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Successive phase transformations in K,Se04 at T; = 130 K and T, = 93 K were studied by the neutron-

scattering technique. The superlattice reflections in the intermediate phase were found to be incommensurate

with the lattice periodicity. The wave vector characterizing the reflections is cf~ = (1—8)R /3 with 8 = O.OI at

122.5 K. The deviation 8 decreases with decreasing temperature with an apparently discontinuous jump to
zero at T,. Below this temperature, the crystal remains commensurate and is known to be ferroelectric. The
incommensurate-commensurate transition and the simultaneous occurrence of the commensurate phase and

the spontaneous polarization are discussed using a Landau-type expansion of the free energy in which a term

proportional to Q'@~)P, (q3&) plays an essential role in driving the incommensurate-commensurate phase

transformation and in inducing the spontaneous polarization. Here, Qg~) is the amplitude of the primary

atomic displacements with wave vector cf~ and P,g,~) is the polarization wave with wave vector

g3z
——38(I /3) and becomes the macroscopic polarization below T, . Above T, , a X, optic-phonon branch along

($,0,0) shows a striking softening and co,.g) for g- (1/3,0,0) tends to zero at T, . The softening results from a
temperature-dependent decrease of the interlayer forces with ranges a/2 and a (a is one unit-cell length along

the a axis) in the presence of strong and persisting forces with a range 3a/2. The intensities of the soft

phonon were measured about different reciprocal-lattice points and were used to determine the nature of the
soft-phonon mode and suggest a coupled translation of potassium ions with rotational motion of Se04 groups
to be the origin of the lattice instability.

I. INTRODUCTION

The concept of improper ferroelectrics" intro-
duced independently by several authors in various
forms has been applied successfully to understand
the properties of many materials and the scope
of this concept is still expanding. The variety of
applications orignates from the differences in the
primary order parameters and the different forms
of the interaction terms through which the spon-
taneous polarization P is induced.

In the present paper we are going to report neu-
tron- scattering studies of potassium selenate,
K,SeO„which reveals a new type of improper fer-
roelectric in which the primary order parameter
is a lattice distortion Q, with wave vector q
= (3,0, 0) and the interaction term is

E„,=B(Q, +Q ~)Pg.

Moreover, something beyond a simple extension
and application of the existing theories on improper
ferroelectrics is required in order to understand
the phase transitions in this substance. We will
see that the nature of the lattice instability in this
compound leads to a phase which is incommensur-
ate with the periodicity of the lattice and that the
improper ferroelectric phase transformation oc-
curs simultaneously with the "lock-in" transforma-
tion to a phase commensurate with the underlying
lattice periodicity.

The incommensurate structural phase transfor-
mation is another current problem in the study of
phase transitions. The significance of this type of
phase transformation was emphasized recently in
the layered transition-metal chalcogenides' in
which the two-dimensional charge-density wave
instability plays an essential role. More complic-
ated successive phase changes between two com-
mensurate phases through an intervening incom-
mensurate phase were observed' in TTF-TCNQ
(tetrathiafulvalene-tetracyanoquinodimethane) quite
recently. The existence of incommensurate phases
and transformations to commensurate phases have
been already known in a few ferroelectrics such
as NaNO„' and thiourea. Therefore, the detailed
neutron-scattering studies of the lattice instability
in K,SeO, will disclose an interesting type of the
structural phase transition in which both the im-
proper ferroelectric phase change and the incom-
mensurate-commensurate phase change are com-
bined together.

Potassium selenate was found by Aiki et al."«
undergo two successive phase transformations at
T, =129.5 K and T, = 93 K, the latter being a ferro-
electric phase transformation with the spontaneous
polarization along the c axis. The three phases
separated by these two transformation tempera-
tures will be designated as P (paraelectric), I
(intermediate or incommensurate, as it will turn
out), and E (ferroelectric) phases.
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FIG. 1. Schematic structure of the P phase K2Se04.
Two levels along the c direction at heights 4 and ~ are
shown separately. + and K& are symmetrically non-
equivalent potassium ions. Numbering identifies ions
or groups.

The crystal structure of the P-phase' is isomor-
phous with P-K,SO, with the orthorhombic space
group Pnam and is shown in Fig. 1. The struc-
ture is readily understood by considering that a
unit cell consists of two levels along the c direc-
tion at heights 4 and —,

' of c. Each of the levels is
shown separately in the figure. The unit cell con-
tains four formula units, two sets of symmetrical-
ly nonequivalent potassium ions, K and K~, and
four SeO, groups, each of which we will treat as a
single entity.

Below T„the x-ray diffraction' '" exhibited
superlattice reflections which were characterized
by the wave vector qy/9 9a*,where a* isa vector
reciprocal to a, indicating that the superlattice
structure has the unit-cell dimension three times
longer along the a axis in the I phase than that in
the P phase. The crystal structure of the I phase
has been studied" by one of the present authors
and others, who tentatively assigned Pna2, as the
space group of the structure. Although this is a
polar space group no spontaneous polarization
was observed in the I phase, which leads one to
conclude that the polarization is not reversible or
that it is accidentally zero. The dielectric prop-
erties of the crystal above and below the second
transformation temperature, T„were studied by
Aiki et al.'" They were found to be quite unusual
in that the anomaly in the dielectric constant in
the vicinity of T, is small with a small Curie con-

stant, 30 K. The spontaneous polarization below

T, is very small: 6.5 && 10 ' C/cm' at 80 K, though
it exhibits a first-order jump. Thermal hystere-
sis was observed in the dielectric constant and
spontaneous polarization. Although no structure
determination has been attempted in the F-phase,
it has been believed"'" that the crystal has an al-
most similar structure with the same ortho-
rhombic space group Pna2, as the I phase, though
Aiki et al.' suggested the monoclinic space group
P2, in order to explain splitting observed in

ESR spectra. Supposing the space group to
be Pna2„we have the conceptual diff icul-
ty of explaining how the spontaneous polarization
develops by passing through the phase transition
where no symmetry element is lost. If the space
group were P2„onewould have to explain the de-
velopment of the spontaneous polarization along
the c axis by losing symmetry elements perpen-
dicular to the a and b axes.

It is the purpose of the present neutron-scatter-
ing study to resolve this puzzling problem by mea-
suring the structural and dynamical properties of
the crystal in the three phases. We have found
the right key to this problem lies in the incom-
mensurately moderated structure in the I phase.
We observed that the satellite reflections are not
characterized by the wave vector q, /, but by q,
= —,'(1 —5)K' with & changing with temperature be-
tween T, and T, and also that the deviation ~ be-
comes zero at T, and remains zero below T,. This
in principle removes the conceptual difficulty in
the symmetry. There is a change in the symmetry
at T,. The remaining problem is to relate the oc-
currence of the spontaneous polarization to the in-
commensurate- commensurate phase transf orma-
tion. For this purpose we have developed a Landau
theory paying particular attention to the effect of
higher-order coupling terms similar to those of
Eg. (1). Observations of the symmetry nature of
the soft mode above T, substantiate this argument.

The dynamical fluctuations in the lattice in the
vicinity of T, have been investigated with x-ray
scattering by Terauchi et al." They observed
temperature-dependent thermal diffuse scattering
around (-„0,4) in reciprocal space and attributed
it to the softening of a transverse optic phonon
polarized along the c direction. The present neu-
tron-scattering work confirms the existence of
this soft phonon which belongs to the Z, optic
branch. The dispersion relation shows a striking
softening around q, /, . Force-constant analysis
suggests the origin of the lattice instability. An
analysis of the intensities of the soft phonon mea-
sured at various points in the reciprocal lattice
reveals the nature of the atomic displacements of
the soft phonon.
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FIG. 2. [010] zone scattering plane in the reciprocal
lattice of K2Se04. Open circles indicate the reciprocal-
lattice points in the P phase and X's locate the super-
lattice reflections found below T&. Arrows indicate
typical scans.

II. EXPERIMENTAL

The single crystal, kindly provided by the
Kyushu University group, was grown from the sat-
urated aqueous solution by slow evaporation at
50 C. The volume of the crystal is about 4 cm'.
The crystal was mounted in an aluminum can filled
with He gas and placed in a Cryogenics Associates
CT-14 flow cryostat. The temperature was con-
trolled within +0.01 K. The mosaic spread of the
crystal is very small (s10') and was not affected
by the small cracks which developed on cycling
through the phase transition several times.

