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Possible "new" quantum systems. II. Properties of the isotopes of spin-aligned hydrogen*
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The ground-state and finite-temperature properties of spin-aligned hydrogen and its isotopes (Ht, Dt, Tf)
are studied theoretically. Calculations of the ground-state energy are presented for the Kolos-Wolniewicz

(KW) potential and compared to those utilizing Lennard-Jones (LJ) and Morse potentials fit to the KW
potential. Excellent agreement between the KW and LJ results is found; thus, permitting confirmation of
previous predictions that Ht can never form a liquid phase. In addition, spin-aligned deuterium with one

(Dtl) and two (D42) allowed nuclear spin states is also studied. Ground-state energies and relevant zero-

temperature critical parameters are presented for these systems. Additionally, the quantum theorem of
corresponding states is used along with the ground-state results to estimate the critical parameters of Dt', and

D4, . Finally, the eA'ect of quantum mechanics on the critical behavior of these systems is considered and it is

concluded that such effects are not likely to be observable.

I. INTRODUCTION AND SUMMARY

In the recent work of Dugan, Etters, and Palmer'
and Stwalley and Nosanow, ' it has been shown that
a system composed of one of the hydrogen isotopes
suitably constrained so that a pair can interact
only in the Q 'g+ state would exhibit even more
extreme "quantum" behavior than the helium iso-
topes. In particular, it is expected that spin-
aligned hydrogen H4 mill never form a liquid phase.
It was, therefore, suggested' that H& would ex-
hibit a Bose-Einstein condensation and would,
therefore, be most worthwhile to study experi-
mentally.

The present work is devoted to a further the-
oretical study of the properties of the various iso-
topes of spin-aligned hydrogen (H&, Dt, and T0).
We follow SN and fit the H&-H& interaction with a
Lennard- Jones form. Then we can bring to bear
techniques and results' ' which have been devel-
oped to treat related problems within the context
of the quantum theorem of corresponding states
(QTCS) originally proposed by de Boer' and co-
workers. ' The most important parameter of this
theorem is the quantum parameter

g=-g jmeo'= h*/2n)',

where A* was introduced by de Boer'; the rest of
the symbols are defined in Sec. II. One of the main
points made in this recent work was that it is most
illuminating to think of the quantum parameter Tl as
a "conceptual" thermodynamic variable. In this
way, it was possible to show clearly the effect of
the "statistics" on the solidification pressure, '
to understand the liquid-to-gas phase transition
in Bose and Fermi systems, to construct' the

phase diagram for 'He, and to construct' the "gen-
eralized phase diagram" for quantum systems.

In the present work, these techniques and re-
sults are applied to deduce the properties of the
various isotopes of spin-aligned hydrogen. In
Sec. III, the equations of state of the various iso-
topes are computed using different potentials and
different numerical approximations. In this way
the use of a Lennard-Jones potential by SN to ap-
proximate the H4-H4 interaction is shown to be
justified for sufficiently low densities. Thus, their
demonstration that H4 never forms a liquid phase
is confirmed. Further, in Sec. III, the equation
of state of D& is studied. Two cases are consid-
ered: (i) Dk„ in which only one nuclear-spin state
is allowed, and (ii) Dk„ in which two nuclear-spin
states are allowed. Our results indicate that both
of these systems shou1d be gaseous at zero temp-
erature, but should liquify under pressure. Un-
fortunately, there are enough approximations in
these calculations so that we cannot yet claim to
have categorically demonstrated this result. Fin-
ally, in Sec. III, we give estimates of the various
ground-state critical parameters for Fermi sys-
tems that interact via Lennard- Jones potentials
with one and two allowed nuclear-spin states. In
Sec. IV, we take these last results and experi-
mental data on other quantum systems and use the
QTCS to estimate the various critical parameters
of ~, and Df,. We also discuss the possibility of
observing quantum effects on the critical behavior
of these systems. In Sec. II, we discuss the H4-
H4 interaction and give a brief review of the QTCS
to lay the ground work for Secs. III and IV. In the
Appendix we give the equations which describe D)„.
those which describe Df, may be found, e.g. , in MNP.
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FIG. 1. Potential energy curves for atomic hydrogen
in the X'Z~ state and the (spin-aligned) b 3Z~ state as
calculated by Kolos and Wolniewicz.

