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The variation with temperature of the sublattice magnetization of the quadratic double-layer antiferromagnet
K;Mn,F; has been determined by measuring the NMR frequency of the '°F nuclei adjacent to the Mn sites in
the double layer. The data have been analyzed in terms of a two-dimensional four-sublattice spin-wave theory.
Temperature-dependent and temperature-independent renormalization as formulated by Oguchi, as well as
temperature variation of the k = O energy gap have been included, while the integrations over the Brillouin
zone have been carried out exactly. The dispersion is 2 X 2 fold degenerate, where the lower branches
represent in-phase and the upper branches, with energy larger than 4|J|S, out-of-phase precession of the
spins in the paired layers, respectively. In a least-squares adjustment, spin-wave theory then appears to account
for the sublattice magnetization up to 28 K, to be compared with Ty = 58 K. The least-squares adjustment
yielded for the exchange constant J/kg = —7.59 +£0.03 K and for the zero-temperature energy gap
Ts(0) = 5.99 £ 0.06 K (including effects of residual c-axis dispersion), which corresponds to an anisotropy field
H, = 1.4 kG. In contrast to the single-layer structure K,MnF,, Oguchi renormalization resulted in a marked
improvement, by 9 K, of the range of concurrence over the unrenormalized theory. The functional dependence
of the sublattice magnetization of K;Mn,F, on temperature is found to be close to that in the single-layer
K,MnF,, at least at such low temperatures, that the upper magnon branches are not yet excited. Finally,

evidence is found for zero-point spin reduction in good accord with the spin-wave value A, = 0.124.

L. INTRODUCTION

During the last few years there has been a great
deal of interest in the magnetic properties of
lower-dimensional antiferromagnets,! in particular
the quadratic-layer structures with crystallograph-
ic formula K,MnF,. The magnetic ions of these
systems are situated in layers consisting of a
simple-quadratic lattice, with a nearest-neighbor
exchange at least several orders of magnitude
stronger than the interaction between the layers.
Further, in virtue of the staggered registry of
adjacent layers the exchange interactions between
them cancel, and indeed the members of the
K,MnF, family have proved to be very good ex-
amples of two-dimensional (2D) antiferromagnetic
ordering.*>"*

In this paper, we present an analysis of the tem-
perature dependence of the sublattice magnetiza-
tion, as reflected in the NMR frequency of '°F
nuclei, in K;Mn,F,, a structure expected to be
magnetically intermediate to K,MnF, and the
three-dimensional (3D) antiferromagnet KMnF,.
The crystallographic structure of K,;Mn, F, closely
resembles the single-layer structure K,MnF, in
the sense that Mn-F layers are substituted by
sheets of unit cells of the perovskite KMnF, (Fig.
1). Magnetically, the lattice of K,Mn,F, consists
of sheets of two adjoining layers of antiferromag-
netically ordered Mn?* spins. Each spin is sur-
rounded by five nearest Mn** neighbors, one of
which is located in the adjoining layer. By the

same argument as in K,MnF,, i.e., every exchange
path to a Mn?* spin in an adjacent double layer is
cancelled by a path to a spin with opposite sign,
there is no net interaction between two adjacent
double layers, at least not for £ =0 spin waves.
There may exist some residual exchange between
next-nearest double layers, but because of the
large distance, involving many intermediate
ions, this interaction is expected to be orders
of magnitude weaker than the exchange within

the paired layers. The magnetic double-

layer character of this type of structure has re-
cently been established by Gurewitz et al.’ in a
neutron-scattering experiment on the isomorph
Rb,Mn,Cl, below the ordering temperature. Rods
of reflection were observed, which in themselves
are distinctive for a layer structure. The double-
layer character was evidenced by the intensity
modulation of the rods with a wave vector 2n/a’,
where a’ is the intrapair distance between the
layers. In the isomorphic compound K,Ni,F, Ra-
man scattering has earlier been reported by Fer-
guson et al.,’ while the optical properties were
investigated by Pisarev et al.”

A principal point of interest is of course the
question whether the double layer will show the
characteristics of the 2D systems or rather re-
sembles the 3D structures. Here one should dis-
tinguish between on one hand thermodynamic quan-
tities that reflect the short-range order, such as
the susceptibility and the specific heat, and on the
other hand the sublattice magnetization, which is
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FIG. 1. Crystallographic unit cell of K3Mn,F;, as
compared to those of KMnF3; and K,MnF,. The cell of
K;Mn,F; has been extended along the tetragonal axis to

indicate more clearly the magnetic double-layer struc-
ture.

predominantly determined by long-range correla-
tions. It has been worked out® that in thin magnetic
films only four layers have to be stacked for a
virtually 3D behavior of the susceptibility and the
specific heat. The amount of short-range order

is reflected in the area of the broad maximum in
the susceptibility just above T,. The maximum
found to occur in the 2D structures appears to be
more pronounced than in the 3D case.? For the
double layer the calculations indicate a substantial
reduction of the maximum relative to 2D, in the
direction of 3D, which indeed has been observed.®°
For the sublattice magnetization the situation is
different in the sense that the temperature de-
pendence is mainly determined by long-range cor-
relations, extending over distances much longer
than the lattice parameter. In the direction per-

pendicular to the double layer, long-range order
cannot be sustained, so that the functional depen-
dence of the magnetization on temperature is ex-
pected to be close to that in the 2D single-layer
structure.