The format of this paper is as follows. All the
experimental details are given in Sec.G. Observa-
tions of incommensurate satellite reflections and
the transformation to the commensurate phase
are presented in Sec. III. In Sec. IV we give the
experimental results of lattice instability above T, .
This consists of three parts: the first part gives
results on the temperature dependence of the dis-
persion relations of lattice vibrations; in Sec. IVB
a force-constant analysis of the soft-phonon branch
is given. Section IV C is concerned with the critical
scattering in the vicinity of T, Theoretical mat-
ters are discussed in Secs. V and VII. In Sec. V
the group-theoretical analysis of this type of struc-
ture is presented in order to help the analyses in
the following two sections. In Sec. VII we develop
a Landau theory of induced ferroelectricity. In
Sec. VI we present the results of the dynamical
structure analysis of the soft mode. Finally in
Sec. VIII we will discuss the implication of the
present results in a more general context.

The neutron-scattering experiments were per-
formed on triple-axis spectrometers at the Brook-
haven High Flux Beam Reactor. The majority of
scans were made in the constant-Q mode with fixed
incident neutron energies of 13.5 meV. A pyrolytic
graphite filter was used to reduce the higher-order
neutrons from the monochromator. Five meV
neutrons with a Be filter were used for high-re-
solution studies. Horizontal collimation of 10 or
20 min was used depending on the resolution and
intensity requirements. Collimation used is indic-
ated in most of the following figures by four suc-
cessive numbers connected with dashes. They in-
dicate the in-pile, monochromator-to-sample,
sample- to- analyzer, and analyzer- to- detector
collimation, respectively.

All the scattering measurements were carried
out in the [010]zone which is shown in Fig. 2.
Open circles indicate the reciprocal-lattice points
in the P phase and x's indicate the points where
the satellite reflections appear below T, .

Reflections and vectors in the reciprocal space
are represented by reference to their respective
unit cell, i.e. , in the P phase a'= 2v/a and c»
= 2&lc with a =7.588 A and c = 5.973 A at 130 K;
a* is replaced by a~ = 3a~ in the I and E phases.
Accordingly, the (h Ol) reflection in the P phase
corresponds to the (3h 0 l) reflection in the I and
E phases.

III. INCOMMENSURATE SATELLITE REFLECTIONS

Satellite reflections of (3h +1 0l) type were sur-
veyed at 110 K and precise measurements reveal-
ed a slight deviation of peak positions in the re-
ciprocal space from the commensurate points
where the superlattice reflections were observed
by x- ray measurements. "'"'" The incommensur-
ate satellite reflections are characterized by a
wave vector q, =-,'(1 —5)K» and &=0.045 at 110 K.
Figure 3 shows profiles of the elastic scattering
scanned along the a» axis (scan B in Fig. 2) at
several temperatures between T, and T, . As is
clear in this figure the deviation & changes with
temperature. Figure 4 summarizes the tempera-
ture dependence of ~. The deviation ~ decreases
with decreasing temperature and disappears dis-
continuously at T,. Below this temperature the
crystal remains commensurate. We can, there-
fore, conclude that the first phase transition at
T, is the transformation to an incommensurate
structure and the second transition at T, is an in-
commensurate-to-commensurate phase transf or-
m ation.

Also clearly visible in Fig. 3 are weaker second-
ary peaks at wave vector q„=—,'(1+2&)a». Similsr
features were recently observed' in the incommen-
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FIG. 4. Temperature dependence of 6. Those ob-
tained from critical scattering peaks above T» are also
shown. Solid line is calculated by the Eq. (48) where the
coefficient g~& is set equal to 0.025 and the superlattice
reflection intensity shown in Fig. 5 as a function of tem-
perature is used as q&. Dashed line is calculated by the
Eq. (50) with y= 0.002 and T» =127.5 K. For both cases
6p is taken to be 0.07.
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FIG. 3. Profiles of the elastic scattering scanned
along [100) showing the incommensurate satellite
reflection peaks at q& = 3 (1 —6)a* and secondary peaks
at q2& = 3 (1—25)a*. Open circles indicate multiplication
by 50.

surate phase of 2H- TaSe, . As discussed in Ref.
3, these "26" peaks can be interpreted either as
diffraction harmonic peaks arising from distor-
tions with wave vector q, or from secondary dis-
tortions with wave vector q„.The & vs T curve in
Fig. 4 is probably slightly convex and thus of op-
posite curvature to that observed in 2H- TaSe, .'

Intensities of a satellite reflection ("5"peak) and
a representative fundamental reflection were mea-
sured as functions of temperature and the results
are shown in Fig. 5. The intensity of the satellite
reflection was measured allowing for the change of
the peak positions with temperature. The intensity
is proportional to (T, —T)0 8" down to 15 K below
T, . In Sec. VII it will be shown that the intensity
of the satellite reflections are proportional to the
square of the modulus of the order parameter for
the I phase. The inset to Fig. 5 indicates detailed
temperature dependence of the intensity at fixed
points in Q space. (3.93,0, 2) is a point where a
satellite reflection appears just below T, and
(4, 0, 2) is a commensurate point. At (3.8, 0, 2) the
intensity increases with decreasing temperature
toward T, and then intensity starts to decrease
after T, is passed. This behavior is typical of the
critical scattering. From these measurements
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FIG. 5. Intensities of a fundamental reflection (601)
and a satellite reflection {4—4 02) vs temperature. In-
set shows details of temperature change of intensities
at a few fixed points around a satellite point {4—&, 0, 2).

the transition temperature T, has been determined
to be 127.5 +0.5 K. The satellite intensity evolves
continuously at T, indicating the transition is of
second order. The intensity of the fundamental
Bragg reflection does not change on passing through
T, . Also every effort to see discontinuous jump
in Bragg intensities at T, has failed. Instead a
broad hysteresis-like behavior was observed as
shown in Fig. 5. Aiki et al.'" have observed hys-
teresis in the spontaneous polarization and di-
electric constant which changes with the rate of
temperature change and with the specimen. The
change in intensity of the fundamental reflection
above and below T„alsoshown in Fig. 5, may be
explained by the extinction effect due to the devel-
opment of domains.
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FIG. 6. Dispersion relations of transverse modes
propagating in the [100] direction. Parts of the dis-
persion relations indicated by solid circles are almost
temperature independent.

A. Phonon dispersion relations

Some preliminary measurements disclosed the
existence of a strongly temperature-dependent ex-
citation with the wave vector q=-(-,', 0, 0). The
strongest scattering within the reach of 13.5 meV
incident neutrons was observed at (—, , 0, 4) where
the satellite reflection below T, was also the
strongest of the reflections within the reach. The
excitation energy was traced as a function of q
and the whole branch from the zone center to the
zone boundary was observed at several tempera-
tures. The results are shown in Fig. 6. The
branch is labeled of Z, symmetry as is established
later in Sec. V. The dispersion relation of the
transverse Z3 acoustic phonon and a part of a
transverse optic phonon branch (perhaps of Z,
symmetry) are also shown in the figure. They
showed strong intensity about (0,0, 4). Parts of the
dispersion relations indicated by solid circles are
almost temperature independent. The Z, branch
is degenerate with the Z3 acoustic branch at the
zone boundary, and shows a dispersion relation
which is almost flat and softens as a whole at high
temperatures. As the transition temperature T, is
approached the softening becomes conspicuous
particularly around qy/3 but extends over wide
range in q and even to the part of the TA branch

IV. LATTICE INSTABILITY ABOVE T,.

The lattice instability manifests itself in temper-
ature-dependent scattering of neutrons above T,.
The nature of the scattering was studied in two

temperature ranges. At temperatures not close
to T,. we found a phonon mode with a temperature-
dependent frequency at about q = (-,",0, 0) and its
dispersion relation was studied. Then at temper-
atures just above T, the critical scattering around
(-,', 0, 0) was studied as a function of q, &o, and T.

[&~(q)]' = [~~(q.)]'+Pl(e. q.)'—+ 0,'e,'+ P.'e!,
gives

P', =110 mev'A',

P,' = 570 me V' A', h &o (q,) = 0.17 me V,

where q, is taken to be (0.3, 0, 0). This anisotropy
implies that the softening of the frequency is re-
stricted to a kind of motion in which planes or lay-
ers perpendicular to a take part as a whole. Lat-
tice vibrations in which phases of atomic motion
are not uniform on the planes cost higher energy.