II. PRELIMINARIES

In this section we shall lay the ground work for
the following sections. We shall first discuss the
H4-H4 interaction and then give a brief review of
the QTCS.

The H-H pair potentials in the X'g,' and b 'Z„'
states have been very accurately determined by
Kolos and Wolniewicz in a pair of extensive vari-
ational calculations. ' We shall refer to these as
the Kolos-Wolniewicz (KW) potentials. In Fig. I
we plot the potential energy curves for two H
atoms in these states. The state X 'g+ is the usual
ground state of the H, molecule. The state b 'Z„'
is strongly repulsive at small interatomic separa-
tions because of the electronic-spin triplet and
has a weak van der Waals attraction. The energy
in Fig. 1 is given in units of electron volts so that
this weak van der Waals attraction is not discern-
ible.

In Fig. 2 we plot the b Q„' potential with an en-
ergy scale of 'R. 'Ihe minimum is clearly dis-
cernible with a well depth & =6.46 'K at a distance
r =4.14 A. There is no bound state in this well
for atoms as light as the isotopes of hydrogen.
This potential energy is the pair interaction be-
tween two spin-aligned hydrogen atoms. The KW
potential has been shown to be very accurate; thus,
spin-aligned hydrogen is an unusual many-body

v(r) - C,r -Car -C»r-
with the coefficients determined by Bell'

g, = 4.506x10' 'K A',

g, = 2.415x10' 'K A'

C~0=1.786X10 'KA'0.

(2 I)
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FIG. 2. Kolos- Wolniewicz and Lennard- Jones poten-
tials for H t and the Lennard-Jones potential for He.
The Lennard-Jones parameters for H t, a= 6.464'K
and r = 4.141 A, were determined to fit the minimum
of the Kolos- Wolniewicz potential.

system in that the pair potential is not one of the
uncertainties in the problem. On Fig. 2 we have
also fitted a Lennard-Jones (LJ) potential to the
minimum of the KW potential and plotted the He-
He interaction for comparison. It is seen that LJ
potential provides quite a good fit to the KW po-
tential. Results of calculations with these two

potentials are discussed in Sec. III. Since the Hf-
Hf interaction is clearly weaker than the He-He
interaction, a glance at Fig. 2 already suggests that
H~ will exhibit more "extreme" quantum behavior
than He.

In Table I we display the KW and LJ potentials
for a selected number of points. It is clear that,
even though the LJ potential is considerably more
repulsive at small interatomic spacing, the agree-
ment in the important region around the well is
very good. We believe that this is the important
characteristic to be required of a potential in or-
der to accurately represent the low-density equa-
tion of state. For distances greater than 6.87 A,
we used the following expression for the asymp-
totic expansion of the polarization energy:
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TABLE I. Kolos-Wolniewicz (KW) and the Lennard-
Jones (LJ) potentials compared. The LJ parameters are
6' =6.464 'K and r~ = 4.14 A. We note that r~~(KW) = 1.128
and x~(LJ) =1.122, where r~—= rm/o'.

We shall now give a brief review of the QTCS."'
This theorem applies to a class of systems with
pair potentials of the form

v(r) =ev*(r/o), (2.2)
R

(A.) ('K)

0.529
0.741
0.953
1.164
1.376
1.588
1.799
2.011
2.223
2.434
2.646
2.858
3.069
3.281
3.493
3.704
3.916
4.128
4.339
4.551
4.762
4.974
5.186
5.398
5.609
5.821
6.033
6.244
6.456
6.668
6.879
7.091

f.f95 x 10
6.816x 10
4.159x f 0
2.531 x 104

1.512 x 10
8.839 x 103

5.055 x 103

2.824 x 103

1.538 x 103

8.131x 10'
4.153 x f.02

2.022 x 10'
9.177 x 10
3.643 x 10
1.027 x10

—1.192
-5.478
-6.462
-6.063
-5.194
-4.260
-3.418
-2.716
-2.153
-1.712
-1.364
—1.089
—0.8803
-0.7167
-0.5850
-0.4809
-0.3978

3.407 x.f 0"
6.008 x 10'
2.944 x 10
2.647 x 10
3.560 x fp
6.369 x 10
1.408 x 10'
3.659 x fp
1.077 x 104

