which goes
to T = 0 ol111'tted [Rs is Rlso 'tile CRse lll Figs. 6(d),
6(e), and 6(f)] in the interest of simplicity. Three
critical end points, where a critical and triple line
meet, occur in this diagram: two of type y and one
of type o., a,s indicated by the labeling. As only
one of these is connected by a critical line to one
side of the triangle and none of them is connected
(directly) to the triple line which goes to T =0,
some justification of this labeling ls necessary,
and it can be carried out by considering what hay-
yens to the system phase diagram as the corres-
ponding energy point moves continuously.

Suppose that 0 in Fig. 6(a) is moved down and to
the right until it crosses the dashed curve. The
result is that the wedge-shaped coexistence sur-
face in Fig. 6(b) or 6(c) shrinks in size until it
vanishes. This vanishing corresponds to a BA'
point, and, indeed, the dashed curves in Figs.
3(b) and 6(a) are projections of three manifolds of
BApolllts. [Tile 0118. llllder discllssloll will be
called (BA')

&
or (BA')&„, since it occurs on the

boundary of both the (BA) and (BA)& Note th.at it
extends continuously from the (CA)„ to the (CA)&
point in Fig. 3(b).] The left-most critical end point
in Fig. 6(c) is, however, unaffected by the shrink-
ing of the wedge-shaped coexistence surface; and
when the 0 has passed from the shield into the I'&

region, this critical end point still remains and is,
obviously, of the type y (the only type which occurs
in the PI region). Thus, the left-most critical end

point in Fig. 6(c) lies on the same manifold as the
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other y-type points, which justifies the label in the
flgur e.

To identify the upper right-most critical end
point in Fig. 6(c), consider what happens to the
system phase diagram as 0 in Fig. 6(a) moves to
the left to the C, line, resulting in the diagram in

Fig 6(.d), then to the left of this line, yielding a
diagram which is qualitatively the mirror image,
g„exchanged with g„of Fig. 6(c), and finally fur-
ther left into the P& region. During this process
the upper right-most critical end point in Fig. 6(c)
remains unaffected and hence, as it is still present
at the end of this process, must of type y.

Finally, to identify the remaining critical end
point labeled n in Fig. 6(c), consider what happens
if 0 in Fig. 6(a) is moved to the right and upwards
till it meets the C~ line, yielding a diagram shown
in Fig. 6(e). This diagram is symmetric under the
interchange of g, and g„which also interchanges
the two critical end points. Thus if one of the critical
end points is of type y, as established by continuity in
considering how Fig. 6(c) is transformed into Fig.
6(e), the other must be of type a by symmetry
(since the permutation of x and z corresponds to
the permutation of a with c and z with y). An al-
ternative argument can be constructed using a
further displacement of the energy point from the
position indicated by a solid square in Fig 6(a) .to
the right into the region P~, and checking that it
is indeed the critical end point labeled n in Figs.
6(c) and 6(e) which remains at the end of this pro-
cess.

The occurrence of two y and one z critical end

points in Fig. 6(c) is what suggests the terminology

P&~ for the corresponding region in Fig. 3(b). No

doubt P&&„would be a more explicit terminology,
but Pyn will suffice if one remembers that it ls
distinct from P„&.

%hen the energy point is in the precise center of
the principal triangle, the system phase diagram,
shown in projection in Fig. 6(f), has three tricrit-
ical points. Since these occur at different points
in the activity triangle (though, by symmetry, they
all occur at the same temperature) it is plain, as
we have remarked previously, that the tricritical
point manifolds C„C~, and C, do not actually in-
tersect in the full five-dimensional space, though

they appear to do so when projected on the princi-
pal energy triangle.

If the solid square in Fig. 6(a) is moved along the

C~ line away from the center of the diagram, the
wedge-shaped region in the corresponding system
phase diagram Ftg. 6(e) shr inks until tt eventually
vanishes at an o,y-type BA', just as the energy
point in Fig. 6(a) crosses the dashed curve. This
BA. point occurs both at a different temperature
and at different activities than the tricritical point

FIG. 7. Four-phase coexistence {schematic) in the
composition triangle corresponding to the systems dia-
grams in Fig. 6. The labeling {c), {d), etc. , corres-
ponds to that in Fig. 6.

in the same system phase diagram, and thus the
(BA')~„and C~ manifolds do not intersect in the full
five-dimensional space.

The positions of the four coexisting phases in the
composition triangle for the A.' points in Fig. 6 are
indicated in the corresponding parts of Fig. 7, The
dot indicates the composition and the adjacent num-

bers serve to identify which phases correspond in

the different figures. The phase four always lies
inside the triangle formed by phases one, two, and

three. At a (BA')„& point phases four and two

coalesce, while at the (CA)& point phase four, one,
and two coalesce. The four-phase coexistence
points form a single continuous manifold in the
five-dimensional field space and the identity of the
separate phases is always preserved (e.g. , it is
not possible to interchange phases two and three,
or two and four, while remaining on the A' mani-
fold).

4. Four-phase coexistence regions of type II

Regions of type-II four phase coexistence are in-
dicated by the dashed lines terminating at the
vertices of the principal energy triangle in Figs.
3 and 4. Since the projection on the energy triangle
is not too enlightening, we show in Fig. 8 the por-
tion of the symmetrical section Z, , (8 =b) of the
phase diagram with 8, b, c positive, projected on
a 8-temperature plane. It is helpful in interpreting
this diagram to note that the two-dimensional
manifold of type-II four-phase coexistence, labeled
(A')„along with its boundaries (B'), and (BA')„.
projects onto the dashed line terminating at the 8
vertex of the principal triangle in Fig. 3. Hence,
although in the full diagram the (A~), and (A')&q

manifolds have the same dimensionality, two, the
latter, because it lies in a symmetrical section,
has a lower-dimensional projection in the energy
triangle. Similarly, unlike the Q'), points, for a
given choice of a =5 and 8, the A. ' points of type II
persist over a finite temperature range, a "viola-
tion" of the phase rule noted by Meijering. '

The aforementioned symmetry also appears when
the four coexisting phases are plotted in a compo-
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FIG. 10. System phase diagrams (schematic) near the
vertex of the principal energy triangle.