B. Interlayer force constant analysis

The degeneracy of the Z, optic branch with the
+3 acoustic phonon and the coinc idence of the ab-
solute value of the slope at the zone boundary es-
tablish that the Z, branch is an extension of the Z3

10—
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FIG. 7. Squares of the phonon energies at the zone
center, qr-—(0, 0, 0) at q6 = (0.31,0, 0) and at the zone
boundary, qx ——(0.5, 0, 0) as a function of temperature.

near zone boundary. The squares of the phonon

energies R&o(q) as measured by the position of the

peak in the one-phonon scattering at the zone cen-
ter, qr =(0, 0, 0), at q, =(0.31,0, 0) and at the zone

boundary, q„=(0.5, 0, 0), are plotted in Fig. 7 as a
function of temperature. Near T,. the one phonon

scattering of the soft phonon may peak at an energy
considerably shifted from the real part of the pho-
non self-energy ff&u, (q,) due to damping effects.
The [R~,(q, )]' vs T curve is thus likely to be more
nearly linear than indicated by the figure. The dis-
persion relation in the direction perpendicular to
Z is measured by fixing the x component of the
wave vector to 0.31a*. The results shown in Fig.
8 indicate that the softening is confined to a more
restricted region in q space in this direction. The
fitting of the dispersion surface measured at 130 K
to the expression
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TABLE I. Interlayer force constants. These were
determined by the least-square fitting of Eq. (4) to the
dispersion curves in the extended zone shown in Fig. 9.
Errors in the values are about 0.20 meV .
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—,a+&b is a fractional translation. (This is similar
to the case of phonons propagating along the c axis
of the hexagonal close-packed lattice. ) Then since
the dispersion relation is periodic in this extended
zone, we can characterize the dispersion relation
by the Fourier series,

FIG. 8. Dispersion relation of the soft mode along the
line passing through (0.31,0, 0) in the [001] direction.

acoustic branch in an extended zone which is dou-
bled along the a* axis. Figure 9 shows the Z, and

Z, branches in the extended zone scheme. This
extended zone corresponds to the periodicity of —,'a
along a in the lattice space. The glide plane
$o, ~

2 a+2 bf assures this pseudoperiodicity for the
lattice vibration propagating along a, where a„is
the reflection in the plane normal to the y axis and

[8u&($)]' = Q F„(1—cos nw&),

in which $ is the x component of the wave vector in
the reduced unit and the coefficients E„correspond
to fictitious effective force constants coupling lay-
ers in the crystal separated by a distance equal to
—,
' na. Expression (4) with six terms was least-
square-fitted to the dispersion relations at each
temperature. Sets of the force constants obtained
are given in Table I and are shown in Fig. 10 as
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q ( R EOUCE 0 UNI T )
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FIG. 9. Dispersion relation of the Z2 soft mode along
with the Z3 acoustic mode plotted in an extended zone
which is doubled along the a axis. Z.B. indicates the
original zone boundary. Solid lines show the results of
fitting of Eq. (4) to the data. Fictitious effective force
constants, E„,coupling layers in the crystal separated
by a distance equal to zna are derived from the fitting.
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FIG. 10. Temperature dependence of the nearest-,
second-, and third-neighbor interlayer force constants.
Force constants beyond z = 3 are insignificant. Decrease
of both E, and E2 in the presence of a strong and per-
sisting force E3 results in the softening of phonon energy
at about (3, 0, 0).
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cy given by 5 „.In Sec. VII we will see that high-
er-order terms in a free-energy expansion ("um-
klapp" terms) are responsible for this increasing
tendency toward commensurability.
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FIG. 11. Temperature change of the minimum position
of the fitted dispersion curve. Deviation of the minimum
position from if&y3= ~ a* is plotted in units of a a* as a
function of temperature. This "dynamical" 6 is extrap-
olated to the I phase and is compared with the "static"
6 obtained from the peak position of the superlattice re-
flections (Fig. 4). Discrepancy suggests some factor
pushing the "static" 6 towards zero (a commensurate
phase).

functions of T. The force constants beyond n =3
are insignificant and are not shown in the figure.
The fitted dispersion curves are shown in Fig. 9.
The softening of the dispersion relation is well de-
scribed by the linear temperature-dependence of
the force constants. The force constant between
nearest-neighbor layers, F„decreases linearly
with decreasing temperature and changes its sign
at about 175 K. F, is larger than F, and also de-
creases as the temperature is lowered. In contrast
the force constant between the third-neighbor lay-
er, E„is strong and increases only slightly with
decreasing temperature. At temperatures just
above T„F,becomes the predominant component.
Note that E, alone produces a phonon instability at

3 Thus the softening of the Z, phonon in this
crystal results from the temperature-dependent
decrease of both F, and E, in the presence of a
strong and persisting force with a range —,'a with
magnitude F,.

The minimum of the dispersion curve defines the
wave vector q „

for which the lattice vibration is
most unstable. This was calculated from d&o'(q)/

dq = 0 in which iu'(g) is given by the expression (4}
with the first three dominant terms with the linear
temperature-dependence of the force constants
substituted in the expression. The result is shown
in Fig. 11, where the deviation of the minimum
point from qg/3 ~

g
is plotted in units of 3a*. In

the figure comparison is made between 5 „extra-
polated into I phase and 0, , obtained from the
satellite reflections and shown in Fig. 4. At the
second-order transition temperature T, both devia-
tions presumably coincide. This disagreement is at-
tributable to errors in estimating 5 „.Below T,
6, , appreciably departs from the intrinsic tenden-

C. Critical scattering
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FIG. 12. Energy profiles of the critical scattering at
(3,0, 2). Incoherent scattering has been subtracted.
Inset shows the high resolution measurement of the
central part of the scattering at g. .31,0, 2).

X-ray scattering" has revealed critical scatter-
ing around qg/3 just above T, . The strength of the
neutron-scattering method is to disclose the ener-
gy dependence of this scattering. The energy pro-
files of the scattering were measured at (-,', 0, 2) at
three temperatures above T, and are shown in Fig.
12 after subtracting the incoherent elastic scatter-
ing. At high temperature (T a 145 K} the scatter-
ing consists of well-defined phonon sidebands. As
the transformation temperature is approached
from above, the phonon sidebands disappear and
the critical scattering peaks at E =0. In between
there is weak evidence for a three-peak structure
at 137 K. The unusual width in the wings of the en-
ergy profile at 130 K also suggests the presence of
more than one relaxation time. A high resolution
scan of the central part of the scattering shown in
the inset to Fig. 12 revealed no detectable energy
width. For convenience's sake the spectra will be
considered in the following to consist of the sharp
central peak region and the residual phononlike
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ues of 6 of this critical scattering have already
been shown in Fig. 4. Although they have larger
errors compared with those for the superlattice
reflections, they seem to change continuously
through T, The E =0 intensity at a fixed point in
the reciprocal lattice does not follow linear I ' vs
T nor linear I ' ' vs T relations. According to the
phenomenological formula" which has been used
with some success to explain the three peak struc-
ture in SrTiO, and other materials, the intensities
of the central peak approximately change as (T
—T, )

' and the total intensity as (T —T, ) '. The E
=0 neutron scattering which consists of the total
central peak intensity and small fraction of phonon
components does not satisfy this first sum rule
adequately. The diffuse scattering intensity ob-
tained by the x-ray method, "however, changes
like (T —T;) ' because the total phonon plus central
peak intensity is observed in this case.

V. SYMMETRY ANALYSIS OF THE NORMAL MODES

FIG. 13. E= 0 scattering distribution around (4&, 0, 2)
at 130 K. Scattering peaks at an incommensurate posi-
tion along a+ axis. FWHM's are 0.064 A along a* and
0.048 A. ~ along 8'*.

part. But any further attempts have not been made
to characterize the central peak.

Figure 13 shows the E =0 scattering distribution
around ( —', , 0, 2) at 130 K (scans B and C in Fig. 2}.
The scattering peaks at an incommensurate posi-
tion along a* but precisely along the c* axis. The
distribution is somewhat anisotropic, the FWHM
(full width at haU maximum) being 0.064 A ' along
a* and 0.048 A ' along c* at 130 K. This E = 0 neu-
tron-scattering distribution differs markedly from
the x-ray diffuse scattering, "which consists of
diffuse streaks extending from q=O to the zone
boundary along a*, but very narrow (FWHM of
0.006 A ' at T = T, +2K)." The disagreement re-
sults from the different energy sensitivity of the
methods. The E=0 neutron scattering sees in-
tensity which falls within a finite energy resolution
around E=0, while the x-ray method observes an
integrated intensity of whole spectrum. Near T;
the E=O neutron scattering gives a distribution of
the central peak which is confined in a fairly nar-
row region around q, . Qn the other hand, the criti-
cal scattering observed by x rays reflects the ani-
sotropy of the soft phonon dispersion as given in
(2).