Spin-wave theory is acknowledged to describe the
sublattice magnetization up to some temperature
below T. In three dimensions, Low'' successfully
fit the sublattice magnetization in MnF, up to as
high as 0.9, where the magnetization has already
dropped to 50% of the value at T =0 K. Tempera-
ture-dependent spin-wave renormalization, as
was first formulated by Oguchi,'? was included in
his calculation. In the 2D case, the results of
spin-wave theory appeared to be less impressive.
de Wijn, Walker, and Walstedt* measured the sub-
lattice magnetization of the almost ideal 2D com-
pounds K,NiF,, K,MnF,, and Rb,MnF,, and found
excellent agreement between experiment and re-
normalized theory up to a temperature slightly
below zTy. At the point of failure of spin-wave
theory, the thermal deviation from complete align-
ment in K,NiF, is only 4%, added to 18% zero-
point motion. For K,MnF, and Rb,MnF, the failure
occurs at 7% thermal motion, while the zero-
point spin reduction is also 7%. Temperature-de-
pendent spin-wave renormalization did not essen-
tially improve the fit in K,NiF,, and a marginal
improvement by 3 K was obtained in the Mn com-
pounds. Temperature-independent renormaliza-
tion, however, results in an essential modifica-
tion of the spin-wave parameters, such as the ex-
change constant. In 2D, excitations which cannot
be properly described in terms of spin waves ap-
parently extend over a much larger temperature
region below the transition point than is the case
in 3D. Accordingly, one objective of the following
analysis is to see what improvement can be ob-
tained by including renormalization in the double
layer, in which each magnetic ion is surrounded
by five instead of four nearest neighbors and the
spatial coherence of the lattice is correspondingly
increased.

Il. SPIN-WAVE THEORY

In this section, we develop a two-dimensional
four-sublattice spin-wave theory with inclusion of
renormalization, as pertinent to the simple-quad-
ratic double-layer antiferromagnet, and review
the general features of the dispersion relation,
the sublattice magnetization, and zero-point spin
reduction in some detail. The method of applying
the results of this section to K,Mn,F, (Sec. IV)
closely resembles the earlier analysis of K,MnF,
and isomorphs by de Wijn, Walker, and Walstedt,*
and one is referred to this reference for further
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details on the assumptions on which the interpre-
tation is based.

To analyze the data we have used a model with
isotropic antiferromagnetic exchange J between
nearest neighbors and a temperature-dependent
staggered anisotropy field H, in the direction of
the tetragonal axis. In zero magnetic field the
Hamiltonian may then be written

s=]7] 3§87l 30 5,5

{1,m) (',m)

+91 Y 88 ld] T 88,

{1,m") (1',m)

~gua (T 81- 3 st TS5 =% 52
1 m 134

m'

1)

with the usual notation (g=g,). The summations
over the magnetic ions are split up over four sub-
lattices, two of them located in the lower layer
with indices ! (spin up) and m (spin down), and two
located in the upper layer with indices I’ (spin up)
and m’ (spin down). The registry of I’ and m’' with
respect to 7 and m is such that the 7 and m’ sub-
lattices, and similarly the !’ and m sublattices,

are adjacent to each other. Following the standard
approach,'® we proceed by going over to local spin-
deviation operators through the Holstein-Primakoff
transformations

Si=@S)/fa,, S,=@8)/?]f,,
Si=@S)V%al f;, Sn=(28)2f,b,, @)

S{=S-ala,, S:i=-S+b%b

with
fi=(1-ala,/28)"2, f.=(1-blb, /252

(similarly for the primed sublattices with magnon
operators c,, and d,,,), and introducing spatial
Fourier transforms a;, b;, c;, and d; over the
sublattices I, m, I’, and m’, respectively.

In order to demonstrate the general features of
the dispersion relation we first discuss the unre-
normalized theory, i.e., terms of order 1/2S and
higher are neglected. At low temperatures this
will generally be invisible in the temperature de-
pendence of the sublattice magnetization as com-
pared to the renormalized theory, except for the
replacement of J by an effective exchange interac-
tion J, and an effective spin-wave energy gap,* to
which we return later. We then find

3=C+(gugH, +5|J|S)
X E (af;a;+b£b;+c§c;+d{d;)
K
+4|J[S Y vilagbg+cidy+albl+clal)
£
+|J]s Z (@zdg+bycg+atdi+bicd), (3)
k

with C=-10|J|N,S* -4 gu N,SH,, and where N, is
the number of magnetic ions in a particular sub-
lattice. The summations run over a 2D square
Brillouin zone, while y; is a geometrical factor
given by

y;:;ll—ze’;“;:cos(%k,a)cos(%kya), (4)
6

with 5 a nearest-neighbor displacement within one
of the paired layers, and a the dimension of the
2D magnetic unit cell.

The Hamiltonian Eq. (3) may be separated into
two independent parts by a suitable canonical
transformation, which mixes the spin waves on the
up-sublattices I and I’, and down sublattices m
and m’, respectively,

a;=2"2(pz+q), cg=2"2(pz-q1), 5)
b;=2"Y2(r;+s3), dy=2"Y2(r; -sy).
Equation (3) then reduces to

t \i
se=C+ 3" [(guy Hy+5]J|S)(pipz+riry)
i

+5|J|SyHpzri+pird]

+ 2 [(enpHy+5|7|9)Gige+sise)
i

+5|J[SyEgse+alsD], (6)
with
vi=3Urp+1), YE=3Urz-1). (7)

Both parts may be diagonalized by a standard 2 X2
Bogolyubov transformation,'? thereby going over
to new magnon variables a;, etc. Introducing the
anisotropy parameter a=gu,H,/5 IJIS and the
occupation number operators nf'’=aza;, etc., for
these magnons, we finally find for the Hamiltonian
to lowest order (simple spin-wave theory)

- /
x=C'+5|J,|S zk: D =720 40+ 1)
+5|JS|SZ @O =72 +n P + 1), (8)
k

with C'=-10|J [N S(S+1) =2 gu N, (@S +1)H,, and
where we have labeled the exchange constant J and



15 SPIN-WAVE ANALYSI1S
1.2 T T
=
34 |
08
©
3‘"
0
=
W
04
| |
o'(r)t/a -— o) — w2 /a

nol 1]

FIG. 2. Dispersion of the 2 X2 degenerate spin waves
in K3Mn,F; along the [10] and [11] directions in the 2D
Brillouin zone. The lower and upper branches cor-
respond to in-phase and out-of-phase precession of the
spins in the paired layers, respectively, as indicated
schematically. The curves are computed from uzrenor-
malized theory, with ag =1.9x1073, To convert to re-
normalized theory, see Eqgs. (21a) and (21b).

the anisotropy D =1+ a with the subscript s.