3.482 x 103
1.205 x 10'
4.344 x 10
f.57f x fp
5.334x fp
1.396 x f 0

-0.6146
-5.440
-6.462
-6 076
-5.254
-4.378
-3.586
-2.916
-2.367
-1.923
-1.567
-1.281
—1.053
-0.8687
-0.7204
-0.6002
-0.5025

The four last KW energies were calculated with the
asymptotic expansion formula given by Eq. (2.1).

where e is the coupling constant (with dimensions
of energy), o is a, range parameter (with dimen-
sions of length), and v~(x) is the same dimension-
less function of its argument for each member of
this class of systems. For the Lennard- Jones
form

v*(r+) =4(r+ "—r*') (2.3}

To state the QTCS, it is convenient first to
introduce the quantum parameter g defined by Eq.
(1.1}. We have found it notationally more con-
venient to use q than the de Boer parameter A~.
Values of q along with values of &, g, and other
useful quantities are given for various substances
in Table D. It is further convenient to introduce
several dimensionless or "reduced" variables as
follows:

T*=ke T/q, (2.4a)

V*=V/No' -= 1/p',
P*=Po /e, -
F*=F/Ne, —

(2.4b)

(2.4c)

(2.4d)

where T is the temperature, V is the volume, N is
the number of particles, p is the number density,
P is the pressure, and F is the Helmholtz free
energy. The QTCS states that, for a one-compo-
nent system,

F*=F*(T*,V*,q), (2.5)

where F* depends only on the form of v*(r'}andon
whether the particles obey use-Einstein or
Fermi-Dirac statistics. A more complete dis-

TABLE II. Quantum parameter q for various substances (H&, Dt, and T& denote spin-aligned
hydrogen, deuterium, and tritium, respectively). Also given are the masses, coupling con-
stants e, "core diameters" o, e/cr, and Noo . We used 8= 1.05430x fp erg sec and No
= 6.022 52 x 10 particles/mole.

Substance
m

(amu) ~
e/o'
(atm)

Noo
(cm /mole)

H&

Dt
3He

T&

4He

'He

H2

Dp

Ne
Ar

1.008
2.014
3.016
3.016
4.003
6.019
2.016
4.028

20.18
39.95

6.46
6.46

10.22
6.46

10.22
10.22
37.0
37.0
35.6

120.0

3.69
3.69
2.556
3.69
2.556
2.556
2.92
2.92
2.74
3.41

17.5
17.5
83.39
17.5
83.39
83.39

202.5
202.5
235.8
412.3

30.2
30.2
10.06
30.2
10.06
10.06
1 5.0
15.0
12.4
23.9

0.547
0.274
0.2409
0.183
0.1815
0.1207
0.0763
0.0382
0.0085
0.000 88

1 amu=1. 660 24x 10-" g. "k& = 1.380 54 x f 0-&6 erg/particle &.
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cussion of the QTCS as it relates to the present
work can be found in Refs. 3 and 6.

III. GROUND-STATE RESULTS

(3.2)

1, for bosons
4=

Q e' ~ '~$, , for fermions.
J

(3.3)

In Eq. (3.3) 8 is the antisymmetrizer and $& is the
spin function for particle j. The pair function,
u(r), introduces the short-range correlations in-
duced by the strong repulsion at small interatomic
distances. It is chosen to have the form

(3.4)

Therefore, tt} has the proper symmetry for bosons
or fermions and upper bounds to the energy can be
obtained by evaluating the expectation value of the
many-body Hamiltonian.

In the case of a boson system the calculation of
the energy is formally analogous to the situation
in classical statistical mechanics in the canonical
ensemble and those techniques developed for the
classical problem can be utilized for the quantum
mechanical one. In particular, the problem re-

In this section we will discuss in detail the zero-
temperature properties of the spin-aligned hydro-
gen isotopes. We shall begin the section by out-
lining the numerical techniques which were used to
calculate the equations of state for systems in-
teracting with KW or LJ potentials. The equations
of state will then be presented and compared for
both boson and fermion systems. In the Bose
case we conclude that, at least at low densities,
the LJ potential is a good approximation to the
exact KW potential. Thus by using previous re-
sults' ' on LJ systems we are able to show that
H& never forms a liquid phase; whereas, T& is a
self-bound liquid at zero pressure. We also pre-
sent our results for D&, and ~,. They suggest
that both of these systems will be gaseous in their
ground states. However, these results are not
conclusive and they will be fully discussed in this
section. Finally, a summary of our present es-
timates of the critical parameters for the ground
states of Fermi systems with one or two allowed
nuclear-spin states will be given.