0
0.2 0.6

A

C

FIG. 8. Phase diagram in the &, ~ section projected on
the T, ~ plane. This dravving is to scale.

sition space, Fig. 9(a): phase two and four are
mirror images of one and three, respectively, if
x and y are interchanged. For fixed 8 =b and c,
increasing temperature leads to one and three
coalescing at the same point where two and four
coalesce, giving rise to a double critical point 8'.
The location of the 8' points may be expressed by
means of a parametric formula given below in Sec.
IV, (4.2'I). With decreasing temperature, three
and four coalesce at a BA. ' point. By varying D and
the temperature, all four phases may be made to
coalesce at the fourth-order point D~. The system
phase diagram which contains this fourth-order
point is qualitatively similar to Fig. 5(f) and the
fourth-order point occurs where the three critical
lines come together. Its location is specified in
Table GI.

y x

FIG. 9. Four-phase and three-phase coexistence
(schematic) in the composition triangle.

5. Regions udjueent to four-phuse coexistence of type II
System phase diagrams for the regions adjacent

to the vertices and inside the principal energy tri-
angle a,re particularly difficult to represent in pro-

jection, so Fig. j.0 shows schematic drawings in
perspective. Figure 10(b) is a system phase dia, -
gram for g =6, indicated by the solid square in
Fig. 10(a). At low temperatures there is a three-
phase line terminating coexistence surfaces ema-
nating from the three sides of the prism. How-
ever, at a certain temperature a BA, ' point occurs
and the surfaces from the g„g, and g,g, sides begin
to "cut in" to the third surface along a line (marked
with X's) of four-phase coexistence which eventually
termina, tes at a I3' point. The critical line emanat-
ing from the BA.' point arches over the B' point
and terminates on the g„g side of the prism. Note
that the diagram is invariant under the interchange
of g„and g„.

If the energy point tn Fig. 10(a) ts moved fo the
left, to the point shown a,s G, the result is the
system diagram shown in Fig. 10(c). The B' point
in Fig. 10(b) has split into two critical end points
labeled P and cI3, and the BA. ' point has become a
critical end point Pc. The A. ' line has disappeared
Rnd instead one finds oQe A. line extending to T =0
from the P-type BA. point, and another extending
between the cP and Pc BA points.

If, in turn, the 0 in Fig. 10(a) is allowed to move
downwards, the A' line joining (BA), 8 and (BA) s,
in Fig. 10(c) grows shorter and eventually these
points merge at a tricritical point when the energy
point reaches the solid curve in Fig. 10(a). The
system phase diagram in which the tricritical
point actually occurs is topologically similar (as
one might expect) to that shown in Fig. 5(b) Iwhere„
it should be noted~ the prism hRs R differeQt orien-
tation from Fig. 10(c)] rather than Fig. 5(f). That
is, one does rtot see three lines of critical points
coming together at the tricritical point. The rea-
son for this has been discussed elsewhere. " It
turns out that a diagram of the form in Fig. 5(f)
can only be expected in the presence of appropriate
symmetries, and the merging of two critical end

points, of the sort we have just discussed, is the
more common "label" for a tricritical point in the
absence of any symmetry.
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0.075 gag o /

0.070

(c)

O.760 0.755 0.750 0.745 &y ~x ~

(e)

FIG. 11. Critical end points and tricritical. point for a
section in the energy space (b = 0.118924) indicated by
the heavy line in the insert. The drawing is to scale.

FIG. 12. System phase diagrams (schematic) in one
of the Q energy triangles.

The (flies point in Fig. 10(c) is not affected by
the merging of the other critical end points as the
energy point in Fig. 10(a) moves through the line

C,8 into the P & region of Fig. 3, and hence belongs
to the same manifold of P-type critical end points
described previously.

In considering the distinction between the two

types of three-phase region indicated in Fig. 10(c),
which we shall call (A'), and {A'),8, the former
extending to zero temperature, it is useful to show
"typical" examples in the composition space at a
fixed temperature, as in Figs. 9(b) and 9(c). As
the energy point ayproaches the symmetry 1.ine a
=1 in Fig. 10(a), the phases in Figs. 9(b) and 9(c)
ayproach those numbered in a corresponding way
in Fig. 9(a). The critical end points P, cP, and Pc
in these diagrams correspond to phases one and

three, two and four, three and four, respectively,
coalescing in the presence of the remaining phase.

Some further insight on the locations of the dif-
ferentBA. manifolds in the energy space is pro-
vided by Fig. 11 which shows a section b

=0.1189238 of the energy space, using T as one
coordinate, whose projection on the yxincipal en-

ergy triangle is the solid heavy line in the insert.

D. Other energy triangles

Tnangle u, -b, e

As the energy point marked + in Fig. 5(a) moves
leftward, the temperature of the critical point in
the binary system x, z and that of the correspond-
ing critical end point in Fig. 5(b) decrease and
reach zero when + arrives at the 8, c edge of the
principal energy triangle. In the adjacent Q 8 re-

gion, Fig. 4, thex, z binary system does not phase
separate, and the system phase diagrams show
only a single coexistence surface extending be-
tween the fg„and f,f, sides of the activity prism
and surmounted by an unbroken line of critical
points connecting those in the bina, ry pairs, as
shown in Fig. 12(b).

Similarly one can think of the system diagram in
the Q, 8 region as obtained from Fig. 10(c) by mov-
ing the open circle in Fig. 10(a) to the left across
the boundary of the triangle with the consequence
that the coexistence surface extending from the

g„g, side of Fig 10(c) d. isappears and with it the
associated triple line and (BA) 8 point. The result-
ing phase diagram is shown in projection in Fig.
12(c). Note that the three-phase region does not
extend to zero temperature. [System phase dia-
grams in the Q, B xegion in Fig. 4, as illustrated
in Fig. 12(d), are similar to those in the Q,B re-
gion if g„and g, are interchanged. ]

The (A'), &
manifold outside the principal tri-

angle, as well as the five other three-phase mani-
folds related to it by permutation, have been over-
looked in previous studies of the three-component
model. '*' The corresponding type of three-phase
coexistence in the van der Waals model of a binary
compressible Quid has been pointed out by Scott
and Van Konynenburg. "

ln the Q (=Q„) region the system diagrams, as
in Fig. 12(e), represent a "superposition" of the
triple lines and corresponding critical end points
from the diagrams of the Q, 8 and Q,& regions.
Note that the corresponding three-phase manifolds,
(A'), &

and (A'), s, do not meet in the full five-di-
mensional field syace even though they yroject on
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top of each other in the Q„region of the energy
triangle.