The result is two sets of twofold-degenerate
spin-wave branches (Fig. 2), each of which can be
split further by an external magnetic field. The
energy of the lower branches (1) and (2) increases
from the gap energy E,=5|J,|S(2a,+a?)"? for the
% =0 magnon up to 5|J, [S[(1+ a,)? - (3)?]*/2~ 0.98
X5|J,|S at the Brillouin-zone boundary. A detailed
examination of the transformations involved in the
derivation of Eq. (8) reveals that in the semiclassi-
cal picture the £ =0 mode of the lower branch cor-
responds to a uniform precession of the four sub-
lattices with the sublattices in phase with each
other, closely resembling the semiclassical pic-
ture of a two-sublattice antiferromagnet.’* On
the other hand, the k=0 mode of the upper branches
(3) and (4) corresponds to a uniform precession
with the sublattices in one layer out of phase with
respect to the sublattices in the other layer. The
branches (3) and (4) have a 2 =0 energy gap of
5|7, |S[(2)? +2a, + a2]Y/2~0.80 X 5|J,|S, almost ex-
clusively determined by exchange. Having a rather
flat dispersion, they coincide at the zone boundary
with the lower branches. Their maximum magnon
energy of 5|J,|S(1+a,), slightly above the zone-
boundary value, lies on a contour in the Brillouin
zone given by cos(zk,a) cos(zk,a)=1.

One objective of the present study is to determine
what improvement can be achieved in describing
the sublattice magnetization with spin-wave theory
by inclusion of renormalization. Collecting, fol-
lowing Oguchi,'? all terms in the Hamiltonian up
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to first order in 1/2S, we may write the disper-
sion relation in a form similar to the one given in
Ref. 4 for the 2D single-layer structures. That
is,

E{/5|7|S= (0 - y£)/? ~g{Ro+ Ry(T)]
- 3fi{Py+P,(T)], (92)

E&/5|7|S= (D% =222 - g2[Ry+ R, (T)]

-5f{[P+P(T)]. (9b)
Here we have introduced the quantities
r_ 2 2 2\1/ 2
gi—(D—'Y;)/(D —7;) ,

(10)
" _ 2 2Y1/ 2
g;—(D—Y-;-’)/(Dz—yé) ’
L _ _ 2 _ . r2)1/ 2
== v/ D -2V 2, 11)

=02+ /D =22,

which contain the 1; dependence of the renormaliza-
tion. The temperature-independent renormaliza-
tion is determined by the summations over the
Brillouin zone

Ro=ml§ 2 [(g2-1)+ (g2 - 1], (12)
Peas 2 Ui D, @
k

and the temperature-dependent part by

k

__1 P () L @) L o (3) 5, (4)
R‘(T)_4NOSZ[gE(nE +n )+g;(n; +ng )],
k
(14)
1 '’
P‘(T)=4N_ds Z [f;(né”+n§‘”)+ff(né”+né‘“)].
k

(15)

The terms in Eq. (9) with P, and P,(T), which have
no analog in the renormalized dispersion relation
of the single-layer structures, originate from the
fivefold coordination of the magnetic sites rather
than a fourfold one with inversion. Finally, the
occupation numbers "f(:” occurring in R,(T) and
P,(T) are equated to the Bose factors

ng? =[exp(E{/k5T) - 1], (16)

thus making the dispersion relation Eqs. (9a) and
(9b) self-consistent.

The sublattice magnetization is given by M(T)
=N, g 5(S%) with

(59 =5 = Ay - AS(T). (17)

Here, 4, is the zero-point spin reduction, given
by
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s, 2 (@)

(m—%m -1)], as)

while the temperature-dependent part of (S%) can be
expressed as

..__1__ D 1) )
aS(T) =gy E(W)—xrz‘("; +ng

D (3) (4)
+ (Dz_.yf!)ﬂz(n;a +n; )) - (19)

It is noteworthy that for very low temperatures
the decrement of the magnetization AS(T') can be
expressed in an approximative analytic form. Sub-
stituting in Egs. (8) and (19) the %* approximation
yi2=1- $a%?2, neglecting terms with n{» and n{*,
and extending the upper limits of the integrals to
infinity, one finds

AS(T) = =[(1+ a)eyT/4n|J,|S]In(1 —e-%c/ T),  (20)

with T =E{42/k 5, which is precisely one half of
the result for the 2D single-layer lattice.'’® This
indicates that the functional dependence of AS(T)
in the double layer very nearly resembles AS(T)
in the single-layer structures, at least up to 7.
As discussed previously,* at low temperatures
the effects of renormalization are nearly invisible
when measuring thermodynamic quantities. How-
ever, renormalization does change the parameters
in the dispersion relation deduced from such mea-
surements. In other words, at low temperatures
the dispersion may equally well be represented
by the simple spin-wave dispersion Eq. (8), but
with effective values J; and a, for the exchange
constant J and the anisotropy parameter a.
Equating, slightly arbitrarily, the lower-branch
part of Eq. (8) and Eq. (9a) at the zone center and
at the zone boundary, we find for vanishing a,
R,(T), and P,(T),

Jy=J(1-R,-%P,), (21a)
a,=a/(1-R,-4P,), (21b)

which may be approximated further to J,=J(1 —=R,)
and a,~ a/(1 -R,), as is seen from the actual val-
ues R, and P, to be discussed below. In Sec. III
the improvement in the adjustment of theory to
experiment by temperature-dependent renormali-
zation R, will be compared to the results of a
calculation using the unrenormalized energies with
the effective parameters.

It is an unfortunate but experimentally well
established fact that the decrease of the spin-wave

energy gap E{4? with temperature is only partly
described by the temperature-dependent renormali-
zation arising from terms of order 1/2S in the
Hamiltonian. To include the additional tempera-
ture-dependent renormalization we have adopted
E%?)) or rather the anisotropy parameter a, to
vary with temperature in a semiempirical way.