Both the boson and fermion systems are treated
variationally with trial wave functions g of the form

(3 I)

where

duces to obtaining the radial distribution function
g(r) generated by g. In this paper we shall use
g(r)'s which are solutions of the Born-Bogoliubov-
Green-Kirkwood-Yvon (BBGKY)-Kirkwood-super-
position-approximation (KSA) and hypernetted-
chain (HNC) approximate integral equations. "
These equations are approximate in the sense
that they sum to all orders a selected set of clus-
ter diagrams. For the spin-aligned hydrogen
systems, however, we are interested only in the
low-density regime where the integral equations
are expected to be quite accurate.

The energy expectation value for the fermion
system is very complicated due to the presence
of the Slater determinant. The effects of statis-
tics can be approximated, however, by use of the
cluster expansion introduced by Wu and Feenberg. '
The application of this technique results in an ex-
pression for the fermion energy which is a func-
tional of the associated bosong(r) only [that is,
that g(r) which is determined by the F part of g]
and is extensively discussed in MNP. Thus the
same set of g(r)'s can be used for calculations on
both the boson and fermion systems. The explicit
expressions for the energy for ~, are in MNP and
those for Df, are in the Appendix.

An additional feature of the fermion ~ system
is the fact that it has a nucleus with spin 1. In
this paper we shall concern ourselves with two
possible cases: (i) one allowed nuclear-spin state
(D&,) and (ii) two allowed nuclear-spin states (D0,)
(in this case we assume there are two equally pop-
ulated Fermi seas). In principle, case (i) should
be the most important experimentally since
the other possibilities allow destruction of H4 by
collisions which can cause electron-spin flip due
to the hyperfine interaction and consequent H2
formation. Case (ii) will be considered, however,
because of its theoretical interest and possible
experimental interest.

The calculated equations of state are shown in
Figs. 3-5. In Fig. 3 we show the results for the
boson H& and T) systems. If we compare the HNC
and BBGKY-KSA energies for both systems, we
note that the BBGKY results are always lower than
the HNC results. However, the energy differences
are quite small at low densities. The softness of
the BBGKY equation of state relative to the HNC
equation of state has previously been noted for the
case of helium, "where it is also pointed out that
the exact molecular dynamics results tend to fall
between the two approximations. Thus, we may
conclude that the H4 and T4 results in Fig. 3 are
valid upper bounds to the energies. Next, we note
that the agreement between the LJ and KW results
is much better for H4 than for Tf. This is clearly
due to the increased importance in the kinetic en-
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ergy in the former system which tends to mitigate
the difference in the potential energies. In fact
since the same u(r) is used for the LJ and KW
systems, the forms of the kinetic energy will be
identical.

The form for Eq. (3.4) was suggested by the LJ

FIG. 3. Energy as a function of density for spin-
aligned hydrogen and tritium. The H t results are given
for the KW potential with HNC and BBGKY distribution
functions and the LJ potential and for the Morse poten-
tial used by DEP with the BBGKY distribution functions.
As explained in the text, the DEP energies are cal-
culated with a different value of g than the other results.
These results clearly show that H t will be a gas at all
densities; whereas, T t will be a self-bound liquid.

potential. The results in Table I clearly show that
at small separations the KW potential is not nearly
as repulsive as the LJ; thus, it is clear that one
could choose a softer pair function which would
prevent particles from penetrating the repulsive
cores with a smaller kinetic energy price to pay.
DEP have investigated this effect for their Morse
potential fit to the KW potential. They report ener-
gy decreases on using a softer wave function of
"at least 0.5 'K below energies calculated using"
the u(r) of Eq. (3.4) over some unspecified range
of densities. Thus we note that although an opti-
mal form for u(r) for the KW potential will be
somewhat different than the LJ-WKB form of Eq.
(3.4), the change in energies will not be a quali-
tative effect.

On Fig. 3 we have also shown a curve labeled
DEP for H&. This is the equation of state for the
Morse potential fit by DEP to the KW potential
(the BBGKY distribution functions have been used).
It is clear that the Morse potential yields energies
which are much too high because the exponential
tail falls off much more rapidly than the exact r '
behavior. The DEP Morse parameters determine
an g for H& equal to 0.575 which is slightly larger
than the 0.55 obtained directly from the KW poten-
tial; the difference in energies is much larger than
can be accounted for by the difference in eta's.