2. T/vungk u, -0, -0

As the energy point marked by an open square
in Fig. 12(a) approaches the a, -h side of the en-
ergy triangle, both the Pa and aP critical end
points in Fig. 12(d) tend toward zero temperature.
However, the Pa point also approaches closer and
closer to the g„edge while the uP point becomes
very close to the gg, side of the prism, as shown
in Fig. 12(f). When the energy point reaches the

a, -b side and 8 goes to zero, so that the x, y bi-
nary no longer shows phase separation, the g
region with its associated critical end points dis-
appears entirely and there is a single line of
critical points extending from the g,f, side at
finite temperatures to the g„edge of the prism at
zero temperature. Such a system diagram, shown
in Fig. 13(b), is characteristic of the R region in

Fig. 4 ~

An analogous phenomenon occurs as the solid
stluare in Fig. 12(a) moves leftwards to the a, h-
edge of the triangle. However, the Pc and cP
critical end points and the triple line connecting
them are not directly affected by what happens to
the (A'), 8 region, and they continue to exist as an

interruption in the critical line extending from the

f,g, side of the prism —which now, however, as
in Fig. 13(c), characteristic of the R, z region in

Fig. 4, extends to zero temperature in the g, cor-
nel ~

Tnungle -u, -b, -e

If the energy point shown as a solid circle in
Fig. 13(a) is moved to the left, the (A'),8 region

A-0

FIG. 13. System phase diagrams (schematic) in the 8
and one of the R energy triangl. es.

and its associated critical end points undergo a
fate similar to that of the (A'), s region described
previously. This is illustrated in Fig. 13(d). When
the energy point reaches the -b, -8 edge of the
triangle, there remains only a single critical line
extending from the g„ to the f, edges of the prism
and going to zero temperature at either end, a
diagram which characterizes the 8„, region in
Fig. 4. If the solid square in Fig. 13 is moved to
the left, the maximum critical temperature along
the line of critical points decreases and reaches
zero when the energy point meets the dashed cir-
cle. In the region 8, the potential 0 in Eq. (2.3)
is always convex, so there is no phase separation
at all.

E. Qua1itative description of different manifolds

J. Introduction

%'e have seen that various features of the global
phase diagram, such as points of three-phase co-
existence, tricritical points, etc. , lie on continu-
ous "surfaces" or manifolds of appropriate dimen-
sionality in the five-dimensional field space span-
ned by a, b, c, v„and v, . By specifying how these
manifolds are connected together, one can describe
important topological properties" of the global
phase diagram. Although such properties may ap-
pear somewhat abstract, especially as we are
describing an object (the phase diagram) in a five-
dimensional space, they are of interest because it
is precisely the qualitative features of this type
which one expects to be the same in the three-com-
ponent model and in real systems (see Sec. V).

Each point in the field space can be classified as
a particular "type" depending on the state of the
system which is realized for this choice of thermo-
dynamic variables. For example, if a "critical"
phase coexists with another distinct phase, the
corresponding "type" is BA, Points of a given type
lie on one of (possibly) several distinct manifolds
in the global phase diagram. Two BA. points, for
example, lie on the same manifold if it is possible
to connect them by a continuous path in the five-
dimensional space which consists entirely of points
of type BA. and no points of any other type. The
different manifolds are labeled with subscripts:
(BA)„, (BA)8, etc. N.ote that whereas (BA)„and
(BA) & have common boundary points (their clo-
sures, in the usual topology, have nonempty inter-
sections), these points are always of a type other.
than BA, for instance C or BA, '. %e shall say that
two manifolds belong to the same "class" if one is
mapped into the other by one of the permutation
symmetries of the global phase diagram. Thus
(BA), (BA) &, and (BA)z constitute one class.

Distinct manifolds of points of a given type in the
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TABLE 1V. Manifolds and their boundaries. A representative example from each class of
manifoMs, vrith the exception of 8 and A, is listed in the first column followed by its dimen-
sionality d and its symmetry number s, the number of manifolds in the class. The last col-
umn gives the manifolds of dimension d -1 lying on its boundary. For d =2 the manifolds on
the boundary are listed in order proceeding continuously along the edge of the manifold. All
manifolds at zero temperature are labeled (n) (see text).

D

(CA)y
C~

C~g
(BAl)„1= (BA )

(&'4
(BA )~
(BA)~g
(B4)~ ~

d s Manifold d 8

(BA)6

(&')I
(A )c
(A3)~ 8

global phase diagram we Rre discussing may well
be (and indeed probably are) parts o,f a. single
mRDifold 1D R higher-dimensional field spRce ob-
tained by adding additional parameters to the mod-
el, e.g. , terms such as x'y, etc. , in Ecj. (2.3).
This does not reduce the value of distinguishing
these manifolds in the global phase diagram of the
three-component model, though it suggests that one
should exex'C186 cRutloD befox'6 dlRw'1ng fax'-x"6Rch-

ing conclusions about real systems from this mod-
el.

Each d-dimensional manifold is bounded by mani-
folds of dimension d -1, Rnd these in turn by mani-
folds of dimension d —2, etc. These lower-dimen-
sloDRl manlfolds may 1epx'esent' points of R dlstlnet
type (e.g. , BA' manifoids on the boundary of A'),
or points of the same type which lie on the boundary
of the phase diagram. Table IV lists one repre-
sentative from each class of manifolds, aside from
A' and 8, and indicates the manifolds of dimension
one less which lie on its boundaries. The same in-
formation for other manifolds in a given class can
be obtained by applying permutations to the sub-
scripts a, b, c, and simulta. neously n, P, y. Cer-
tain bounda, ries occur at zex'o temperature, that is
t»ay as lal + I&l +lc I

t~~ds to»tnfi»ty. Aii such
cases a.re indicated by (n) in Table IV. One could
introduce a more specific labeling based on the
discussion in Secs. III' and HID above, but this
did Dot seem to us to be worth the effort.

2. Zero- and one-dimensional mani folds

Two clR8868 of zero-dimensional manlfolds oc-
cur in the global phase diagram: the three D and
three Cg po1nts shown 1n Flg. 3- The one-d1xnen-
sional manifolds include nine C lines belonging to
two classes: three lines lying in symmetricRl
sections Z,~, etc. , which project entirely within

the principal enex'gy triangle, Fig. 3, and six
which lie outside the symmetrical sections and
RppeRx' R8 curved solid lines 1D pig. 4. ERch of the
latter extends from a D point to a point at zero
tempera. ture and ha.s a projection which falls in
three different energy triangles. These C mani-
folds are smooth curves, and the kinks which oc-
cur at boundaries of the triangles in Fig. 4 are the
effect of the projection.