Figure 14 shows the E =0 scattering measured at
several temperatures along two perpendicular di-
rections (B and C in Fig. 2) with higher resolution.
Peak positions of ($, 0, 2) distribution tend to shift
to smaller q~ as temperature decreases. The val-

I I

(&,0,2)
E=om

EI 13~ eoo-
IO

400-
O
O
Z0
K~ 200-

I I

129K
I I

129K
(1.31,0,C )

E =omeV

I
37

OO

i 145K i

I.I 1.2 1.3 1.4 15 1.9 2.0 2.1

g (reduced unit) ((reduced unit)

FIG. 14. E= 0 scattering scans along the a* and 6'*
axes at several temperatures.

The purposes of this section are: (a) to establish
the relationship between changes in the crystal
space group symmetry at the phase transformation
and the soft mode driving the phase changes and;
(b} to derive the symmetry-adopted eigenvectors of
the soft mode which are required in order to carry
out the dynamical structure analysis in Sec. VI.
The unit cell of potassium selenate above T, con-
tains four formula units, each of which consists of
seven atoms. There are, therefore, 84 normal
modes for each q. It is, however, reasonable to
neglect the internal-vibrational degrees of free-
dom in the SeO, groups for our present purposes.
Then we have 48 degrees of freedom, 18 of which
are rotational motions of SeQ4 groups.

Symmetry elements of the space group Pram-D,"„
are given in Table II. %e restrict our analysis to
q„=(0,0, 0), qc=(q„0,0), and qx -—(0.5, 0, 0). The
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TABLE II. Symmetry operation of the space group
D2q-Pnam. Transformations have been made on the or-
iginal definitions given by Kovalev (Ref. i6) and the In-
ternational Tables (Ref. i7) which adopt different setting
of axes.

r belongs to Z, .
The symmetry-adopted eigenvectors which trans-

form according to Z, are

s, =(T„0,0, 0), sR=(T„0,0, 0), s3=(0,T„0,0),

Kovalev
(Ref. i6)

h25

h28

h27

h28

Seitz

{c2.12a+ 2b+-.'c}

{c2,1-.'a+ 2b)

{C2.1 ac)

{flo)

((r, ~ ,'a+-,'b—+-,'c)
{a,l2a+ 2b)

{ag ~-,'c ]

International Tables
(Ref. i7)

1 1 12+X, z —P, z —Z

1 1
2 X2 2+3 2Z

1
&,g, 2 +Z

g, g, Z

1 1 1
2 —&2 2+ J~ Z+Z
1 12+X, 2 —P, Z

1
X, g, z~Z

s, = (0, T„Q,0}, s, = (0, 0, T„O), s, = (0, 0, T„O},
s, =(O, O, O, R',), s, =(O, O, O, R*,), s, =(0, 0, 0, R,'),

s„=(0, 0, 0, R;),

where each of the four components is a column
vector of 12 components representing the transla-
tional motions of K ions, K~ ions, and SeO, groups
and the rotational motions of the Se04 groups, re-
spectively. Translational component vectors T,
and T, are defined as

T, = 2(001, 00- 1, 00- 1,001),

T, = 2 (001, 00 —1, 001, 00 —1),

TABLE III. Irreducible representation of the group at
z: (q, o, o).

{c2xl2a+2b+ 2c) {a,l2a+ ~b}

Zl
Z2

Z3

Z4

i
-i
-i

i
—i

i

irreducible representations of the point group of q~
are given in Table III, which is taken from the ta-
ble compiled by Kovalev" with a change of notation
of the representations for convenience.

The decomposition of representations in 48-di-
mensional displacement space gives the following
results: (i) at I' point

vr, +5r, +Sr, +vr, +5r, +vr, + vr, +5r, ;

(ii) on I: line

14Z1 + 10Zz + 10Z3 + 14Z4

(iii) at X point

14X,+ 10X, ,

where r, and X,. correspond to 7' at klg and k» for
D,"„in Kovalev's table. X, and X, are doubly de-
generate modes. The compatibility relations are
shown in 'fable IV.

The transverse acoustic mode with the polariza-
tion vectors in the z direction transforms accor-
ding to the Z, irreducible representation. Applica-
tion of the compatibility relations to the measured
dispersion relation given in Fig. 10 leads to the
conclusion that the soft mode transforms according
to Z, . The optic branch which is polar along z at

where the four 3-vectors describe the displace-
ments of the four atoms or groups, for example
(K 1, K, 2, K S, K 4). Three components in each
division indicate x, y, and z components of the dis-
placement of atoms or groups. The rotational mo-
tions of Se04 groups are described by angles of ro-
tation of each group around x, y, and z axes. They
can be written in the same form as the transla-
tional vec tors:

R*, = ~2(100, 100, -100, -100),

R", = p(100, 100, 100, 100},
(8)

R', = iB(010, 0 —10, 010, 0 —10),

R,'= 2(010, 0 —10, 0 —10, 010}.

In E2ls. (7) and (8) the suffixes s and a indicate that
the displacements are symmetric or antisymme-

TABLE IV. Compatibility relations at I' (0, 0, 0) and
1at X (z, 0, 0). Irreducible representations I', to I'8 cor-

respond to T& to 78 for T32 and X&,X2 correspond to 7&,

7& for T70 in Kovalev s compilation (Ref. i6), &~, etc.
are the Mulliken notation of the representation.

r, (A, )

r~ (Au)

r, (e„)
r4 (B8„)
rg (Bpt})

r, (e,„)
I (Bg)
r, (e,„)
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tric for the inversion, for instance,

T„(k)= -T„(k)and T„(k)= T„(k), (9)

where k is the label of the atom to which the atom
k is transformed by the inversion. The symmetry-
adopted modes s, and s, are illustrated in Fig. 15
together with one of the rotational modes s10.

The eigenvectors of the Z, mode are linear com-
binations of these symmetry-adopted eigenvectors

(t} Z j}=fSI(t}}s, j=},2, . . . , 10, (10}

where j is the branch index. The symmetry co-
ordinate component S&„(q}represents the fraction
of the s~ mode in the jth normal mode at q. Note
that time-reversal symmetry requires that

e*(klq T2 j}=e(klq T. j)
With our choice of the symmetry-adopted eigen-
vectors (6), the relation (11) is satisfied by

in the lth unit cell is given by

a(tkpIqz, j) =M ~'QQ(q~, j)

x [e(k Iqz, j)

+ e(k'
I q &, j)xX(kp)] e"~'"},

(13)
where k' indicates the rotational component of
group k, x(lk) is the position of center of mass of
the kth group in the lattice, X(kP) is the position of
pth atom with respect to the center of mass of the
kth group, M~ is the mass of Pth atom and Q(q Z, j)
is the amplitude of the mode.

In order to investigate what space group the
crystal assumes when a Z, mode condenses with
the wave vector q1/3 it is enough to consider a
minimum subset of atoms with the group proper-
ties. For example, consider (K 1, K 2, K 3,K„4).
Displacements of these atoms are

Sz„(q)=Sz„(q)for X = 1,3, . . . , 9,
S&„(q)= -S&„(q)for X = 2, 4, . . . , 10 .

(12) u(lk) = Q&e(k Iq)e"~'"'+ c.c. ,

with

(14)

Kgl

K f23

The displacement of the Pth atom in the kth group
e(q} = o.(q)T, + iP(q}T, , (15}

where T, and T, are defined in Eq. (7} and are il-
lustrated in Fig. 15. o}(q) and P(q) are real by the
properties given in Eq. (12). c.c. in Eq. (14) indi-
cates the complex conjugate of the first term. The
amplitude factor is in general complex

K f22

r
I

+
r

K f24

Q; = —,'ge'

and the displacements are given by

M,(lk} = ri{aT „(k)cos [q ~ x(fk) + }P]

—PT„(k)sin [q ~ x(lk) + }P]).

(16)

K i22

r
I +

/

K f23

Kt24

Sp

7
/

The cos and sin terms have the same transforma-
tion properties, so we will only consider the sym-
metry properties of the cos term in detail. In
Fig. 16 we show the displacements of K atoms in
the unit cell of the F phase for the special choice
of P =0 and —,'w. += ~3 and —', w also gives the same
results. For these special choices of the phase
the atomic displacements take either of three val-
ues,

{scop) I

{se 0~)2

{SeOg) 3

/
/

{seo,)4
a = cos-, vx, , f} = cos-', w( —,

' —«, ),2

c = cos-', 7f(-,
' +«, )

for /=0 and

a' = sin —', vx, , 5' = sin —', x(~ —x,),
FIG. 15. Z2-type symmetry-adopted eigenvectors.

