Low-temperature ordered states of lithium rare-earth tetrafluorides $(LiRF_4)$

Sushil K. Misra

Physics Department, Concordia University-S.G. Williams Campus, 1455 De Maisonneuve Boulevard West,

Montreal, Quebec H3G 1MS

Joshua Felsteiner

Physics Department, Technion-Israel Institute of Technology, Haifa, Israel (Received 10 August 1976; revised manuscript received 30 November 1976)

The low-temperature ordered states of lithium rare-earth tetrafluorides ($LiRF₄$) are investigated using a generalization of the Luttinger-Tisza method. It is found that for those LiRF₄ for which the ratio g_1/g_1 is greater than 1.017748 ferromagnetic ordering in the c direction corresponds to the configuration with the lowest energy, otherwise the lowest-energy configuration is the layered antiferromagnetic ordering in the ab plane. These predictions are in agreement with the experimental observations for $LiTbF₄$ and $LiHoF₄$, the only materials in the family of $LiRF_4$ experimentally investigated so far.

I. INTRODUCTION

Considerable interest has been expressed recently in the magnetic properties of $\text{LiR}_{x}Y_{1-x}F_{4}$ $(R$ is a rare earth); absorption and fluorescence,¹ and EPR' spectra have been obtained for these materials. They are efficient laser materials' and can be used for frequency conversion in the infrared-visible region.⁴ These materials are simple for theoretical treatment, owing to their high point symmetry, as well as the rare earths being fairly ionic atoms, which are coupled predominantly by the dipole-dipole interaction.

Of the various LiRF₄, the orderings of only

TbF₄ and LiHoF₄ have been observed experientally.^{5,6} (Hansen *et al.*⁶ concluded by ext $LiTbF₄$ and $LiHoF₄$ have been observed experi m_4 and m_4 have been observed experi-
mentally.^{5,6} (Hansen *et al.*⁶ concluded by extrapo lation that below 0.5 K LiEr F_4 will order ferromagnetically, with the magnetic moments in the crystalline ab plane.) Both LiTbF₄ and LiHoF₄ are found to order ferromagnetically, with the transition temperatures (T_c) being⁵ 2.874 and⁶ 1.30 K, respectively. The LiRF₄ possess a bodycentered- tetragonal crystal structure, containing centered-tetragonal crystal structure, containin
four R⁺⁺⁺ ions per unit cell. The Luttinger-Tisz (LT) method,⁷ as originally proposed for the calculation of the energies of magnetic configurations, is not, in general, applicable to the case of more than two ions per unit cell. δ In view of the recently proposed generalization of the LT method' for the case of highly anisotropic dipole-dipole interaction, it is possible to treat the cases of $LiTbF₄$ and LiHoF₄, since for these materials the g tensor is highly anisotropic, as well as the conditions for the applicability of the LT method using permutation groups are satisfied for configurations characterized by \vec{T} periodicity $(\vec{T} = l\vec{a} + m\vec{b} + n\vec{c}; l, m, n)$ are positive or negative integers, or zero, and $\overline{a}, \overline{b}, \overline{c}$ are unit-cell vectors). For those LiRF₄, for which the g tensors of the R^{+++} ion are not

highly anisotropic it turns out (Sec. II) that the extended LT method using permutation groups is still applicable to the configurations characterized by \overline{T} periodicity because of the particular crystal symmetry of $LiRF_4$. It is then possible to calculate the energies of the various configurations (ferromagnetic, antiferromagnetic, and layered antiferromagnetic) and thus predict the kind of low-temperature ordering (corresponding to the lowest energy) expected for a given g_{\parallel}/g_{\perp} ratio, where g_{\parallel} and g_{\perp} are the principal values of the effective g tensor of the lowest-lying Kramers doublet of the particular rare-earth ion considered.

It is the purpose of this paper to calculate the low-temperature orderings of the various $LiRF₄$ by proposing an extension of the LT method using permutation groups for configurations characterized by \vec{T} periodicity. This extension is discussed in Sec.II. Only the dipole-dipole interaction is considered; the exchange interaction is ne- $\sum_{i=1}^{n}$ of $\sum_{i=1}^{n}$ for the dipole-dipole interaction is
considered; the exchange interaction is neglected.^{5,6} In Sec. III relevant details of the crystal structure of $LiRF₄$ are presented. Section IV deals with the calculation of energies of the various configurations. The conclusions are summarized in Sec. V.