The other classes of one-dimensional manifolds
Rre three BA' lines shown as dashed curves in Fig.
3(b), each extending between two CA points, and
three 8' lines and three BA' lines w'hich bound the
(A')» regions, as shown in Fig. 8, and project on
top of each other Rs the straight dashed lines in the
principal triangle in Figs. 3(a) and 4.

Two-diInensional mani folds

There are five classes of two-dimensional mani-
folds: the (A,), region, the (A,)» regions, and
those represented by (BA), (BA) B„and (BA),ll.
Each of these manifolds is topoJ. ogically equivalent
to a disk (rather than, for examyie, a Moebius
strip). The (A')1 manifold is bounded by three
lines, the dashed curves in Fig. 3(b), and each
(A')» manifold by a BA' line and a B' line, as
shown in Fig. 8.

The (BA),s and (BA) s, manifold project on top of
each othel' (with the former at a higher tempera-
ture than the latter for a given Q, fl, c) on the re-
gions denoted by I'«, Q,8, Q~, and A, & in Figs.
3 and 4. Both extend to zero temperature (but to
diffel'slit polllts 111 tile activity 'tl'lallgie) at tile

h, -e and—-5, c edges of the corresponding energy
triangle, and they both terminate on the manifold
C,&. Inside the principal energy triangle, (BA),8
terminates at (B'), , and (BA)s, at (BA'), .

The (BA) 8 manifold projects on the P,B, P&, and
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(eA

(ca)

terminus of four lines of A' points. For points on

the (A'), manifold, one of these A' lines belongs to
(A'), &, one to (A'), , and two to (A'), . For points
on the (A'), manifold, all four A' lines belong to

(A')&. Thus the A' manifolds are not simple bound-
aries of ('A')&, and the latter is not topologically
equivalent to a ball.

5. Manifolds A and B

(

(c~)
FIG. 14. Heavy soLid and dashed l.ines indicate the

boundaries of the (BA) 8 manifold near the center of the

principal energy triangle.

P,& regions of the principal energy triangle, Fig.
3, and goes to zero temperature along the a, c
edge. It terminates on the (B'), and (B'), manifolds

near the a and 8' corners, as well as the C, and C,
manifolds. However, near the center of the prin-
cipal energy triangle its behavior in projection is
rather complicated. The actual boundary is shown

by the heavy lines, solid and dashed, in Fig. 14,
which shows the same projection as Fig. 3(b), and

consists of the lines and points C, , (CA)„, (BA')~s,

(CA)s, (BA')s&, (CA)z, C, . The manifold projects
once on the regions (Fig. 3(b)j P, s and Pzs, and

tseice on the regions PB~ and PBy.

4. Three-dimensional mani folds

The only three-dimensional manifolds in the

global phase diagram are of type A' and occur in

two classes: the (A')& manifold and the six of

which (A'), &
is a representative. The manifold

(A'), s is, we believe, topologically equivalent to
a three-ball and is bounded by the two-dimension-
al surfaces (BA),&, (BA) &, (A')„and one at zero
temperature. It projects on the same region in the

energy triangles as (BA), asnd (BA) @, and reaches
zero temperature only at the edges of the triangles
where the latter manifolds go to zero temperature
(see discussion above).

The manifold (A'), is more complicated. It pro-
jects on the entire principal energy triangle and

on no other triangle. For a fixed 0, b, and c, it
extends from T = 0 up to a temperature where it
terminates on a (BA)„, (BA) s, or (BA)& manifold.

However, the (A )& and (A )«manifolds also lie on

the boundary of (A'), in a manner which must be
described with some care. In a three-dimensional
section of the field space, each'' point is the

An examination of the various system phase dia-
grams and their variation as the corresponding
energy point is displaced shows that all A ' points
belong to the same four-dimensional manifold, and

all B points to the same three-dimensional mani-
fold. Naturally these manifolds are topologically
rather complicated, and we shall not attempt to
describe them. It is perhaps worth noting that

they, unlike any of the other manifolds discussed
above, intersect the boundaries of the phase dia-
gram at places other than zero temperature,
namely, in the binary mixtures (e.g. , g, =0).

d 2tjg

d~ 28 &0 (4.2)

with the derivatives evaluated, at x =r, . The con-
dition (4.2), when (4.1) is satisfied, insures that k
is a convex function in the immediate vicinity of
r =x„and can thus be called a condition of "local
stability. " There is an additional condition of
"global stability, " that Ii coincide with its convex
hull at x =r„which must be satisfied if the entity
of interest is to be stable rather than metastable.

It will be convenient to suppose that 6 is ex-
pressed as a function of two density variables x
and s which are linear (or affine) functions of x
and y. Such a change of variables is convenient
rather than essential, and the existence of a (high-
er-order) critical point is not dependent on the
precise choice of r and s. I.et us consider the
conditions which G must satisfy for an nth-order
critical point at (r„s,). Define the field variable

IV. MATHEMATICAL METHODS

A. Elementary entities

The existence of the "elementary" entities B, C,
and D (in contrast to "composite" entities A', BA,
etc.) depends on properties of the G(x, y) surface
in the immediate vicinity of a single point. It is
convenient to consider first the conditions which
must be satisfied by a potential h(r) depending on
a single density variable r so than an nth-order
critical point (n =2, 3, and 4 for B, C, and D, re-
spectively) occurs at r =r, . These are

dms =0 for 2&m &2n —1, (4 1)
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b, by

=G,BG
8S

(4.3)

and let 6, be its value at (r„s,). Also assume that
at this point

8'G
Bs

(4.4)

Then for 4 near D„s near s„and s near x„we
can introduce the Legendre transformation

h(r, b.) =G(r, s) —as, (4.5)

f G„„G„.)
G,„G„

(4.6)

vanishes, or that this matrix has one zero and one
positive eigenvalue. Given this last condition, it
is always possible to choose coordinates x and s
such that (4.4) is satisfied; but note that for a
specific choice of axes, a (higher-order) critical
point may occur where G„=0, in which case the
discussion in terms of (4.5) and (4.1) is inapplic-
able. In principle, there can also be higher-order
critical points for which both eigenvalues of the
Hessian matrix are zero" and which are not en-
compassed in the classification scheme embodied
in (4.1) and (4.2). These do not, however, occur,
so far as we can tell, in the three-component mod-
el under discussion.