In MNP it was shown that those LJ systems with

g ( gee =0.45 have a many-body bound state (a
liquid); whereas, those with q&pc~ are never
bound (a gas). Because of the same low-density
behavior in the KW and LJ systems evident from
Fig. 3, we can conclude the Ht (q =0.55) will be a,

zero-temperature gas; whereas, T4 will be a self-
bound liquid. In Table III we list the LJ and KW
energies and their kinetic and potential energy

TABLE III. Kinetic, potential, and total energies for the Kolos-Wolniewicz (KW) and
Lennard-Jones (LJ) potentials calculated with the BBGKY distribution functions for H& .

P
(10~ A-')

TKW

( K)
VKw

(K)
+K%
(K) ('K)

Er,z
('K)

0.01
0.02
0.03
0.04
0 ~ 05
0.075
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.14
0.28
0.42
0.56
0.70
1.06
1.41
2.11
2.82
3.52
4.23
4.93
5.63
6.34
7.04

0.189
0.393
0.596
0.806
1.022
1.594
2.202
3.538
5 ~ 035
6.704
8.556

10.50
12.70
15.03
17.53

-0.144
-0.300
-0.450
-Q.6Q4
-0.760
—1.161
—1.570
—2.415
-3 ~ 280
-4.159
-5.052
—5.853
-6.714
-7.494
—8.228

0.045
0.094
0.146
0.202
0.262
0.432
0 ~ 632
1.12
1.76
2.54
3.50
4.65
5.99
7.54
9.30

0.200
0.407
0.621
0.843
1.073
1 ~ 679
2 ~ 330
3.775
5.419
7.262
9.308

11.56
14.04
16.73
19.65

-0.165
-0.333
-0.505
-0.679
—0.856
—1.310
-1.777
-2.744
—3.748
—4.771
—5.798
-6.807
—7.817
-8.802
-9.752

0.035
0.074
0.117
0.164
0.217
0.368
0.553
1.03
1.67
2.49
3.51
4.75
6.22
7.93
9.89
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TABLE IV. Kinetic, potential, and total energies for D& with the Kolos-Wolniewicz potential.
Results are shown for deuterium occupying one Fermi sea and equally populating two Fermi
seas. The expectation values were calculated with BBGKY distribution functions.

P
(10-' A")

Ti
('K)

Vi
('K)

E
('K)

T2
{'K)

V2

{K)
g2
('K)

0.01
0.02
0.03
0.04
0.05
0.075
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.14
0.28
0.42
0.56
0.70
1.06
1.41
2;11
2.82
3.52
4.23
4.93
5.63
6.34
7.04

0.305
0.495
0.662
0.821
0.976
1.357
1.741
2.560
3.456
4.440
5.553
6.694
8.069
9.502

11.06

—0.048
-0.132
-0.237
-0.357
-0.489
-0.857
-1.264
-2.171
-3.158
-4.197
-5.304
-6.356
-7.547
-8.683
-9.825

0.256
0.362
0.425
0.464
0.487
0.500
0.477
0.389
0.297
0.243
0.250
0.338
0.522
0.817
1.24

0.243
0.413
0 ~ 573
0.728
0.881
1.261
1.662
2.502
3.415
4.425
5.531
6 ~ 680
8.027
9.450

10.98

-0.096
-0.209
—0.334
-0.468
-0.610
-0.985
-1.402
-2.297
-3.262
-4.292
-5.367
-6.416
-7.581
-8.728
-9.881

0.146
0,203
0.238
0.260
0.272
0.276
0.260
0.204
0.152
0.134
0.166
0.264
0.446
0.720
1.10

that

~L Jf'1.~ /Lg2 ~ (3.5a)

I LEl ~LE2 ' (3.5b)

'Ibe results in Table V confirm (3.5a) but not
(3.5b). It turns out that the number of spin states
affects not only the Fermi energy, but also the
correlations that enter into the calculation of the
potential energy and the rest of the kinetic energy.
Thus, no simple intuitive picture is available to
understand the changes caused by changing the
number of allowed nuclear-spin states. This is
also true for the thermodynamic parameters at
the critical point.