II. CRYSTAL STRUCTURE OF LiRF4

Figure 1 shows the positions of R^{++} ions in the unit cell of $LiRF₄$. The crystal structure for these salts is the same as that for the mineral scheelite (CaWO₄).¹⁰⁻¹² The ionic positions are $\mathbf{r}_1 = (0, 0, \frac{1}{2}c)$,
 $\mathbf{r}_2 = (0, \frac{1}{2}a, \frac{3}{4}c)$, $\mathbf{r}_3 = (\frac{1}{2}a, \frac{1}{2}a, 0)$, $\mathbf{r}_4 = (\frac{1}{2}a, 0, \frac{1}{4}c)$. Positions 3 and 4 are obtained from 1 and 2 by the body-centering translation $(\frac{1}{2}a, \frac{1}{2}a, \frac{1}{2}c)$. In the primitive unit cell, which has a volume of half the tetragonal unit cell, only sites ¹ and 2 need be included. All R^{+++} sites, however, are magnetically equivalent; the point symmetry is S_4 in the absence

FIG. 1. Positions of Tb^{***} ions in the body-centeredtetragonal unit cell of LiTbF4.

of an applied field. The unit-cell parameters for the various $LiRF₄$ are listed in Table I.

In the following discussion the z axis is chosen parallel to the c axis.

III. EXTENSION OF THE LT METHOD

The LT method using permutation groups is now briefly reviewed. In this method one calculates the energies corresponding to various ferro-, antiferro-, and layered antiferromagnetic configurations, wherein the whole lattice is divided into $8n$ sublattices (n is the number of magnetic ions per unit cell); within each sublattice (characterized by $\vec{T}^2 = 2l\vec{a} + 2n\vec{b} + 2n\vec{c}$ translations) all spins point in the same direction. It then follows that the LT method is applicable (i.e., the "weak" condition also satisfies the "strong" condition) provided that

$$
A_{P_t i, P_t j}^{\alpha \beta} = A_{ij}^{\alpha \beta},
$$

\n
$$
(\alpha \beta = x, y, z; i, j = 1, 2, ..., 8n),
$$
\n(1)

where P_t are the groups of permutation of $8n$ elements (listed in Ref. 8). The $A_{ij}^{\alpha\,\beta}$ in Eq. (1) are defined (assuming the existence of dipole-dipole interaction only) by

$$
A_{ij}^{\alpha\beta} = \sum_{i \in \{j\}} J_{ij}^{\alpha\beta} \text{ for } i \neq j ,
$$

$$
A_{jj}^{\alpha\beta} = \sum_{i \in \{j\}, i \neq j} J_{ji}^{\alpha\beta} ,
$$
 (2a)

TABLE I. Unit-cell parameters a and c for the vari-

 $n_{\text{Reference 5.}}$
 $n_{\text{Reference 11.}}$

^c J. D. H. Donnay, G. Donnay, O. Kennard, and O. King, Crystal Data Determinative Tables (American Crystallographic Association, Washington, D. C., 1963), Vol. 2, 3rd ed.

$$
J_{ij}^{\alpha\beta} = \frac{S^2 \mu_B^2 g^{\alpha\alpha} g^{\beta\beta}}{r_{ij}^3} \left(\delta_{\alpha\beta} - \frac{3r_{ij}^{\alpha} r_{ij}^{\beta}}{r_{ij}^2} \right) . \tag{2b}
$$

In Eq. (2a), $\{j\}$ denotes the set of lattice sites generated by the application of \vec{T}^2 to spin j. In Eq. erated by the application of T² to spin j. In Eq.
(2b) the $g^{\alpha\alpha}$ represent the diagonal elements of the effective g tensor (a coordinate system in which the g tensor is diagonal is chosen), \overline{r}_{ij} is the vector drawn from spin *i* to spin *j*, μ_B is the Bohr magneton, S is the ionic spin, and $\delta_{\alpha\beta}$ is the Kronecker delta.