It is known from antiferromagnetic resonance that
in the single-layer compounds K,MnF,,'® and
K,NiF,,'" the gap E{!;*’ scales with the sublattice
magnetization. We assume the same to be the
case in K,Mn, F,, i.e., a(T) is determined by
solving the equation [cf. Eq. (9a) for & =0]

E&D(T)=ES&2(0)[M(T)/M(0)]

va (R +R1(T)]a>
=5]J|s<(2a+a2) / - BT eT ) (22)
It is noted that this relation very nearly corre-
sponds to a(T)=a(0)[M(T)/M(0)]?, which has been
derived earlier for a tetragonal lattice.'®'® The
two relations were found not to lead to appreciably
different results.

In the computer evaluation of the dispersion re-
lation and the subsequent calculation of (S), the
self-consistency implied by Eq. (16) is implemented
by an iterative process. At a certain temperature,
given an initial choice for a, first R, and P, are
calculated by the summations [Egs. (12) and (13)]
over the Brillouin zone. Then, the set of Egs.
(9)-(11) and (14)-(16) are iterated to obtain the
remaining constants of the dispersion relation
Eq. (19), R/(T) and P,(T). Finally, Eq. (22) is
used to determine a new &, and the iterative pro-
cess is repeated, if necessary. It is noted at this
point that the evaluation of the summations over
the Brillouin zone was done without approxima-
tions by making use of the identity

N Y FO=% S LazK(@-2OFE),  @3)
r (1]

where for K(m)= [ 2d¢ (1 - m® sin®p)™/2, a com-
plete elliptic integral of the first kind, fast com-
puter routines are available.

With respect to actual contributions of P, and
P,(T) to the dispersion in K,Mn, F,, it turns out
that for the low-lying branches (1) and (2) they are
smaller than the contributions of R, and R (T) by
at least an order of magnitude. For the appropri-
ate =0.00198, R,=-0.0244, and P,=-0.0022,
only weakly dependent on @. Their prefactors in
Eq. (9a) are &= a/(2a +a?)2= 0,03 and fi=0at
k=0, while gt~1 and § f;~ -0.04 at the zone bound-
ary. Similar conclusions hold for the effects of
P,(T) relative to R,(T), as is observed from Fig.
3. Infact, nowhere in the Brillouin zone does
the correction to the spin-wave energy due to P,
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FIG. 3. Integrals over the first Brillouin zone occur-
ring in spin-wave theory vs the temperature. The tem-
perature-dependent renormalization is reflected in
k(T) and P(T), while p("z)(T) and p(3'4)(T) are the
averaged occupations (rof including the factor 2 of the
degeneracy) of the lower and upper spin-wave branches,
respectively. The temperature-independent renormali-
zations R; and P, are virtually constant, and are given
as figure entries. The integrals have been computed
during the iterative process to yield (S*(T)), as de-
scribed in text, with J/kg=~7.59 K and (0)=1.98 1073,

and P,(T) exceed one tenth of a percent, and their
effects appear to be almost unnoticeable in the
following calculations. It is further noted here
that the temperature-dependent renormalization
R, (T) of the magnon energies is opposite to the
renormalization at zero temperature R,. Finally,
Fig. 3 shows the average occupation number over
the zone (divided by 4S),

pM:IN%S Znéi), ©@4)
k

again obtained during the iterative process just
described. It is observed that above, say, 20 K
the upper branch (3, 4) is significantly populated
relative to the lower one (1, 2) and therefore may
not be omitted in calculating magnetic properties
from spin-wave theory. For example, the contri-
bution of the upper branch to AS(T), Eq. (19), is
~5% at 20 K.

III. EXPERIMENTAL

Crystals of K;Mn, F, of typical size 10 mm?
have been grown from the melt with the horizontal-
zone-melting technique. It is difficult to distin-
guish K;Mn, F; from K,MnF, macroscopically be-

cause of the similarity of crystal structure and
pink color. The dimensions of the tetragonal crys-
tallographic unit cell have been pubhshed by
Cousseins® to be a,=a/V2=4.19 A, ¢,=21.66 A

at room temperature. However, these values are
possibly less accurate, since the same values for
a, were reported in KMnF; and K,MnF,. Because
an accurate knowledge of this parameter provides
an estimate of the exchange constant, we redeter-
mined the lattice constants of K,Mn,F, at room
temperature. The results are a,=4.191+0.005 A
and ¢,=21.62+0.03 A, Recent values by Navarro
et al® are a,=4.183+0.002 A and c,=21.592
+£0.008 A.

The temperature dependence of the sublattice
magnetization has been measured by observing the
NMR frequency f(T) of *°F nuclei adjacent to Mn?*
ions in the double layer. In zero external magnetic
field these nuclei resonate in a transferred hyper-
fine field, partly of dipolar origin (~25%) and
scaling with the sublattice magnetization as ex-
pressed by f(T)=A(**F){S*)/r, where A(*°F) is the
transferred hyperfine coupling constant. The
NMR frequency was measured by exciting the nu-
clei with a high-power rf pulse with a duration of
a few usec, and beating the free-induction decay
following the excitation with a standard oscillator.
The coil wound around the sample was used for
both excitation and detection. The external field
being zero, the orientation of the sample is essen-
tial only with respect to the rf field, which should
be perpendicular to the tetragonal axis. The de-
tection system consisted of a tunable very-high-
frequency receiver with fast recovery against
overload, followed by a balanced mixer driven by
the standard oscillator. The decay times were of
the order of 10 usec at 4.2 K, decreasing slightly
at higher temperatures. At low temperatures the
width of the NMR amounted to 40 kHz, apparently
of inhomogeneous origin and probably due to local
distortions of the magnetic lattice, increasing to
about 200 kHz at 35 K. The relaxatlon time T,
was about 3 min at 1.5 K, a few seconds at 4 2 K,
dropping to a few milliseconds as soon as the tem-
perature was raised above the magnon energy gap.