In the case of ordinary critical points B, n =2, it
is possible to write the two equations (4.1) in the
symmetrical form (see Ref. 8):

+ —+ — =0,3'

I -x(5+c —a) 1 —y(a+c b) 1 —a(—a b-c+)

(4.7)
x

[1 —x(b +c' —a)]' [1 —y(a +c —b)]'

+ —,=0. (4 8)
[1 -a(a+b —c)]'

where s, on the right-hand side, is the (unique)
function of r and A defined by (4.3). Then the con-
dition that G have an nth-order critical point at
(r„s,) is that (4.1) and (4.2) be satisfied for
h(r, 6,) regarded as a function of r In .addition,
there is a requirement of global stability, that G

coincide with its convex hull G at the point of in-
terest, which will be discussed in Sec. IVB below.

It is possible to reexpress the conditions (4.1)
and (4.2) for G in a form which makes less explicit
use of a particular choice of coordinate axes. Thus
(4.1) form =2, with (4.4), turns out to be equiva-
lent to the assertion that the determinant of the
Hessian matrix

These equations were solved numerically for a
fixed choice of 8, b, and c [see (2.4)] by regarding
(4.7) as a quadratic equation in the temperature T
and substituting the roots of this equation in (4.8).
The resulting equation was then solved numerical-
ly and the critical points thereby obtained were
checked for global stability. Although global sta-
bility insures local stability, it was convenient to
first check the latter by means of

x =x+y =1-z,
s =x —y =rA. ,

(4.10)

(4.11)

where r lies between 0 and 1, and the parameter
X, equal to s/r, between -1 and + 1. In terms of
these variables G has the form

G =r In(m) + (1 r) ln(1 ——r) + ~(c —2a —2b)r'

+m[(1+X) ln(1+A. ) + (1 —A.) ln(1 —A. )

=cr X'+ (a —-b)rX]. (4.12)

At a fixed r, G as a function of A. has a form fa-
miliar from the mean-field theory of an Ising
ferromagnet or the regular solution theory of a
binary mixture. One easily shows that a necessary
(but not sufficient) condition for global stability
with c & 0 is that

X[ln(1+X) —ln(1 —X) —crA] ~ 0, (4.13)

as otherwise A, lies in a metastable region. This
condition is trivially satisfied for c &0 and, ex-
cept when X =0, insures condition (4.4). As shown
in the Appendix, one can obtain a parametric so-
lution to the four equations in (4.1) at the cost of
numerically solving a single equation in one un-
known. Both (4.2) and (4.13) were applied as
checks for stability, and then the tricritical points
so obtained were checked for global stability. Con-
dition (4.4) is violated for tricritical points in the
symmetrical section Z, ~ (though not for the cor-
responding points in Z„and Z~), but these can be
more easily obtained, in any case, by an alterna-
tive calculation (Sec. IVD).

B. Global stability

We used the technique of Ref. 8, with minor mod-
ifications, in order to check global stability. The

-2c +1/x+1/y~ 0,

which insures that the eigenvalues of the Hessian
(4.6) are non-negative. Equations (4.7)-(4.9) are
not applicable to certain critical points occurring
in the symmetrical sections Z,„, etc. , which are
discussed separately below in Sec. IVD.

Tricritical points C, n =3, were investigated
with the help of (4.5), (4.1), and (4.2) with the fol-
lowing choice of coordinates:
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basic idea is as follows. To check whether a point

(x„y,) is stable in a global sense one finds all
other points in the triangle (2.6) which have the
same chemical potentials

BG BG
V = V

Bx Bp
(4.14)

as the point in question. At each of these points
v, is evaluated using (2.9). The point(s) having the
minimum value of v, is globally stable; the rest
are unstable or metastable.

One can very well use alternative coordinates in

place of x and y and other choices for the chemical
potential. As one of the chemical potentials we
used [see (4.3) and (4.10)-(4.12)]

a = 2 in[(1+A)/(1 —X)] + 2(a -b)r —2crk (4..15)

For a fixed choice of b, , determined by its value
at the point (x„y,), (4.15) may be used to generate
a curve of r as a function of A. , for -1&A. & 1.
There is no loss of generality (and in practice a
faster numerical program when c is positive) if
the parameter A. is restricted to values satisfying
(4.13). The remaining chemical potential is ea.sily
evaluated as a function of r and thus of A. , and the
equation setting this equal to its value at the point

(x„y,) is then solved numerically as a function of

need be independent (see Sec. IVD below).
Once a solution to the equations for a compound

entity has been found, it can be checked for global
stability. The procedure is identical to that em-
ployed for elementary entities, Sec. IV 8 above.
In addition, it is possible to use the global stabil-
ity check directly for locating compound entities.
Supyose, for example, that the equations for a
critical point 8 are solved as a function of tem-
perature at fixed a, b, 8, and it is found that the
critical points are globally stable above a certain
temperature and metastable beneath this tempera-
ture. At the lowest temperature where global sta-

C. Compound entities

The "compound" entities such as A', BA, etc. ,
depend on the properties of G(x, y) in the vicinity
of two or more points in the triangle (2.6). The
equations for the coexistence of two phases at
(x„y,) and (x„y,) are as follows, ' with z, = 1 -x,

0.00—

0.02—

(x, +x,) ln —' + (y, +y, ) ln —' + (z, +z,) in —' = 0,

(4.16)

1 ~ —ln ~ =b(», -x, -z, +z,)+(a-c)(y, -y,),
2 2

(4.17)

ln —' —ln —=a(y, —y, -z, +z,) + (b -c)(x, -x,) .
.Sa 2

(4.18)

They express the fact that v„, v, (or v„, v,) and v„
Eq. (2.9), must be the same in both phases. For
coexistence of three phases one has six equations:
the three above, plus three obtained by replacing
the subscript 2 everywhere by 3. If one of the
phases is a critical point, the equations of critical-
ity, (4.7) and (4.8), must be satisfied at this point.
Consequently BA, ' (to take an example) is deter-
mined, in general, by eight equations. When cer-
tain symmetries are present not all the equations