There are ten of them. Only s, , s&, and s«are shown
here. Plus and minus signs indicate displacements in
the c direction. Arrows in the bottom figure indicate
rotation of Se04 groups around axes parallel tothe b axis.

c' = sin-', x(-', —x, )
(19)

for ft)=&w. Here x, is the x coordinate of K 1 atom.
The space groups of the distorted structures are
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(a) P = 0

Ia

monoclinic space group with b as the unique axis.
We will see in Sec. VI that these two cases corre-
spond to the induced ferroelectricity and ferro-
elasticity, respectively. Potassium selenate, of
course, represents the former case.

Pna 2, ( C~q~)

(b) $ = «/2

P2i/b(Can)

:6"

', a,

ii
I

'pF

VI. DETERMINATION OF THE EIGENVECTOR OF THE
SOFT MODE

The inelastic neutron-scattering intensity in a
one-phonon process is very useful in establishing
the nature of the mode. "" The knowledge of the
mode is important in this case in order to clarify
the origin of the lattice instability.

The relative integrated intensities of the soft
phonon at q =0.31K* and at T = 145 K and those of
the central peaks at q=0.31a* and T =129 K were
measured about several different reciprocal-lat-
tice points. They are compared with the integrated
intensities of satellite reflections at 110 K in Fig.
17. The scales of each set of data are chosen in

such a way to aid comparison. The proportionality
among three sets is remarkably good. This means
that the low-frequency fluctuation which causes
the central peaks, the static atomic displacements
o.ccurring in the transformation, and the dynamical
displacements associated with the soft phonon have

Oa

b

J I/4
—4000

FIG. 16. Displacements of I ions in the unit call of
the I' phase for /=0 and ~ 7I. Crystal takes either of the
two possible phases. Displacements are given by the
first term in the Eq. (17) with the S&-type symmetry
mode. Actual displacements are more complex but the
space group of the I phase can be concluded from these
simplified displacements. In case p = 0 the symmetry
becomes Pna2&(C2„) and in case of fthm=~ m it becomes
P2&/b(C2»). Potassium selenate is the former case.

readily determined by locating the symmetry ele-
mentsof the structure. For the case @=0there are
four elements: {Ei0},{C„~-,'c},{o,~

—,'a~+-,'b+ —,'c},
and{o„i-,'a~+ab}andwe get C',„asa space group. For
thecase P=-,'w, {h i0},{C„~-,i~+-,'b}, {I~0},and

{cJ2i~ + —,'b}are the symmetry elements and C', ~ is the
space group. Here the fractional translations as-
sociated with the symmetry operations are given
with respect to the unit cell of the E phase. For
the general values of P only {o,~-,'a~+-,'b} is present
except{E ~0}, sothe space groupisC', . In Sec.VIIwe
will show that the free energy is minimized with re-
spect to the phase by taking either $= 0 or —,'m. Hence
the crystal must assume either a C,'„orC,'» low-
temperature structure. The former is the polar or-
thorhombic space group, while the latter is the

Iooo—

zg&Qi I
z z ft-'

Qw+
gO
a.

—5000

"- 2000

800—
I-
CA

w
600—

400-
IJJI-
K~w200
I-

Ii

I

0-
0

I0
0
+

OJ N
0 0

I +
CU

N

AJAR

0 Q 0
I +

FJ0 0 0 0
+ ( + +.
i' —AJ cf'

cf0 Q
+ I

IA

N„cf„0 0
+ I

N Cl

FIG. 17. Integrated intensities of the one-phonon
scattering for the q=0.31 soft phonon at 145 K, of the
central components for the q = 0.31 spectra at 129 K,
and of the superlattice reflections at 110 K. Scales of
each set are adjusted in such a way as to aid compari-
son. Heflection indices refer to the low-temperature
lattice. (h+, k, l, ) indicates (h +6,k, l). Solid circles
are the results for the best fitting Z2 mode.
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a close similarity. We can therefore use any one

of these three sets of intensity data to determine
the eigenvector of the soft mode or the atomic dis-
placements below T.

The inelastic structure factor in the expression
of the one-phonon scattering at K=V+q by a mole-
cular crystal is written

(R) — ~
b e-ivkke l(R-if) x(rie(R. X(kkiR

in q~ kp

kP kP

(20)

under the rigid molecule assumption. In this form-
ula b, and e ~ko are the scattering length and the
Debye-Wailer factor of the atom p in the group k

in the unitce11, respectively, and $k is the dis-
placements amplitude of the atoms associated with

the soft mode. As we saw in Sec. V, the displace-
ment of the soft mode is written by the symmetry
adopted eigenvectors which transform like Z,

symmetric and those for odd ~ are anticentro-
symmetric. Then we can write

f,(K) = g b„(RR„„)
kI

x (»n [V'x(k}] cos[K'X(kp)]

+cosg x(k)]sin [R X(kp}J},

for even X and
(24)

fk(R) = Q bk, (R' E»k)

x (cos [5 x(k)]cos[R X(kp))

—sin[5 x(k}]sin[R X(kp)]},
(25)

for odd X. In Eqs. (24) and (25) E», stands for
g» or )I»xR(kp) according to X. Now the phonon or
the central peak intensities are given by

6 10

(kk= Q S„(q)g»+ g Si,(q) %» x X(kp) . (21)
Is,„(&il'= Q s, f gi) +(I lrms, lf g)) .

odd even

S„(q)'sare the amplitudes of the symmetry coor-
dinates which are to be determined from the in-
tensity measurements. Then structure factor (20}
is rewritten as

p „(K)= Q S„(q}f„(K), (22)

where

TABLE V. Symmetry coordinate components deter-
mined from the one-phonon scattering intensities shown
in Fig. 15.

Components Fitted values

sg
I XmS, j

S3
I XmS(l

S5
I Imskl
s,

/ rmS, /

Sg
f MSio

0.73+0.03
0.48 + 0.04

-0.23 + 0.02
0 ~ 34+ 0.06
0.27+ 0.01
0.05 + Q. QQ6

0
0
0
Q.07+ 0.007

(R, g )e(6 x(k)e i(t x(kki
kP )tk

l
p bkkpK [g x x(k'p}]} ne*(e((~ ~('k&

for 7&~ 10,
(23)

are the structure factors for the symmetry modes,
where b»=b»M, ~~'e ~k~. As we saw in Sec. V
the symmetry modes for even A. arecentro-

s, = llms, l =I, -s, = llmskl=s, =0.5,

lImS„l=01, Sk=S7=Sk=Sk=0.
(27)

This pattern of the atomic displacement with wave
vector q, &, is depicted in Fig. 18. In this figure,
a unit cell is divided into three layers (I, II, and
III) perpendicular to the b axis and the projections
on the (a, c) plane of each layer are shown separ-
ately. The origin of the instability of this mode is
not readily recognizable from this pattern. The
mode is a complicated motion consisting of trans-
lations in the z direction of all the constituents
and librational motions of the Se04 groups around
the y axis. The coupling between the translations
of K atoms and the rotations of Se0, groups as is
clearly visible in the (II) layer may possibly give
an intuitive clue to the instability of the nearest-
neighbor mterlayer forces.

(26)
We cannot solve this equation straightforwardly
from the observed intensities because of the lack
of the phase information. We can, however, apply
a least square procedure to fit Eq. (26) to the in-
tensity data. The results of the fitting are given
in Table V and the fitted phonon intensities are
shown in Fig. 17. In the course of the iteration we
noticed that the magnitudes of S7 S8 and Sg are
very small and are negligible within the error of
the fitting. They are therefore set to zero at the
final stage of the fitting.

In order to sketch out the mode the values in
Table V are conveniently replaced by their approx-
imate values:
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(I|I) 0.7 & y & l.0

0 0

(II) 0.3 & y &0.7

o o m m z

o ~ q
(I) 0&y &0.3

FIG. 18. Soft mode determined by analyzing one-phonon
scattering intensities. Unit cells are divided into three
layers (I, D, II/ perpendicular to the b axis and the pro-
jection on the @,c) plane are shown for each layer.
Three unit cells along the axis are the full wavelength
of the mode. Open circles indicate Y ions, shaded
circles K@ ions.

VII. LANDAU THEORY OF THE PHASE TRANSITIONS
IN Kq Se04

A. Theoretical considerations

We wish to explain the successive phase trans-
formations in KPeO„especially the incommensu-
rate-commensurate phase transition, by a power-
series expansion of a free-energy function with re-
spect to the primary and secondary order parame-
ters. The primary order parameter is the ampli-
tude of lattice distortion Q(q„&,) which is charac-
terized by the wave vector q~ and by the irreducible
representation Z, . We wish to use the spontaneous
polarization along z, P„asthe secondary order
parameter. However, we will see that it must be
generalized in such a way that the coupling term
satisfies the translational symmetry of the lattice.