IV. FINITE-TEMPERATURE RESULTS

In this section we shall use the QTCS to make
estimates of the critical parameters of D~, and

The estimate of the Bose-Einstein conden-

TABLE V. Critical parameters at zero temperature
for Fermi systems with two nuclear-spin states {F2)and
one nuclear-spin state (Fi). The results for F2 are
taken from MNP.

sation temperature has already been given by SN.
To conclude this section we shall discuss the pos-
sibility of observing quantum effects on the cri-
tical behavior of &, and D0,.

In Figs. 6-8 we plot, respectively, as functions
of g, the reduced critical temperature 7,*, the re-
duced critical pressure g,*, and the reduced criti-
cal volume V,*. The data for 'He, H„Ne, and Ar
are taken from Hefs. 5 and 6. On each figure we
also plot qc» and gc». Then we can construct
approximate curves for Fermi systems with one
allowed nuclear-spin state (Fl) and two allowed
nuclear-spin states (F2). The former are shown
as dashed lines and the latter as solid lines on
Figs. 6-8. The intersection of these curves with

1.4

1.2

'I- 1.0

5
~~ Q8

ca 06

"Q4
Critical

parameter
Tc(Dtl) a Q20

~CF2

Pc

Pc

0.290 + 0.005

0.19+0.02

0.33+ 0.01

0.074+ 0.004

0.0013+0.0004

0.274

0.22

0.35

0.084

0.0026

QO
I I I I I

0,0 Q(5 Q10 0.15 Q20 0.25 0,30 0.35 0,40
QUANTlN PARAMETER

FIG. 6. Reduced critical temperature T~ for Fermi
systems with one and two nuclear-spin states versus
the quantum parameter q. These curves are used to
determine T~ for D & 1 and Dt2 by graphical construc-
tion.
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0.14

0.12-

0.10

TABLE VI. Estimated values of the critical tempera-
ture, pressure, and molar volume for D&

&
and D&2 and

the isotopes of He. The values of Tc, P~~, and V,* were
obtained by graphical construction as shown on Figs.
6-8.

LLI

~ 0.08

a 006

0.04
')CF2

Pc(012) & 0.009~ CR

0.0 I I I I

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0. 35 0.40

QUANTUM PARAMETER g

Property

Tc
T, (K)
P*

C

Pc (atm)
V*

Vc (cm /mole)

4He

0.51
5.20
0.027
2.26
5.89

59.3

He

0.33
3.32
0.014
1.15
7.28

73.23

Dt1

0.26
1.68
0.012
0.21
8.7

263.0

Dtp

0.20
1.29
0.009
0.16
9.6

290.0

FIG. 7. Reduced critical pressure P* for both Fermi
systems versus the quantum parameter g. These curves
are used to determine P,* for Dt

&
and D)2 by graphical

construction.

16.0

14.0—

12.0— 1CF2

the line q =0.2'l4 (the value for D0) gives the val-
ues of these parameters for D4y and D&2 They
are summarized in Table VI, where the values for
He and He are also given for comparison. The

critical temperatures and pressures for Df, and

D&, are quite a bit lower than those for 'He and
~He as would be expected. However, the critical
volumes are much larger. This result is due to
the combined effects of the larger q (which in-
creases the quantum mechanical kinetic energy)
and the larger value of o (spin-aligned hydrogen
is a much bigger atom than helium).

We shall now turn to discuss the possibility of
observing quantum effects on the critical behavior
of Df 3 or ~,. This question has been addressed
by Suzuki. " He points out that the relevant length

for the critical phenomena is the correlation length

$; whereas, the relevant length for quantum phen-
omena is the thermal de Broglie wavelength X

given by

X =k/(2vmkT)' '=( 2'/ T')' 'o. (4.1)

Thus, on physical grounds one would expect quan-
tum effects to show up when A, e(. In order to make
this argument quantitative, it would be necessary
to construct the proper cross-over scaling function
and this has not yet been done. Nevertheless, the
essence of the physics has been given by Suzuki and
it is worthwhile to look at the relevant numbers.
Values for X for various substances at T,* are
shown on Table VII. Even though the values of
X, for Df, and D&, are both about 10 A, it seems
unlikely that this is large enough to affect the cri-
tical behavior. After all experiments routinely
get to within 10 ' K of the critical point where it
is expected that ]-10' A, so that $»X in each case.
Of course, there exist corrections to the leading
singular term and these might be influenced by
quantum effects. Nevertheless, it is our opinion
that it is unlikely that quantum effects or critical
behavior can be observed, at least in the most
singular term in the thermodynamic quantity under
observation.