The case of $LiRF_4$, while it does not satisfy the condition represented by Eq. (1) for \overline{T}^2 sublattices, is, nevertheless, amenable to treatment by the LT method using permutation groups provided the $\{j\}$ in Eq. (2a) denote the set of lattice sites generated by the application of \overrightarrow{T} to spin j [i.e., then Eq. (1) is satisfied]. This can be easily seen from Fig. 1 showing the positions of the R^{+++} ions in the unit cell. Thus, for this case, all those ionic spins which are related by \overline{T} translations $(T$ sublattices) point in the same direction.

IV. ENERGIES OF VARIOUS CONFIGURATIONS

Specifically for $LiRF_4$, four types of magnetic orderings with \tilde{T} periodicity corresponding to each of the X, Y, Z , directions can be considered—one ferromagnetic configuration, one antiferromagnetic

	der the
$P_i =$ Identity	
$P_2 = (1, 2)(3, 4)$	
$P_3 = (1,3)(2,4)$	
$P_4 = (1, 4)(2, 3)$	q(1)
	q(2)

configuration (spine 1, 2 parallel, spins 3, 4 antiparallel), and two layered antiferromagnetic configurations $($ a) spins 1, 2 parallel, spins 3, 4 antiparallel; (b) spins 1, 4 parallel, spine 2, 3 antiparallel]. The eigenvectors of the various configurations are⁸ $\phi(k, \alpha) = q(k)\phi_k(\alpha)$ (k = 1, 2, 3, 4; $\alpha = x, y, z$, where the $q(k)$ are as follows:

Ferromagnetic antiferromagnetic

layered antiferromagnetic

The $\phi_k(\alpha)$ are the eigenvalues of the matrix L_k whose elements are defined as

$$
L_{k}^{\mu\nu} = \sum_{j=1}^{4} A_{ij}^{\mu\nu} \epsilon_{P(i,j)}(k) ,
$$

(*i*, *j* = 1, 2, 3, 4; $\mu, \nu = x, y, z$). (3)

In Eq. (3) the sum is independent of i, $P(i, j)$ is the permutation of four objects containing the

TABLE II. Permutations P_t of four objects. TABLE III. Eigenvalues $\epsilon_{P_t}(k)$ of the vectors $q(k)$ under the permutations P_t .

	P_1	P ₂	P_3	P_{4}
q(1)				
q(2)		-1		-1
q(3)			$^{-1}$	-1
q(4)		- 1	-1	

cycle (i, j) (listed in Table II), and $\epsilon_{P(i, j)}(k)$ is the eigenvalue of permutation $P(i, j)$ with respect to $q(k)$, listed in Table III. The lattice sums required for $A_{ij}^{\mu\nu}$ are listed in Table IV, using the parameters for $Lipbf{if}$. (These lattice sums are also used for other $LiRF₄$, owing to small differences in the unit-cell parameters for $LiRF_4$).

The lowest energies corresponding to orientations of the spins in the X , Y , and Z directions are as follows in terms of g_{\parallel} and g_{\perp} , the components of the g tensor parallel and perpendicular to the c axis.

Z direction: -0.005 370(g_{\parallel})² K (ferromagnetic), taking into account the demagnetization factor of $\left(-\frac{4}{3}\pi n_0\right)\left(\frac{1}{2} g_{\parallel}^2 S^2 \mu_B^2\right)$, where n_0 is the number of ions per unit volume.¹³

X direction: -0.005 562(g_1)² °K [layered antiferromagnetic ordering (a)] .

Y direction: $-0.005562(g_1)^2$ °K [layered antiferromagnetic ordering (b)] .

Thus when g_{\parallel}/g_{\perp} > (0.005 562/0.005 370)^{1/2}

 $= 1.017748$, a ferromagnetic ordering along the c. direction will be favored. Otherwise, a layered antiferromagnetic ordering of spins in the ab plane is favored, constituted by equal mixtures of layered antiferromagnetic orderings (a) and (b) in the X and Y directions, respectively.

Table V contains the experimentally measured values of g_{\parallel} and g_{\perp} for the various LiRF₄, the lowest energies, and the corresponding expected low-temperature orderings. (Note that $S = \frac{1}{2}$ for Kramers doublets.)