Temperature stabilization below 4.2 K was ac-
complished by controlled pumping of the liquid
helium in which the sample was immersed, above
4.2 K by controlled heating of a continuous helium
gas stream with a stability of 0.02 K. Tempera-
tures were measured with a germanium resistor,
carefully calibrated against standard platinum and
germanium resistors, with an estimated inaccura-
cy of 15 mK below 4.2 K and 50 mK at the higher
temperatures. In the following analysis (Sec. IV)
the inaccuracy in the temperature, which is the
major source of the experimental uncertainties,
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FIG. 4. NMR frequency f (T) of the !°F r iclei adjacent
to the magnetic double layer vs temperature. The spin-
wave energy gap is indicated by T(0). The solid curve
is calculated from a least-squares adjustment to renor-
malized spin-wave theory.

has been propagated to the error in the frequency.
The overall inaccuracy of the frequency then is
five parts in 10° at the lowest temperatures, in-
creasing to five parts in 10 at 30 K. The experi-
mental results are presented in Fig. 4, where it is
noted that the accuracy cannot be represented on
the scale of the figure.?

IV. DISCUSSION

In this section, we will present the results of a
least-squares analysis of the experimental data
in terms of the spin-wave results for the sublattice
magnetization and the zero-point spin reduction
with inclusion of Oguchi-type renormalization, as
obtained in Sec. II. In addition, we will discuss
the temperature dependence of the sublattice mag-
netization of the double layer in comparison to the
single layer as well as the 3D antiferromagnet.

In the least-squares fit three adjustable parame-
ters have been used, viz., the exchange constant
J, the gap T';(0) of the spin-wave spectrum at T
=0K, and the zero-temperature NMR frequency
f(0). Here it is already noted that £(0) is deter-
mined to high precision, and turns out to be only
very weakly correlated to the least-squares output
values for J and T;(0). Therefore, we will not
consider f(0) further in connection with the least-

squares fit, and quote its value as a figure entry
only (Fig. 5). To find the largest temperature
region of concurrence between theory and experi-
ment, within the experimental errors, we have
extended the temperature range of the least-
squares adjustment from the data points at the
lowest temperature (1.2 K) to a series of different
upper temperature limits. In Fig. 5 the results

of the fits are given in a condensed form. The
errors in the least-squares output values of the
parameters, propagated from the errors in the
NMR frequencies, are adopted to be twice the
standard deviations, corresponding to a 98% prob-
ability of finding the true values within the errors.
The output values for J and T;(0) are however
strongly correlated. For two upper limits of the
temperature we have plotted error ellipses corre-
sponding to two standard deviations, i.e., contours
enclosing the 98% probability area of a particular
combination of J and T ;(0), to show the strong de-
crease in error limits when the fitting range is ex-
tended to higher temperatures, while for the other
upper temperatures only the centers of the ellipses
aregiven. Due to the highcorrelation (the correla-
tion coefficient o is about -0.98 for all fits), these
points are scattered roughly along a straight line.
Above 28 K there is, however, a distinct trend for
the centers to move downwards. Beyond this tem-
perature the area of the error ellipses starts to

7.7
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FIG. 5. Output values of the least-squares adjustments
of the NMR frequency f (7) in K;Mn,F; to renormalized
spin-wave theory. The closed circles represent the out-
put values for the exchange J and the zero-temperature
gap T(0) obtained from fits to all data up to the tempera-
tures indicated. Error ellipses of two standard devia-
tions are given for the fits up to 18 and 28 K only. The
projections of the 28K ellipse on the axes represent the
most accurate values for J and T¢(0).
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FIG. 6. Deviation of the experimental resonance frequency f(T) in K;Mn,F; from the frequency calculated from re-
normalized spin-wave theory (open circles) with the parameters obtained in the least-squares fit up to 28 K. Note the
distinet break from renormalized theory above this temperature. The result of unrenormalized theory (closed circles),
with effective parameters J; and o ; [see Eqs. (21a) and (21b)] derived from the renormalized fit up to 28 K, shows that
renormalization extends the range of concurrence by 9 K. The result of spin-wave theory in the k? approximation
(crosses), withJ and o as for the unrenormalized theory, indicates the necessity of integrating exactly over the

Brillouin zone.

increase, and it appears to be no longer feasible
to fit theory to the data within the experimental
errors. In summary, it is believed that the upper
limit of 28 K represents the onset of the break-
down from spin-wave theory with the inclusion of
the Oguchi corrections. The fit up to 28 K then is
the most accurate one, the output values of which
are the exchange constant J/k;=-7.59+0.03 K and
the zero-temperature gap 7;(0)=5.99 +0.06 K.
With these values the solid line in Fig. 4 is calcu-
lated. To demonstrate the breakdown of spin-wave
theory more clearly, we also plotted the deviation
between experimental and calculated NMR fre-
quencies f(T) ~fpeor (T) against the temperature in
Fig. 6 as the open circles. To show the improve-
ment that could be obtained by including the tem-
perature-dependent Oguchi corrections R,(T) and
P (T) in the dispersion relation, in Fig. 6, the
results are included as the dotted points, of a
calculation based on simple spin-wave theory

[Eq. (8)], but with effective parameters Jgand o
as explained in Sec. II. While below 18 K there is
no significant difference between the two calcula-
tions, the onset of the breakdown is reduced by

9 K. The crosses in Fig. 6 again represent simple
spin-wave theory, but with the dispersion relation
in the &* approximation [see Eq. (20)]. The be-
ginning of the breakdown is dramatically reduced
to 8 K, indicating that it is essential to carry out
the summations over the Brillouin zone exactly.