Higher-order terms in the expansion are in gen-
eral of the form

v "
(q, j„q,j„., q. j.) Q(q, j,)Q(q, j,) "

(28)

where V '"'(q, j„q,j„.. . , q„j„)is an anharmonic
coefficient" which may be nonvanishing only when

q, +q, + ~ ~ ~ +q„=G, (29)

where G is a reciprocal-lattice vector or zero.
This is required by the translational invariance.
Moreover, the other symmetry elements of the
space group restrict the type of products which
arise in the power series. We are particularly in-
terested in terms of the form Q" '(q6, Z, ) Q(q', Z').

If such a term is present, the existence of a non-
zero primary order parameter Q(q„Z,) guarantees
the existence of a secondary induced order param-
eter Q(q, Z') since it will always be possible to
lower the free energy by a suitable choice of

Q(q, Z') 40. This is the mechanism of improper
ferroelectricity and it has also been shown to be
important in commensurate-incommensurate phase
transformations in NbSe, and TaSe, .' Such terms
are responsible for both the lock-in transformation
and ferroelectricity in K,Se04.

The third-order term which involves square of
Q(q6, ~,):

v "'(q6~., q~~„q'~')Q'(q. ~,) Q(q', ~')

is nonvanishing only when

q' =a*- 2q, =(1+25)—,
' a*=—q„

and

Z' =Z4.

(30)

(31)

(32)

v "'(q,z„q,~„q,z„q~ ) q'(q„z,) q(q, z ) (33)

is interesting because it is special in the sense that

q =a —3q, =35-3a =q„, (34)

is very small and vanishes when q, takes its com-
mensurate value. Furthermore, an analysis of the
space group symmetry shows that in this instance

Z 3 to which both the transve rs e acous tie mode
and the polar optic modes (both with polarization
vectors along c) belong. First we consider only the
polar optic modes as a secondary order parameter.
Mention will be made of the acoustic mode later.
For simplicity we consider only an appropriate lin-
ear combination of polar modes designated as
P,(q»). This is a long-wavelength polarization

This term induces the secondary lattice distortion
of Z4 type with the wave vector q,6 which causes
"25"peaks in diffraction patterns as were ob-
served. In TaSe, and NbSe, a similar third-order
term proportional to Q'(q~, Z, ) Q(q, ~, Z, ) produces
coupling to a secondary order parameter on the
same "soft branch" as the primary distortion.
This term has a special symmetry in that the dis-
tinction between primary and secondary order pa-
rameters vanishes when 6 = 0. The expression
given in Eq. (30) above, lacking this special sym-
metry, will tend to drive q, either toward or away
from commensurability [depending upon &,&u(q, Z~)],
and since it is not special at 6 =0, it will not lead
to lock-in. For these reasons we neglect this term
and must search for another source of lock-in en-
ergy.

The fourth-order term which involves cube of
Q(q~, F.,)
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wave with vanishing net polarization as long as q„
remains finite. When the primary lattice distor-
tion becomes commensurate with the lattice peri-
odicity, P,(q») becomes P,(0), the macroscopic
polarization. Thus we can explain how the sponta-
neous polarization is induced as a result of the in-
commensurate-commensurate phase trans ition.

Moreover, the term supplies a "umklapp energy"
to drive the modulated structure towards the com-
mensurate phase. In order to understand this
point, we should pay attention to the requirement
that all the terms which contain q belonging to the
star of q are to be treated simultaneously in the
expansion. In the present case the star of q~ is a
pair of the wave vector q and -q. As is proven in
the appendix the fourth-order anharmonic coeffi-
cient V "'(q j, q j, q j,q' j') has the following prop-
erties

V "'(-q j, -q j,-q j, -q' j')

(38)

and

3Q, +/~=0 or w (4o)

(41)

3$, +(t)~ takes the value 0 or w according to whether

B~ is negative or positive. Substituting Eqs. (40)
and (41) into Eq. (38) we get

F,„„=Fo+ 2A, rp+ Cr}~+ (D —B~~/2A~)r/~6+ '

Then the free energy in the incommensurate phase
is written

F,„„=F, + 2A p2, + 2A~qq+ 2Bq cos(3P, + Pq)r}~3qq

+ Cq', +Dg,'+ ~ ~ ~ .
This is minimized with respect to Q„(t}~,and q~

when

= V "'(q j,q j, q j, q' j')

=[V"'(q j,q j,q j,q'i')]*

in case the crystal has an inversion symmetry.
Hence the free-energy expansion is written

F =F.+ A, [Q(qo) Q*(q6) + Q(-q6) Q*(-q5)]

+ A [P.(q. ) P.*(q, }+P.(-q, ) P.*(-q, )]

+Bp [Q'(qn} P.(q») + Q'( q6) P.-( q»}]-
+ C [Q(q,}Q*(q,)]'+D [Q(q, ) Q*(q,)]'+

(35)

q, = 0 or r},=+(-A, /C)' /', (43)

The term (-B~2/2A~)q,' constitutes the "umklapp
energy" which comes from the balance of the
polarization energy required to generate the secon-
dary lattice distortion and the interaction energy
between the primary and the secondary lattice
distortions. If we neglect sixth order terms in
this expression in minimizing with respect to g„
which should be valid near T„wefind

(36}

where Fp is the free ene rgy of the undistorted
structure. Hereafter the indices for the irreduci-
ble representation are omitted on the understanding
that the primary order parameter Q(q, ) belongs to
the Z, representation and the secondary order pa-
rameter P,(q~} belongs to the Z, representation. It
is important to note that at the commensurate
phase q,~ =0 is special in that it does not have two
arms in the star. Therefore the free energy of the
commensurate phase becomes

=F,+A, [Q(th/, ) Q'(ll, /, )+Q(-@/ )Q*(-|h/ }]
+A, P', +B~[Q'(q, /, )+Q'( q, /, )]P, -
+ C[Q(&/, ) Q'(4, /. )]'+D[Q(q, /, ) Q*(q, /. )]'.

(37)

The energy required to generate the equilibrium
polarization wave in the lattice drops to one half
by going to the commensurate phase. This dis-
continuous decrease of the polarization energy
locks in the commensurate phase.

We express the lattice distortions in terms of
real amplitudes and phases by

the former being an unstable solution for T& T, .
We assume that around q«

A, (T,$,) =n,'(T T,)+Pf(q, —-q~}2

= &i+Pi«- 60)'

where Qg aIld Py are positive constants and

q ~=(1 —6,)—', a~

(44)

(45)

"P.q» -"Po- (4V}

and n~» P~6'. Then the free energy is minimized
when SF,„„(6)/S6=0or

0
1+(B', P,/«/, P&)q,

' (48)

In order to get the temperature dependence of 6
and r/, exactly, Eqs. (46) and (48) should be solved
simultaneously. But very close to T, we may ne-
glect the second term in Eq. (46) and we get

is the wave vector which characterizes the super-
lattice at T, . Then

n, =+[(ol/C)(T; —T) —(P,/ )(C66.)']'" (46)

We further assume that
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7/
—(oi~/C)&&2(T T}&i'2

5 = 5O/[1+ y(T, —T)P],

(49)

(50)

As mentioned earlier, there is a further possible
complication in the form of yet another permissible
secondary order parameter. This is the strain
component S„,which is related to the Z, acoustic
phonon along a* by

where

y =Bmpc(,'2Pp/4c(p~ P, C~. (51) s„=ii I e,() ~i(z, a)) iq, ()(q):,a). (59)

+2B~cos3$iopioI' + Cpyp+DP]0+' ' '
~ (52}

This is minimized with respect to P, and fop by

3$„=0or r P = ( IBp I
/Apo)~3' (53)

This choice of the phase was already used in Sec.
V in order to derive the space group of theE phase.
Inserting Eq. (53) back into Eq. (52) we get

F =Fo+ 2A, orf 0+ C)I~~O+ (D —Bp/A~)0,'0+ ~ ~ ' .
(54)

If we neglect the sixth-order term and minimize
F„with respect to qgo,

q,o =+[(n) /C) (T, —T) —(p, /C) 50] ' '. (55)

This corresponds to Eq. (46). The next question
is under what condition the incommensurate-
commensurate transition occurs. We assume it
occurs at the temperature for which the second
terms in Eqs. (46) and (55) are negligible com-
pared with the first term. After some algebra
we can show that F„becomes less than F;„„„,
and the transition to the commensurate phase
takes place at T = T, given as a solution of

(56)

The deviation 6 jumps from

5, = 5,/[1+ y(T, —T,)'] (5V)

to zero and the spontaneous polarization appears
with a finite value given by

P,(T,) = (() "~'
~B

~
/c( C'I')(T T )' ' (58)

This transition is, therefore, of the first order.
Below T, the polarization is proportional to (T,

T)3/a

The temperature dependence of 6 depends upon
the sign of p~. If p~&0, 6 increases as the tem-
perature decreases. In this case where the lat-
tice can decrease the polarization energy by in-
creasing ~, the crystal is not driven toward the
commensurate-ferroelectric phase. On the con-
trary, if P~ & 0, 5 moves to zero asymptotically,
that is, the superlattice tends to be commensurate.