TABLE IV. Lattice sums over a sphere of radius 500 Å for LiTbF₄. The variables r, x, y , and z are the displacements and its components, from an origin situated at a given ion in sublattice 1 of Fig. 1 to each ion in one of the various \overline{T} sublattices. The unit of length is 1 \AA .

Sublattice summed	$\sum (3z^2 - r^2)/r^5$ $\sum (x^2 - y^2)/r^5$ $\sum (xy/r^5)$ $\sum (yz/r^5)$ $\sum (zx/r^5)$			
	-0.036245		O	
2	0.016724	0.013451	0	
3	0.025877		0	
	0.016724	-0.013451		

TABLE V. g factors, the lowest energies E_0 of the various $LiRF₄$, and the corresponding configurations. (FM, ferromagnetic along c direction; LAFM, layered antiferromagnetic in the ab plane.)

Ion	$g_{\scriptscriptstyle\parallel}$	g_{\perp}	g_0/g_1	E_0 (K)	Configuration
$Th***$	17.7 ²	0	∞	-1.6824	FM
Ho^{***}	13.3 ^b	Ω	∞	-0.9499	FM
$Nd^{\ast\ast\ast}$	1.987 ^a	2.554	0.778	-0.0363	LAFM
Dv^{***}	1.112 ^a	9.219	0.121	-0.4727	LAFM
Er^{***}	3.137 ^a	8.105	0.387	-0.3654	LAFM
Yh^{***}	1.331 ^a	3.917	0.340	-0.0853	LAFM

~Reference 2.

Reference 6.

V. CONCLUSIONS

From Table V it is clear that the calculated lowest-energy orderings are ferromagnetic orderings for $LiTbF_4$ and $LiHoF_4$; this is in complet agreement with the experimental results.^{5, 6} For LiErF₄, whose low-temperature ordering has not been established experimentally, our calculations predict a layered antiferromagnetic ordering in the ab plane in contrast with the ferromagnetic ordering in the ab plane predicted by Hansen et al .⁶

ACKNOWLEDGMENTS

We are grateful to the National Research Council of Canada for financial support (Grant No. A4485).

- ¹H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Westman, Phys. Rev. B 11, 92 (1975); J. E. Miller and E. J. Sharp, J. Appl. Phys. 41, 4718 (1970); A. L. Harmer, A. Linz, and D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969); M. R. Brown, K. G. Booth, and W. A. Shand, J. Phys. ^C 2, ⁵⁹³ (1969).
- ²J. P. Sattler and J. Nemarich, Phys. Rev. B $\frac{4}{1}$, 1 (1971); I. Laursen and J. M. Holmes, J. Phys. ^C 7, 3765 (1974)
- E. P. Chicklis and C. S. Naiman, IEEE J. Quantum Electron. QE-8, 535 (1972).
- ⁴R. K. Watts and W. C. Holton, Solid State Commun. 9, 137 (1971).
- 5 L. M. Holmes, T. Johnsson, and H. J. Guggenheim, Solid State Commun. 12, 993 (1973); J. Als-Nielsen, L. M. Holmes, E. Krebs Larsen, and H. J, Guggen-
- heim, Phys. Rev. B 12, 191 (1975); L. M. Holmes, J. Als-Nielsen, and H. J. Guggenheim, Phys. Rev. ^B 12, 180 (1975).
- 6P. E. Hansen, T. Johnsson, and R. Nevald, Phys. Rev. B 12, 5315 (1975).
- 7 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
- S. K. Misra, Phys. Rev. B 8, 2026 (1973).
- ⁹S. K. Misra, Phys. Rev. B 14, 5065 (1976).
- 10 R. E. Thoma, C. F. Weaver, H. A. Friedman, H. Insley, L. A. Harris, and H. A. Yakel, Jr., J. Phys. Chem. 65, 1096 (1961).
- 11 C. Keller and H. Schmutz, J. Inorg. Nucl. Chem. 27, 9OO (1965).
- ${}^{12}R$. E. Thoma, C. D. Brunton, R. A. Penneman, and T. K. Keenan, Inorg. Chem. 9, 1096 (1970).
- 13 J. Felsteiner and S. K. Misr \overline{a} , Phys. Rev. B $\overline{8}$, 253 (1973).