Further inspection of the calculations reveals that
the contribution from the upper-magnon dispersion
branches (3) and (4) already becomes of importance
beyond 12 K, at a point where the occupation num-
bers n{**) are still less than, say, 2 X103, This
is due to the flat dispersion of the upper magnon
branches, so that, although a particular mode
contributes only little to the decrement of the mag-
netization, the collective contribution from all
modes over the Brillouin zone results in a notice-
able effect (cf. Fig. 3).

InSecs. IV A-IV E we will successively discuss in
detail the output values of the least-squaresadjust-
ment and some parameters deduced from them.

A. Exchange constant

We first compare the present output value for the
exchange J with some recent experimental values.
At low temperatures, two-magnon Raman scatter-
ing,?? in which magnons near the Brillouin-zone
boundary are observed rather than those in the
center of the zone, yielded J/k,=—1.54+0.12 K,
in excellent agreement with the value obtained
here. Excellent accord is also found with the ex-
change parameter determined by us from the sus-
ceptibility of a single-crystal specimen.'® From
spin-wave theory applied to the perpendicular sus-
ceptibility at zero temperature, J/k,=-7.62+0.15
has been obtained, while a spin-wave analysis of
the parallel susceptibility as a function of tempera-
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ture yielded J/ky=-7.7+0.2 K. At temperatures
above the Néel point, Navarro et al.,’ using a high-
temperature series for the susceptibility of z-
layer Heisenberg films,® derived from the suscep-
tibility of a powdered sample a value of J/ky
=-8.08+0.32 K, definitely beyond the error limits
with respect to the result below T,. We have also
carried out susceptibility measurements on the
single crystal in the paramagnetic regime.'® Full
agreement with their conclusions was found (J/kB
=~8.04+0.24 K), but it is noted that also our single
crystal data did not fit the series expansion cor-
rectly in the region of maximum susceptibility just
above T,. The latter point leads one to the tenta-
tive observation that J values deduced from the
series expansion may exhibit a systematic error.
Another possibility is the occurrence of a crystal-
lographic phase transition around T,, which would
slightly change the interaction distances. In fact
our measured susceptibility perpendicular to the

c axis shows a small oscillation at the transition.

It is of interest to see whether there exists a
monotonic variation of the J values with the Mn?**—
Mn®* distance in the related manganese compounds
K;Mn, F,, K,;MnF,, and KMnF,. The exchange
coupling depends strongly on the Mn?*-Mn®* dis-
tance a,, varying between J xa? and J xa?’, as
has been found both experimentally and theoretical-
ly 2%2¢ When for a, in K,Mn, F, the average of the
values quoted in Sec. III is taken, we have a,
=4.188 A at room temperature. For K,MnF, and
KMnF, these distances are, on the average?®
a,=4.172 A and a,=4.190 A, respectively. This
suggests a conformity between the exchange cou-
pling in K;Mn,F, and KMnF,, which is confirmed
by the experimental value for the latter at low
temperatures J/k,=-7.6+0.2 K.?

We have also considered the possibility of a dif-
ference between the Mn?* — Mn?** exchange constant
along the ¢ axis and the exchange constant with-
in the layer, as a result of small differences
in the corresponding Mn®*—Mn?** distances. How-
ever, from analysis of the sublattice data it ap-
pears impossible to resolve such a difference in
the exchange within (J) and between (J’) the paired
layers. Least-squares adjustment of the properly
modified Egs. (9)-(19) with the two J’s differing
by say 10% still extends to the same limiting tem-
perature of 28 K, but with somewhat modified
least-squares output parameters for J and T;(0).
We limit the discussion to an example to show the
influence on the fitted parameters. With J'=0.9J
(corresponding to an elongation of about 0.03 A
along the ¢ axis, which may be considered to be
an upper limit) we find for the intralayer exchange
J/kg==17.70+0.03 K and for the zero-temperature
gap T;(0)=5.87+0.06 K. Numerically, it appeared

that the exchange constant weighted by the number
of neighbors, i.e., 3(4J+J’) stays nearly constant,
while the fitted gap scales with (4J+J’)/5J.

B. Zero-temperature energy gap

From the energy gap at T=0 K [cf. Eq. (9a)] we
derive for the anisotropy constant a(0)=(1.98
+0.06) X 1073, which corresponds to a staggered
anisotropy field H, =1.40+0.04 kG. Lattice sum-
mation with (S%=2.376, i.e., with inclusion of the
zero-point spin reduction (see below), yields for
the dipolar field H,=1.20 kG, which corroborates
the notion that the anisotropy field is mainly of
dipolar origin. The difference of 0.2 kG must be
attributed to crystalline-field effects, where it is
noted that the difference is of the same size, but
of opposite sign, as in the single-layer K,MnF,.
Further it is noted that the gap at 7=0 K corre-
sponds to a spin-flop field of 44.6+ 0.5 kG.

It should be emphasized, however, that the pres-
ent results for gap and spin-flop field are suscep-
tible to the effects of residual exchange J, with
magnetic ions in next-nearest double layers. Such
an exchange coupling along the ¢ axis can be repre-
sented by an effective energy gap* E!I~ E, /(1
+|J,[/5|7|@), where E% is the gap measured on
the basis of the least-squares adjustment used
here, and E,_, is the real gap, which is smaller
for both ferromagnetic and antiferromagnetic J,.
The consequence is that J, as small as |J,/J|= 10~
will result in deviations outside the error limits
between the gap as deduced from the sublattice
magnetization and experiments in which the energy
gap is measured directly, such as antiferromag-
netic resonance. Further conclusions await such
measurements to be done.

C. Zero-point spin reduction

A quantity in which the dimensionality of the mag-
netic lattice is strongly reflected is the zero-point
spin reduction. Because the anisotropy field
favors the complete alignment of the spins, the
reduction 4, is dependent on @, and in fact 4, is
vanishingly small for a~ «, Since the density of
magnon states of long wavelengths, which give the
main contribution to 4, [Eq. (18)], is higher the
lower the dimensionality of the lattice, the reduc-
tion is strongly raised when the dimensionality is
lowered. Inthe absence of anisotropy, spin-wave
theory yields for the 2D simple-quadratic lattice
4,=0.197, for the double layer A;=0.136, and for
the 3D simple-cubic (sc) lattice 4,=0.078.