0.04—

0.06—
I

0.05 O. lO Q. I 5 O. 20

FIG. 15. Phase diagram to scale for the system c
= 0.841 297 49, b = 0.109 033 59, a = -0.049 668 92 at R T
= 0.050 99996. (a) shows a three-phase region at x ~

=0.21588689, yg =0.0048319, x2= 0.04936685, gp
= 0.063 1138; x 3

= 0.722 1441, y) = 0.7402 x 10; and two
sets of tie lines. The Left-most two-phase region is
indistinguishab1. e from the xz side of the composition
triangle. (b) An enlargement (in rectangular coordin-
ates) of the binodal in (a) with a critical point. The low-
est tie line opposite the critical point in (b) is one leg
of the three-phase triangle in (a).
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D. Symmetrical sections

The equations for various entities simplify when

they lie in the symmetrical section Z, ~, and some
progress can be made towards analytic solutions.
In what follows we shall always assume that

a =b. (4.19)

Analogous results can be obtained for Z~ and Z~
by use of permutations.

In particular, for a "horizontal" tie line, Fig.
16(a), with

(4.20)

Eq. (4.16) is satisfied and (4.17) and (4.18) are
equivalent to

bility is satisfied one has a critical end point BA
(or possibly BA'), and the stability check itself
yields the location of the phase A. with which B co-
exists. This procedure is quite effective in locat-
ing a particular example of a compound entity, but
rather inefficient for exploring a manifold of such
entities.

There are special cases (in particular, when
symmetries are present) when the equations for a
given entity can be solved analytically, in whole
or in part. However, this is not possible in gen-
eral and the equations must be solved numerically.
We have found the use of perturbation theory fairly
effective in this connection. Thus by linearizing
the appropriate equations about a known example
of the entity in question, one can calculate approx-
imately the location of the coexisting phases when
a parameter (typically T, a, 5, ore) is alteredby a
small amount, and the approximation can be im-
proved by iteration.

In practice we have used a computer routine
which evaluates partial derivatives numerically
and thus does not require an explicit linearization
of the equations. It has been used to locate the
manifold (BA') 8 and several points in (A')„
(BA)s„(BA),8, (BA), (A')&, and (A'), 8. The dia-
gram in Fig. 11 was constructed in this manner.
A perturbation scheme may also be used to gener-
ate particular sections of the global diagram as,
for example, that shown in Fig. 15, in which both
the A' triangle and several'. ' tie lines were ob-
tained by perturbation. Such perturbation schemes
are easy to write and quite efficient. The data
collected in Table III may be used to provide
starting points for perturbation calculations.

x, =y, =l/c. (4.23)

This "symmetrical" critical point (and its analogs
in Z«and Z~, ) is not given by Eqs. (4.7) and (4.8),
and the condition (4.9) must be modified to read

1~ (a+b —c)(1—2/c). (4.24)

A symmetrical tricritical point C rather than
critical point occurs at (4.23) provided

a =c (c + 2)/8(c —2),

and the fourth-order point D, occurs when

V =2+&40

(4.25)

(4.26)

is inserted in (4.25).' The D point is stable, but
global stability of the B and C points depends on
the values of a and c.

In type-II four-phase coexistence (see Sec. III C4
above), with the four phases disposed symmetri-
cally a.s in Fig. 9(a), all four phases lie on the
same binodal (4.21). The additional conditions
which insure the coexistence of these phases can
be taken as (4.16) and (4.17) with 2 everywhere
replaced by 3. [One does not need to consider
(4.18) because the difference of (4.17) and (4.18),
with 2 replaced by 3, vanishes as a consequence
of (4.21), and its analog with 1 replaced by 3,
being satisfied for the same c.] The latter may be
regarded as defining the value of a (=5) once a so-
lution to the former has been obtained. In partic-
ular, using the parametrization (4.22) for both

(x„y,) and (x„y,)—with, of course, different
choices of q —one obtains a single transcendental
equation which can be solved numerically.

In the limit in which phases one and three of
Fig. 9(a) coalesce, and consequently also two and

four, to form a B' point, the transcendental equa-

may not be globally stable. A convenient paramet-
ric representation of the solution of (4.21) for
fixed c can be written as

(4.22)

for 0&q &~.
A critical point occurs atq =1 or

(4.21) (o)
X X

(c)
Equation (4.21) for fixed c defines a "binodal"
curve in the composition triangle, Fig. 16(b); we
use quotation marks because the coexisting phases

FIG. 16. These drawings illustrate two types of two-
phase coexistence, (a) and (c), and binodal, (b), in the
symmetrical section ~~.
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tion simplifies and c may be obta. ined parametri-
cally in terms of q as a solution of

[c(q —1) —{q + 1) lnq]'

(lnq)'(q ' —1 —2q lnq)'
q(q —1 —lnq)'+(q —1-q lnq)'

There is no corresponding simplification when
phases three and four of Fig. 9{a) coalesce at a
BA.' point, and the values in Table III were ob-
tained by numerical solution of the transcendental
equation.

Another simyle case of two-yhase coexistence
in Z„ is that shown in Fig. 16(c), and given by the
formulas

j.
X3 y3$ X4 y4 j X3 P X4P

ln[2xg(l —2x,)] =(a --,'c)(4x, —1),

(4.28)

(4.29)

x, =y, =mg(i+A. ), y, =x, =m~(l —X). (4.30)

Also, since (4.28) must be satisfied, we can write

x, = y, = &(1+v), x, = y, =-,'(1 —v) (4.31)

with v another yarameter. Next the two equations
obtained by replacing 2 by 3, and then 2 by 4, in
(4.16) are written down in terms of I', X, and v

using the above parametrization. The difference
of these two equations can be solved exPlicitly for
A, as a function of r and v, and the solution in-
serted in the sum of the two equations, yieMing a
transcendental equation in r and v. This is solved
numerically for r with v fixed, and then 5 and c
are determined by (4.21) and (4.29), as functions
of the parameter v. The case v =0, in particular,
represents the situation in which phases three and
four coalesce and one has the BA' yoint at the
intersection of Q3A')„8 and Z„.