The free energy for the commensurate super-
lattice given in Eq. (3V) can be rewritten

F F() + 2A) 0)hjo +Apo Pg

It is necessary to consider the strain wave with
wave vector q„in the incommensurate phase as
was the case for the polarization wave. Its ampli-
tude is designated by S„(q»).By a symmetry
argument the coupling term linear in the strain
wave and cubic in the order parameter Q(q, , Z, )
takes the following form

F,„,= iB,[Q'(q „E,)S„,(ll„)
—0'(-|I„~.}S..(-4.o)] (60)

3(It), + Qp=0 or m (62)

corresponding to B~&0 or B~&0 and minimization
with respect to Q, is realized when

3y, +y, =-,'7t or —,'m (63)

corresponding to B,&0 or B,&0. Although fy is
not determined in the incommensurate phase, there
is a phase shift of & r between the polarization wave
and the strain wave. Setting 8F/Sqp =0 and SF/Sq,
=0 we get Eq. (41) and a similar result for q„

(64)

In the incommensurate phase both kinds of secondary
distortion coexist. Which is dominant is decided
by the relative magnitudes of the "umklapp ener-
gy,

" [B,('/A, to ~Bp~'/Ap. The existence of the
strain wave does not alter the temperature depen-
dence of 5 given in Eq. (50), because the elastic
energy required to generate the strain wave is in-
dependent of 6 for small q and hence the system
cannot gain energy by making 6 small.

where B, is the real coefficient which is almost
constant for small q. Adding this term to Eq. (36)
and expressing order parameters by real amplit-
udes and phases, we can write the free energy in
the incommensurate phase

F.c.am =F0+ 2Ai&i+ 2Ap)lp+ 2A.)Il

+ 2Bp cos(3$, + @p)q~sqp+ 2B, sin(3$, + P,)q~3q,

+ Cg +~'+ ~ ~ ~ (61)

where the suffices p and s indicate the polarization
wave and strain wave, respectively. By definition
[Eq. (59)]A, is proportional to the square of the
sound velocity and is almost constant for small
q. Minimization with respect to Q~ is realized
when



STRUCTURAL PHASE TRANSFORMATIONS IN K& Se04 4407

In the commensurate phase the free energy be-
comes

Fcomm Fo+ ~1 041 0+Ap04 Aso 40

+ 2B&coss~xo~zo P + 2B, sin3@iogxo

+ CggQ + D7jgQ +

8F„ /Sp» =0 gives

tan3@,0 =B,S„/BpPg.

(65)

(66}

We can, therefore, minimize F„bychoosing

cos3@„=-~B,~P,/(B,'P', +B'.S'„,)'" (67)

sin3$, 0
= —~B, ~S„,/(B~P, +B,S„)'

Substitution of Eqs. (67) and (68) into Eq. (65)
gives

F„mm-Fo+2A«rP~+A~o P, +A~ S„,

(68)

B2g3
xg so (BaPQ+B3+ )&&&

p z s xs

There are four solutions: (i)

P, =S„.=0,

which is an unstable solution for T& T, (ii)

P, =O and S„=(~B,~/A„)r/,'„

(71}

(72)

which is realized when the "umklapp energy" for
the strain is larger than that for the polarization,

B,/A, )B~~/Aq (74)

In this case the phase of the primary distortion is
2w or —,'m and the spontaneous strain S„,develops
in the crystal whose symmetry becomes C». This
case coincides with the space group assigned for
Q„=2m in Sec. V.

(iii) In the opposite case where

B', /A ~ & B~ /A~, (75)

the phase Q, o
= 0 or w and the spontaneous polariza-

tion given by Eq. (26) develops and there is no
spontaneous strain.

(iv) Both the spontaneous polarization and strain
can coexist in the boundary case

B,/A~ = Bq /A~ . (76)

+2(B P +B. S )' 'rj +Cq~ +Dq' + ~ ~ ~

(69)
which is minimized with respect to P, and S by
the conditions

Bagj.
( *& s*s*)'") 0

But this equality is realized only accidentally. In

K,SeO„case(iii) is realized.

B. Comparison with experiments

The theory developed above accomplishes our
primary purpose to expose the physics underlying
the successive phase transitions and occurence of
the ferroelectricity. It is further interesting to
test a quantitative applicability of the theory by
the comparison with experimental results. In the
comparison it should always be kept in mind that
the theory is applicable only near the transition
temperature T„because we neglected higher-
order terms in the expansion.

The temperature dependence of the modulus of
the primary order parameter g, is given by Eq.
(49). This is to be compared with the intensity of
the satellite reflection which is proportional to

rP, . Experimental results shown in Fig. 5 follow

(T T}0.840. 1

down to 15 K below T,
The mean-field value of this exponent is of course

2P=1.0, but it may be of interest to point out in

this connection that if we suppress the secondary
order parameter, Eq. (36) is an example of a
Landau- Ginzburg-Wilson Hamiltonian with an

(n = 2)- component vector. We might therefore
expect the true critical behavior of K,SeO, to be
that of the XF model, for which 2P= 0.67. It would
be of some interest to determine P(as well as the
other critical indices associated with the 130 K
phase transformation) more carefully in order to
test this prediction.

The temperature dependence of 5 given by Eq.
(48) or by Eq. (50) has been compared with the
experiments in Fig. 4, where the solid line was
calculated by Eq. (48) with the coefficient of q|~ in
the denominator being set equal to 0.025 and the
satellite reflection intensity shown in Fig. 5 as a
function of temperature was used to determine the
temperature dependence of q', . The dashed line was
calculated by Eq. (50) with y = 0.002 and T; = 127.5
K. For both curves 5Q is taken to be 0.07.

Figure 11provides experimental support for the
role of the "umklapp" term. Although there is an in-
trinsic temperature dependence of 6 of dynamical
origin, the values of 6 realized in the incommensurate
structure clearly depart from the intrinsic ten-
dency indicating the effect of the "umklapp" en-
ergy.

We are unable to make a meaningful test of Eq.
(53) relating P, to q«because the range of varia-
tion g„is so small in the ferroelectric phase. In
this connection, it is an extremely important and
interesting test of our understanding of KPe04 to
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FIG. 19. "36"peaks observed around (602).

look directly for the sinusoidal polarization pre-
dicted for T, & T& T,. We expect to see satellite
diffraction peaks close to the fundamental Bragg
reflections. The wave vector characterizing these
satellites is given by Eq. (3) and is very small;
just above T, the wavelength should reach a max-
imum -50a-400 A. It is technically difficult to
observe a very weak peak on a tail of an adjacent
intense peak. A tight collimation (10'- 10'- 10'- 10')
made it possible to observe the "35" satellites
around only a few fundamental reflections. Fig-
ure 19 shows a result of elastic scans along [100]
at three temperatures between T; and T,. The
intensity of the peaks is about 10 ' of those of
strong "5"peaks. The position of the peaks coin-
cides with q„calculated by using the values of
5 shown in Fig. 4. It is likely that these "35"
satellites are due to secondary lattice modulation
with the wave vector q„.We could not, however,
exclude the possiblity of these peaks being dif-
fraction harmonics of the primary modulation,
because we failed to collect sufficient structure
factor data to decide this point.

VIII. CONCLUDING REMARKS

Our neutron-scattering studies have disclosed
the nature of the lattice instability in potassium
selenate, The results have general relevance to
improper ferroelectrics on one hand to the re-
cently aroused attention to incommensurate
structures on the other hand.