10,0—

g &0

60

v,'(oi, ) = 9. 6

/~ vCFl

I

~C Fl TABLE VII. Thermal de Broglie wavelength at the
critical point A for various substances. The data for
Tc are taken from Refs. 5 and 6.

4.0

20-

0.0 I I I I I l I

ao 0.05 o.lo a. 15 0.20 0.25 0.30 a.35 @40

QUANTUM PARAMETER

FIG. 8. Reduced critical volume Vc for both Fermi
systems as a function of the quantum parameter g.
These curves are used to determine Vc for Dt& and
D& 2 by graphical construction.

Substance

He
'He

H2

Ne
Ar

Dt1
Dt2

Tc

0.33
0.51
0.90
1.25
1.26

0 ~ 26
0.20

(A)

5.47
3.82
2.13
0.57
0.23

9.5
10.8
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APPENDIX

where the nth terms in Eqs. (A5} and (A6) repre-
sent the contribution from g-particle exchange in
the Siater determinant. The first term in Eq. (A6},
the correlational kinetic energy, is in the same
form as the potential energy, Eq. (A2}, and so it
requires g~(r) in order to be determined. In Eq.
(A5} the function gs(r) is the "boson" distribution
function calculated with the F part of (I) only, see
Eq. (3.1). The remaining terms in Eq. (A5) are
defined by

E(p, q, 5) =q (t/N) +(()/N), (Al)

In this section we shall write down those equa-
tions needed to evaluate the ground-state energies
for the D& systems. We first write the energy per
particle in terms of the kinetic and potential en-
ergies

F ' (r„)= -I'(y»}/&

2pF'"(~„)=- —g, (~»)k(~,3) I'(y23) d r.
5

2p',. )(r ) fv.*(r. )v,(r*.),.
(A7)

where p is the density, g is the quantum param-
eter, and g is the parameter which measures the
spin distribution. The brackets represent aver-
ages defined by

and we have used

k(r) =g, (r) —1,

x l(y») l(y») dr, (A8)

(A9)

(v/&) =-,'v f(( ( ) (r)d

1 $w'v2(l)dry

J I OI'dr"
(A3)

In order to calculate the average potential ener-
gy, Eq. (A2), one needs to know the fermion radial
distribution function g~(r} which is defined by

l(y) =3[sin(y) -y cos(y)]/y', (A10)

y =k~ r = (6v'p/5)')"r . (A11)

The series is truncated after the n = 3 term, Fts),
which used the Kirkwood superposition approxi-
mation" for the three-particle distribution func-
tions.

The terms in the kinetic energy series, Eq.
(A6), are given by

g (~,.)= N(N-1) fItI'd s"rdr.
j I y I'dr" (A4)

= 3 2~u-io Z~ (A12)

1

E~ =(40E~/5) u(2k„s}(1——,'x+ x')x'dx,
0

The presence of the Slater determinant in the wave
function makes the calculation of gz(r) quite diffi-
cult. Thus, Wu and Feenberg" introduced a clus-
ter-expansion procedure in order to account for
the statistical effects in the Slater determinant.
The cluster expansion necessarily depends on the
distribution of spins and thus on 5. The param-
eter p counts the number of equally populated Fermi
seas; thus, Q =l, 2 for Dfy and D&2 respectively.
The kinetic energy, Eq. (A3), can also be devel-
oped in a "statistical" cluster expansion. Due to
the Laplacian operator, however, the expansion is
somewhat more complicated than for the potential
energy.

Thus writing down the required cluster expansion
yields

g (y») g~(y») [I Ft +(r2)+F»t3) (r») + ~ ~ ~ ], (A5)

(A13)

10@) 3
Eu, ——

3 2 8»s(x»kr)'u(x„kz)

x u(x»kp) d xydxadx3,

u(k) =S(k) -1

=p e'"''h & 4'. (A15)

The kinetic energy series was truncated after the
n =3 term, p~, which was evaluated by using the
convolution approximation for the three-particle
distribution function and a quadratic approximation
for S(k)."
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