In summaxy, we see that various entities of
interest in the symmetrical section Z,& ean be
ot)tRined (Rt 18Rst pR1'Rnle'tl'lcRi. iy) wl'tll R't Illost
the numerical. solution of a single transcendental.
equation. Once a solution in Z„ is a.vailable, it
can be used as the starting point of a perturbation

to which one must (as usual) add a stability con-
dition. These equations may be used to find the
tricritical end point (CA)I as follows. The C point
is given by x, =y, =c ' in accordance with (4.23).
Setting xs=s -c in (4.29) and replacing a in this
equation by the right-hand side of (4.25), one ob-
tains a transcendental equation in c which ean be
solved to give the result in Table III.

Points of four-phase coexistence of type I in

Zgy, Rs sllowll ill Fig. V(d), 111Ry be obtained by
numerical solution of a single transcendental equa-
tion in the following manner, One introduces the
parametrization of (4.10) and (4.11):

ealeulation for entities outside Z,~, using the
procedures indicated in See. IV C.

E. Is the phase diagram complete?

All our numerical studies of specific system
phase diagrams and calculations of various other
features of the global phase diagram are con-
sistent with the material. presented above in See.
III. There remains the possibility that we have
overlooked some regions of A' or A' (or even A')
which lie on separate manifolds from those dis-
cussed in Sec. III. In the case of A. 3 or A. ', one
would expect the manifolds to be bounded by BA
or BA manifolds, respectively. In turn, BA and
BA.' manifolds cannot terminate in binary mix-
tures (at finite temperatures), and one might
expect to find C and CA manifolds, respectively,
on their boundaries.

Our numerical search for C points (Sec. IVA
and the Appendix) was nonperturbative and hence
capabl. e, in principle, of generating all. C points
on all manifolds. [Due to the choice of I and s
axes, (4.10) and (4.11), our technique does not
generate C points in Z„, but it does generate
the corresponding points in Z„and Z1, .] These
points were checked for global stability, and the
only CA points discovered were the three in Fig.
3(b). Of course, it is possible that we missed
some C points in the numerical search for CA
points in the stability cheek; in these matters
one cannot be absolutely certain. Nonetheless,
we are reasonably confident that the only mani-
folds of stabl. e C points are those displayed in
Figs. 3 and 4.

It is possible, of course, that a BA, manifoM
would only terminate at zero temperature and
never on a C manifold. This is not true of any
of the BA manifolds which we have investigated,
but there seems to be no argument which rules
it out in principle, and no very effective way to
search the parameter space to adequately test for
such a possibility. Ne calculated lines of B points
in a number of system phase diagrams and tested
these for global stability. The results were always
consistent with our expectations based on the
material presented in Sec. III, but the number
of cases investigated was too small. to constitute
anything approaching a thorough search. Also,
the global stability check in such eases is not
foolproof, since it requires a numerical. search
for zeros of functions, and sometimes the functions
are of a form which makes this search difficult.

%bile the possibilities just discussed cannot
be ruled out entirely, it is perhaps worth empha. -
sizing that the global phase diagram presented
in Sec. III does permit us to assign all the entities
we discovered by numerical investigation to ap-
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propriate manifolds of the expected" codimension
(making a suitable allowance for symmetry in

some cases), and these manifolds in turn have
appropriate entities on their boundaries. This
overall consistency is what gives us a fair amount
of confidence that our results are, in fact, cor-
rect.

V. THREE-COMPONENT MODEL AND REAL SYSTEMS

A. Systems without symmetry breaking

When considering applications of the three-
component model phase diagram to real systems,
one must exercise judgment in deciding which
features of the model should be taken seriously
and which are completely artificial. In this con-
nection, it is necessary to distinguish phase tran-
sitions involving symmetry breaking (discussed
in Sec. VB below) from those in which symmetry
breaking plays no essential role, as exemplified
by ordinary liquid mixtures.

Consider, for example, a three-component liquid
mixture at constant pressure. As there are three
adjustable field variabl. es —three thermodynamic
degrees of freedom —one might hope that its phase
diagram would correspond to some three-dimen-
sional. section of the five-dimensional global phase
diagram of the three-component model. It is,
of course, unrealistic to hope for a strict nu-
merical correspondence between the phase dia-
grams, but one might hope for a topological cor-
respondence in the sense that the connectivity
of n-phase regions, critical. manifolds, etc. , is
given correctly, provided the section is properly
chosen. Perhaps other qualitative features (as,
for example, two mainfolds meeting in a cusp)
would be correctly predicted by the model.

However, one cannot assume that the appropriate
section will necessarily correspond to one ob-
tained by fixing a, b, and c in the model, to what
we have called a "system phase diagram" in Sec.
III. That is, the appropriate section need not
project as a single point in Fig. 4, but might cor-
respond to a "movable point" whose position de-
pends on the temperature and chemical potentials
of the real. system. A chemical potential for the
real. system might be some nonlinear combination
of the five field variables of the model. Naturally,
one hopes that in many applications the chemical
potentia. ls of the real ternary system (only two
of which are independent if the pressure is fixed)
will correspond to those of the model in a first
approximation, as this makes it easier to con-
struct an analogy between the two. Perhaps it
is worth emphasizing that the sections being con-
sidered are smooth surfaces in the field space
of the model. Sections with some densities held

fixed, or which are smooth surfaces in some
space of mixed field and density variables, will
in general not resemble the phase diagram of a
system with less than five degrees of freedom.

If the pressure of the three-component mixture
is varied, or, alternatively, if the pressure is
held constant and an additional component with
chemical properties similar to one of those al-
ready present is added to the mixture, one has
a system with four degrees of freedom which
might correspond to a four-dimensional section
of the gI.obal phase diagram of the three-component
model. Such a section would project, at the very
least, as a line in Fig. 4. This raises the in-
teresting possibility that certain topological fea-
tures of the global diagram might be tested ex-

perimentalal.

l.y.
In this connection it is worth pointing out certain

features of the global phase diagram which are
decidedly artificial in terms of liquid mixtures.
The fact that certain critical lines, etc. , extend
to zero temperature in the model is clearly arti-
ficial. Ordinary mixtures always freeze at suf-
ficiently low temperatures, and the three-com-
ponent model says nothing at all about the solid
phases. Furthermore, the presence of fourth-
order critical points D, Fig. 3(a), is artificial,
as these points have codimension 6, i.e., should
not be observed unless a system has six field
variables. " They appear in the global phase dia-
gram of the three-component model because of
a symmetry. Likewise a one-dimensional B'
manifold (B' has codimension 5) terminating the
(A')» region is a consequence of symmetry. Hence
in a real system with five field variables one
cannot expect three C lines and a B' line to come
together at a D point as in Fig. 3, unless the sys-
tem has an appropriate symmetry which is absent
in ordinary liquid mixtures.