Experimentally, the zero-point spin reduction
can be determined via the hyperfine field exerted
on the nucleus of the magnetic ion itself, or the
nucleus of a surrounding ion. Because of the un-
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certainties in the hyperfine coupling constant, the
reduction in 3D is only marginally resolved
(MnF,: A,=0.0043+ 0.0034).2¢ In the compound
K,MnF,, where the effect is more pronounced,
good accord has been found between experiment,
A,=0.17+0.03,*" and the spin-wave result with in-
clusion of a=0.0038, A,=0.170.

For the double layer K,Mn,F,, an estimate of the
zero-point spin reduction was made by comparing
the zero-temperature NMR frequencies of K;Mn, F,
and K,MnF,. The transferred hyperfine coupling
constant A(*°F) has beenassumed the same for both
compounds, but a correction for a different dipolar
lattice contribution has been incorporated. With
these assumptions for the zero-point spin reduc-
tion A;=0.12+0.03 is deduced. Spin-wave theory
with inclusion of anisotropy [Eq. 8)] yields 4,
=0.124, where it is noteworthy that the contribu-
tion of the upper branches (3) and (4) amounts to
0.011. The agreement is perhaps somewhat for-
tuitous considering the uncertainties in the coupling
constant A(**F) in K,Mn,F,, but anyway the result
indicates that the zero-point spin reduction is in-
termediate between the 2D and 3D sc lattices.

D. Néel temperature

It is not feasible to obtain an accurate value of
the Néel temperature by extrapolating the NMR
data to zero frequency because of the increase of
the linewidth in approaching the transition and the
small size of the crystal. We found T, =60+5 K
from comparison with K,MnF,, while in recent
susceptibility measurements'® we arrived at T
=58+ 1 K. In this connection it is noteworthy that
Ikeda and Hirakawa®® reported a second phase
transition at 58 K in their neutron experiments on
K,MnF,, which they attributed to an ordering to a
Ca,MnO, magnetic structure. It seems now more
likely that some K;Mn, F, was present in their
sample. An estimate of the transition temperature
can also be made by use of a theoretical result
by Ritchie and Fisher,® who obtained T\ =1.25|J|S?
from the analysis of a high-temperature series
expansion for n-layer Heisenberg films. Although
derived for a ferromagnetic exchange, this yields
Ty=59.4 K, a value in reasonable agreement with
the above results.

E. Comparison with 2D and 3D

To compare the double-layer antiferromagnet
with the 2D quadratic single layer on one hand and
the “infinite-layer” 3D sc antiferromagnet on the
other hand, we calculated in Fig. 7 the sublattice
magnetization versus the temperature for the three
structures on the basis of spin-wave theory. Here,
the sublattice magnetization is normalized to the
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FIG. 7. Sublattice magnetization as a function of the
reduced temperature for the simple-quadratic (2D)
single layer (n =1, z=4), the simple-quadratic double
layer (n=2, z=5) and the simple-cubic (3D) lattice
(“infinite layer,” n==, 2=6). The curves are computed
from spin-wave theory, as described in text. To facili-
tate comparison, for all structures S=% and o=0.002
has been adopted. Also note the dependence of the zero-
point spin reduction on n.

fully aligned Néel state, while the temperature is
scaled with respect to the relevant parameter in
spin-wave theory, the exchange energy z |J|S,
where z is the number of nearest neighbors. To
facilitate comparison we adopted for all structures
S=% and @=0.002, as appropriate for the double-
layer K;Mn,F,. For the double layer and the single
layer the calculations are “exact”, i.e., spin-wave
theory was renormalized according to Oguchi, a
temperature-dependent anisotropy was used, and
the summations were carried out over the com-
plete Brillouin zone without approximations (cf.
Sec. IT). For the temperature dependence of the
sublattice magnetization of the 3D cubic system,
an approximative analytic expression originally
given by Eisele and Keffer®® was used, which, al-
though valid for the low-temperature region only,
is sufficiently accurate for our present purposes.
At temperatures in the neighborhood of the transi-
tion temperature, spin-wave theory as used here
underestimates the drop in the magnetization, but
some idea about the course of the curves to the
right may be obtained from the transition points

of the three structures, which experimentally are
kpTy/z|J|S=0.50for the single layer,' 0.61 for the
double layer,'° and 0.80 for the 3D structure.!

As was indicated in connection with the analytic
expression in the k% approximation Eq. (20), the
functional dependence of the magnetization at low
temperatures is the same for the double layer
and the single layer, apart from a constant factor.
The reasons for this are, first, that magnons in
the upper two branches (3) and (4) are virtually
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not excited at low temperatures, which as com-
pared to the single layer halves the number of oc-
cupied states per magnetic ion, and, secondly,
that for low % the dispersion relation for the lower
branch reduces to the single layer result, except
for a factor 2 due to the different number of mag-
netic neighbors. Thus at low temperatures the de-
crement of magnetization of the double layer, with
reference to zero temperature, is 3 X$=0.625
times that of the single layer. Inspection of Fig. 7
reveals that this factor is rather well preserved
also at the higher temperatures, the reason obvi-
ously being that even then the low-£ region of the
Brillouin zone provides the main contribution to
the magnetization. A similar conclusion is ex-
pected to hold for a three-layer antiferromagnet,
which has three twofold-degenerate spin-wave
branches, with a smaller factor (~0.5), and so on.
However, when increasing the number of layers,
the spacing between the spin-wave branches will
eventually become smaller than 2 T, so that higher
branches, which correspond to 2+ 0 along the z
axis, will be populated. In other words, the dis-
crete dispersion along the z axis will go over to

a continuum, and the functional dependence of the
magnetization on temperature will be 3D rather
than 2D.