Improper ferroelectrics are characterized by
an interaction term between a primary order pa-
rameter and polarization in a free-energy expan-
sion. We have shown that the improper ferro-
electricity in this substance is described by the
interaction term given in Eq. (1). Aizu" proposed
to classify the improper ferroelectrics according
to the index of faintness n which is the lowest pos-

sible power of the primary order parameter which
couples to the polarization. According to this
classification potassium selenate is a new type of
improper ferroelectric with n =3. There is, how-
ever, a special situation in this system. The in-
duction of spontaneous polarization is suppressed
by the incommensurabil. ity of the distorted struc-
ture. The wave vector which characterizes the
modulated structure changes with temperature,
taking an incommensurate value continuously. The
polarization is "hidden" (not a macroscopic ob-
servable) until the wave vector takes a commen-
surate value.

The incommensurate structural phase transfor-
mation is an interesting problem under current
study. " The incommensurate systems originating
from charge- density-wave instabilities have been
extensively studied. But they are not necessarily
ideal substances to study general characteristics
of the incommensurate structure, because the
phonon softening is not complete [metal dischalco
genides, ' TTF-TCNQ (Ref. 23)], the dispersion
relations are extremely sharp (potassium cyano-
platinide, KCP)' and the true long-range order
is lacking (KCP)". As we have seen, the soft
phonon in potassium selenate is well defined,
shows complete softening and the dispersion re-
lation changes rather slowly in the q space. We
could observe a close correspondence between
the phonon instability in the P phase and the in-
commensurate structure in the I phase. The ef-
fect of the "lock-in" energy in driving the crystal
towards the commensurate structure and in bring-
ing about the first-order transformation to the
commensurate phase is also confirmed in this sub-
stance. The origin of the incommensurate lattice
instability in K,SeQ~ is not understood at present.
We have suggested the phenomenological origin
from the force constant analysis of the soft-mode
dispersion relation, which we hope to give a key
to disclose the microscopic basis of the instability.
The long-range nature of the effective forces de-
serves special attention. The eigenvector of the
soft phonon determined in Sec. VI will help to pro-
ject out the relevant combination of the interatomic
force constants.

A few substances with isomorphous structures
show lattice instabilities of various kinds. It may
be interesting to inquire if there is anything in
common among them. Ammonium sulfate,
(NH, ),SO„transforms from the paraelectric phase
with Pnam to the ferroelectric phase with Pna2,
without changing the size of the unit cell. The
phase transition has been interpreted" to be caused
by the instability of a B,„mode at the zone center,
which presumably corresponds to the zone center
end of the upper branch partially observed and
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shown in Fig. 6. Peculiar dielectric properties of
this substance were attributed to a small polar
components of the mode. Ammonium fluoberyllate,
(NH, ),BeF„undergoes two successive phase trans-
formations. The superlattice reflections at the
low-temperature phases" suggest the softening of
the zone boundary mode at (&, 0, 0), which one
might be tempted to relate to the X, phonon at the
zone boundary of the Z, branch. As was mentioned
in Sec. IV the existence of the a glide in the high-
temperature phase makes it more natural to con-
sider dispersion relations along (q„0,0) in the
doubly extended zone. The zone boundary X point
in the original zone is no longer a high-symmetry
point in this extended zone. (Note that the fre-
quencies at the X point do not give rise to the Van
Hove anomalies. ) Then there is no reason for a
lattice instability to occur preferentially at this
point. A lattice instability with an incommensu-
rate wave vector, say q, =0.5-5, is thus more
probable than one with a commensurate wave
vector, q, = 0.5. The interlayer force constant
analysis presented in Sec. IV B suggests that the
fourth-neighbor force constant, I'4, becomes
dominant in the instability at the X point. The F,
term alone gives &=0 at q, =0.5. But there can be
contributions from F, and other long-range forces
as well and even a small amount of these con-
tributions displaced the unstable point from q,
=0.5. So the realization of the commensurate
phase is rather accidental in this case. We may
well suspect that the intermediate phase of
(NH~)2BeF~ is incommensurate. If this is really
the case, we can apply essentially the same argu-
ment to the successive phase transitions and the
induction of the spontaneous polarization in this
substance. In this case the interaction term given
by Eq. (30) takes the part of Eq. (33) in the theory
of K,SeO, . The secondary order parameter is now
the polarization component which transforms ac-
cording to the Z, representation [Eq. (32)j. This
is the component along the b axis, being in ac-
cordance with observation.

After most of the present paper was written,
the paper by Sawada, Makita, and Takagi" came
to our notice. They have successfully explained
the mechanical twinning properties in (NH, ),SO,
by assuming a hypothetical hexagonal phase above
the paraelectric orthorhombic phase and pointed
out that the hexagonal phase is a real existence
in K,SeO, above 745 K." The probable space
group is P6~/mmc with the hexagonal axis cor-
responding to the orthorhombic a axis. The hexa-
gonal-orthorhombic phase transformation is an
order- disorder type transformation. In the hex-
agonal phase the orientation of the Se04 tetrahedra
with repect to the hexagonal axis is inperfectdis-

order taking up and down orientation with equal
probability. In the orthorhombic phase the Se04
groups take an ordered alignment as shown in Fig.
1. The symmetry change is described by the M4
representation at q = & b„where b, is a reciprocaj.
unit-cell vector perpendicular to the hexagonal
mls.

We have developed the Landau theory by taking
the P-phase structure as a reference in writing
down a free-energy expansion with respect to the
displacements. Alternatively, one can take the
hexagonal structure as a prototype structure. This
may simplify some aspects of the theory and may
give a unified viewpoint on the whole series of
lattice instabilities. It is, however, more con-
venient and straightforward to use the orthorhomb-
ic reference if we confine our attention to the low-
temperature phase transitions as we did in the
present studies.

Similar order-disorder transformations are
known" in K,MoO„K,WO„andIHb, WO, which have
the same hexagonal structure in the high-tempera-
ture phase. It is especially interesting to note that
their low-temperature structures are again incom-
mensurate; the ordering of Mo04 or W04 tetrahedra
takes place with incommensurate wave vector
perpendicular to the hexagonal axis. In K,SeO, the
incommensurate phase is characterized by the
wave vector along the hexagonal axis.
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APPENDIX I: SYMMETRY PROPERTIES OF THE
ANHARMONIC COUPLING COEFFICIENTS

~'"'(f, ,i, . f, .i, f„i„)
For reasons of notational convenience we wil, l

specialize our argument to n=3. The full third-
order anharmonic potential is of the form

fi"'= Q Q e„(lk,l'k', I"k")u»uq, u„,„„„.(AI)
0IBW

If there is a symmery operation JS
~
v(S)j, where

S is inversion, we define its action as mapping the
atomic site (I, k) into a new site (L,K) and
thus T(S

~
v(S))u»=-u~r so that the rotational

invariance of Eq. (Al) requires that

Q 8„(LK,L'K', L"K")= —$ e„(fk,f'O', I"k") .

(A2)
We also need the transformation properties of the
normal mode eigenvectors, e(Sq) = e "T{S

~
v(S)) e(q),

which with conventional choice of phase, 8, gives"
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&.(klq) = A(k K)&.(K I-q)

where

(A3) where

V(qq'q") = g 4) $„(lk,l'k;l"k )

(II)(k, K) = expiq [x(K) sx(k)]

= expiq ~ [Sx(f) —x(L) + v(S)], (A4)

the latter following from the definition x(L)+x(K)
=Sx(f)+Sx(k)+ v(S). Equation (Al) can be rewritten

rr$s»
kk$ k»
O. gy

xc (klq) ea(k Iq.')c,(k" lq )

x expi[q ~ x(l)+ q'x(l')+ q" X(l")].

U($) = Z V(qq'q")(I);(I);.(I);„&(q+q'+ q"), (A5)
QC 4

Equation (A5) can be rewritten using Eqs. (A2)-
(A4) as

V(qq'q") =- g Q $„(LK,LR', L"K")en(KI-q) ea(K' I-q') e„(K"I-q")

x expi[q X(L)+q'X(L')+q X(L")]e""'""'"$'
E (Iltlje+g ) ~ V($)T1/ I It) (A6)

and the corresponding general result for general n

is
so that in addition to Eq. (A7)

V'"'(q„.. . , q„)=V" ( q„.. . , (A8)
V'"'(q„",q.)

= (-i)"e((i)' i„)v($)'v(n)(
q q ) (A7)

If there are no additional degeneracies, time re-
versal symmetry requires that e(k lq) = e*(k- lq), $'

Equation (35) follows from Eqs. (A7) and (A8) since
for D,'6, v(S) =0.

Note added in proof. The discussion on the in-
commensurability of the intermediate phase of
(NH, ),BeF, has been substantiated
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