By contrast, all. the entities in the "shield" re-
gion in Fig. 3(b) have appropriate codimension,
and thus such a region might well. occur in a phase
diagram for a suitable liquid mixture. Of course,
one would not expect the threefold symmetry of
the diagram in Fig. 3(b); for a reaL system such
a projection would be distorted, but (we expect)
connected together in the same fashion with three
tricritical lines, a four-phase region, etc.

It is, of course, not impossible that a com-
pletely different behavior will be observed in real.
mixtures in the vicinity of what corresponds to
the "shield" region in the model. . For example,
one could imagine the three tricritical lines simply
converging at a single higher-order critical point,
as shown in Fig. 1.7. There is some evidence"
that this is the case for the lattice gas, Eq. (2.16)
or (2.23), in two dimensions, provided the sta-
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FIG. 17. Possible modification of the "shield" region,
Fig. 3(b), with a special tricritical. point where the three
C manifolds come together.

tistics are treated properly and not in a mean-
field approximation. An experimental search for
the "shield" region in real mixtures might prove
interesting.

B. Systems with symmetry breaking

In many applications of the three-component
model, one is concerned with phase transitions
in which the symmetry group of the system changes
as the temperature or pressure, etc. , is varied.
Antiferromagnetism and order-disorder tran-
sitions in alloys are two examples. In such situa-
tions it is usually one of the symmetrical sections
of the global phase diagram which is of interest,
although if symmetry-breaking thermodynamic
variables (such as a magnetic field in the case
of ferromagnets) are present, one may also be
concerned with what happens outside the sym-
metrical section.

Let us consider the section Z„ in which

a=b, (5 1)

This contains a number of interesting features
in the principal. energy triangle, as first pointed
out by Meijering, ' and nothing very interesting
in the other energy triangles. The presence of
D and a one-dimensional B' manifold, see Fig. 8,
is not an artificial feature of the model in this
case, in contrast to the situation with liquid mix-
tures.

We might expect the phase diagram for a real
system with one thermodynamic degree of free-
dom (say the temperature) to correspond to a
one-dimensional section of Z„. However, it need
not correspond to constant c, i.e., the line need
not appear as a vertical. , or even as a straight,
projection in Fig. 8. Similar remarks apply in
the case of a system with additional. thermody-
namic variables (assuming they do not, of them-

selves, break the symmetry). One should ex-
pect qualitative rather than quantitative agree-
ment.

Features of particular interest in the Z„sec-
tion are the fourth-order point D and the tricritical
end point CA. , neither of which has yet been ob-
served experimentally in real systems. There
is some indication" that 8' and BA.' points may
occur in the antiferromagnet FeBr„and it may
be worthwhile searching for a system in which
an additional parameter can be varied so as to
make such a pair of points coalesce in a D point.
The CA point occurs at one cusp of the shield
region in Fig. 3(b). Since there is some question
as to whether the shield will be observed in real
liquid mixtures (see Sec. VA above), it is also
of some. interest to know whether such a CA will
actually occur in a system with symmetry break-
ing.

APPENDIX: EQUATION FOR TRICRITICAL POINTS

With r, s, and A defined in (4.10) and (4.11),
let

h(r, s; A) =G(r, s) -b, s =g, (r)+k(r, X), (Al)

,c r'X' ——,(a——b) r(l —r)A, —hrh, .

n =~2(a+b - 2c).

(AS)

(A4)

We shall assume throughout the following dis-
cussing that A is fixed. The function h, (4.5), is
the minimum of h with respect to s or, equivalent-
ly, with respect to ~, at a fixed value of r. Thus
the derivatives in (4.1) are equal to the corres-
ponding derivatives of h along the curve

=k), ——0, (A5)

where subscripts r and ~ on k denote the corres™
ponding partial derivatives.

If d/dr denotes the derivative with respect to
r along the curve (A5), we may write

d h d h d g d k1
dr dr dr dr (A6)

where the derivatives of g, are easily written
down, whereas those of k have the form

dk dA,—=k +k —=k
dr " ' dr

(A7)

where

g„(r) = [2(a+5) —In2]r +r lnr+(1-r) ln(1-r) qr', -
(A2)

k(r, &) = ,'r ln(1 —A.'—)+ 2rA [ ln(l + A) —ln(1 —X)]
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d'4 dA.
2 =A'„„+k„g—

etc. The derivatives dA/dr, . d'A/dr. ', etc. , may
be eliminated from d b/dr by using the equations
(n = 1, 2, etc. )

with t„ for n = 1, 2, 3, 4 defined by

t„=,'(n -—1)in""[(1-X)"-(-1-&)"], (A14)

obtained by differentiating (A5).
If we introduce the variables

(A9)

y =-.'[(1+x)-'+ (1 —~)-'- c7].

(A15)

n =cr, g =-,'(a —b)r,

it turns out that

d b f
y+ m + m-1y

(A10)

(A11)

It is straightforward to eliminate 8 and X from
the set of equations (A12) so as to obtain

9t '(v —u ') + 20tw(u +w') + 10(1—u )(u'+w')

=20w't'[u(w —1 —t) wt]. (-A16)

ft'=1-f, =w,

R' = —(1+—,
' f,) = —,

' tX—u, (A12)

ft'=1--,'f, = v ——", (u -w)X+ g(2t -w+ 1)X',

where the f depend on A., c7 and E, but have no
explicit & dependence. Using this result, one can
rewrite (4.1) [which is equivalent to setting (A6)
equal to zero] for m =2, 4, and 5 in the form

This equation is solved numerically for 0 for a
fixed value of ~. The solution fixes the values
of w, t, u, and v, and inserting these in (A12)
yields R (and thus r) and X. From X and 0 one
can compute Q and e, and from these n and f,
and thus c and a —b. Finally, (A6) for m =2 is
equivalent to

where
2r)r = 1. +ft+2Xg --,'a'p —~'/P, (A17)

(A13)

which determines 0 and, by (A4), a+b. The value
of 4 may be obtained from (A5). Consequently,
tricritical points may be generated parametrically
by choosing a value of A., solving (A16), and calculat-
ing the corresponding values of x, a, 5, and c. There
may, of course, be more than one solution to (A16)
for a given ~.
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