The similarity of the temperature dependence of
the sublattice magnetization in the double layer and
single layer is also reflected in the experimental
fact that renormalization effects in both K;Mn, F,
and K,MnF, become visible outside the error limits
at temperatures beyond k,T/z |J|S~0.20. Like-
wise, in both structures spin-wave theory with
proper renormalization throughout the entire
Brillouin zone appears to break down at a tempera-
ture slightly lower than half the transition point.
In K;Mn, F, the extension of the fit by renormaliza-
tion is about 9 K, as compared to 3 K for K,MnF,.
Still, itisnotlikely that a different type or higher-
order renormalization will substantially improve
upon the concurrence of spin-wave theory and ex-
periment. Instead, as was found to be the case
in the single layers K,MnF,, Rb,MnF,, and
K,NiF,,* the point 37, or perhaps a slightly higher
temperature in case of the double layer, seems to
be a characteristic temperature, where spin de-
viations not properly treated by spin-wave theory
set in.

V. CONCLUSIONS

The main results of this investigation can be
sgmmarized as follows. A least-squares adjust-
ment of the experimental data to spin-wave theory
with inclusion of Oguchi renormalization to first
order in 1/2S as well as temperature-dependent

renormalization of the spin-wave gap yields an
excellent fit, within the experimental errors, up
to 28 K. At this temperature the magnetization
has dropped by 11% relative to the zero-tempera-
ture value, as compared to 7% at the point of
breakdown in the single-layer structure K,MnF,.
The temperature-dependent renormalization re-
sults in a marked improvement of about 9 K in the
fit. Also accordance, perhaps slightly fortuitous
in view of the experimental method, has been
found between the experimental zero-point spin
reduction and the relevant spin-wave result. The
output parameters of the adjustment, i.e., the ex-
change constant J, the zero-temperature spin-
wave gap T,;(0), and the zero-temperature reso-
nance frequency f(0) have been summarized in
Table I. We have also tabulated some derived
quantities, such as the anisotropy parameter a,
and some spin-wave constants reflecting the di-
mensionality of the magnetic lattice, such as the
temperature-independent renormalizations P, and

TABLE 1. Summary of various quantities for the dou-
ble-layer antiferromagnet K3Mn,F;, and comparison
with the corresponding values of the single-layer K,MnF}.
Unless indicated otherwise, the values for K;MnyF; refer
to the present work, those for Ky;MnF, to Ref. 4.

Parameter K;3Mn,Fq KyMnF,
T 5(K) 58+12 42.1°
A 0.124°¢ 0.170¢
0.12+0.03 0.17+0.03°
R, —-0.02441 —~0.0316
P, —~0.0022¢ ces
f(0)(MHz) 153.050 +0.005 150.477 £0.003
J/kp(K) —7.59+£0.03 —8.41+0.06
—7.62+0.15%
J/kp(K) -7.78+0.03 —8.67+0.06
T c(0)(K) 5.99+0.06! 7.54+0.07}
«(0) 0.0020 0.0038
H,4(kG) 1.40 2.35
HpkG) 1.20? 2.407

*From susceptibility (Ref. 10).

PR. J. Birgeneau, H. J. Guggenheim, and G. Shirane,
Phys. Rev. B §_, 304 (1974).

¢Spin-wave value, Eq. {18), assumed in the fitting
procedure.

dSpin-wave value (Ref. 4).

®Reference 27.

! Equation (12).

€ Equation (13).

B From spin-wave fit to perpendicular susceptibility at
zero temperature (Ref. 10).

L Effective values, including effects of residual c-axis
exchange coupling (see Appendix B to Ref. 4). In K;MnF,
the antiferromagnetic-resonance value, not including
these effects, is 7.40+0.05 K (Ref. 16).

 With inclusion of zero-point spin reduction.
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R, and the zero-point spin reduction 4,. For com-
parison, also the corresponding values for the
single layer K,MnF, have been included. The ex-
change parameter obtained here agrees well with
those from the susceptibility in the ordered re-
gime, but the observed difference of 5% with J de-
duced from susceptibility measurements above T
is not conclusively explained. It is noted that a
zero-point spin reduction A, different from the
spin-wave value used here, would result in a slight
variation in the value deduced for J, because in the
calculations the quality of the least-squares fits

is not appreciably altered when Jis correlated to
A, according to J(S - A,) is constant. However, it
is highly improbable that this could modify the out-
put value of J by more than 1%, or remove the
discrepancy.

In comparing the double-layer structure to the
corresponding 2D and 3D structures, it is con-
cluded that the functional dependence of the sub-
lattice magnetization at low temperatures resem-
bles more closely the single-layer structure. This
would indeed be expected, since along the ¢ axis
of the double-layer structure only two values of
k, are allowed, viz., k,=0 and k,=7/a’. These
dlffer in energy by ~4 |J |S in the zone center (Fig.
2), so that at low temperatures (¢,7 <4|J|S) the
vast majority of thermally excited spin waves will
have 2,=0. In other words, a particular spin in
the upper layer is precessing in phase with its
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nearest neighbor in the lowerlayer. The magnon
energy of the lower branches is therefore the
same as in the single layer, apart from a factor
~3 due to the difference in the number of nearest
neighbors (and a different ), resulting in a simi-
lar dependence of the sublattice magnetization

on temperature, at least at low temperatures. In
our experiments, however, the effects of excita-
tion of the upper branch of the spin-wave spectrum
become noticeable at temperatures above 12 K.
From the above point of view it is not surprising
that similarly to the 2D structures K,MnF,,
Rb,MnF,, and K,NiF, spin-wave theory breaks
down at a temperature slightly lower than %TN.
As in these last-mentioned compounds it is be-
lieved that at this temperature magnetic excita-
tions not properly described by spin-wave theory
set in.
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K,MnF, KsMn,Fy

FIG. 1. Crystallographic unit cell of K3Mn,F;, as
compared to those of KMnF; and K,MnF,. The cell of
K;Mn,F; has been extended along the tetragonal axis to
indicate more clearly the magnetic double-layer struc-
ture.



