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The high-temperature properties of itinerant magnetic systems are examined by using the coherent-potential
approximation. We assume a local moment on each atom so that at elevated temperatures there is a number
of reversed spins. The coherent potential is solved, and from that the moment on each atom is determined self-
consistently. It is found that when the condition for ferromagnetic ordering is satisfied, the local moments
persist even above the critical temperature. Conversely, if local moments do not exist at high temperatures, the
system can at most condense into a spin-density-wave state. Furthermore, spin-flip scatterings of the
conduction electrons from the local moments give rise to additional correlation not treated in the coherent-
potential approximation. This correlation energy is an important part of the coupling energy of the local
moments. The relations between our work and the theories of Friedel, Hubbard, and others are discussed.

I. INTRODUCTION

In an earlier paper we proposed a strong-cou-
pling model for itinerant magnetism in transition
metals.! The basic idea may be summarized as
follows. The ground state of an itinerant magnetic
system is first solved by the band-calculation
method. When carried to self-consistency, there
is a net spin density within every Wigner-Seitz
cell, and the spin densities of different cells point
in the same direction in a ferromagnetic system,
but assume the alternating up and down alignment
in a commensurate antiferromagnetic system. In
the low-lying excited states the spin density in
each cell is assumed to precess like a quasispin,
We use the local-exchange approximation to for-
mulate the interaction between the band electrons
and the quasispins. The interaction Hamiltonian
has the same form as the well-known s-d model
except that the d spin is the total spin of each cell
and the s-electron part includes all the band elec-
trons. Then we apply standard perturbation-theory
methods to calculate the magnon spectrum, the
electron-magnon interaction, and the magnon-
magnon interaction for the system. In every case
examined, there is good agreement between theory
and experiment,

The local-exchange approximation is a simple
and practical way to reduce the two-body exchange
interaction into a one-body effective potential.2~*
The method is widely used in band calculations for
solids, including magnetic metals. Through the
use of this approximation we are able to treat the
band electrons as itinerant and localized at the
same time. They are itinerant because they propa-
gate through the lattice, and they are localized
because they give rise in a self-consistent manner
to the quasispins.

In this paper we generalized our discussion to
elevated temperatures. For simplicity we will

assume a one-band model so that the local moment
on each site is at most one Bohr magneton. Then
the high-temperature state of the crystal may be
treated as a state with a number of reversed spins.
Hubbard® and Cyrot® have made analogy between
this state and the ground state of a disordered
binary alloy. The reversed spins give rise to two
modifications to the conduction-electron propaga-
tor. On the site of a reversed spin the longitudinal
part of the exchange potential has the reversed
sign. This breaks the translational symmetry of
the crystal and introduces the “scattering correc-
tion” of Hubbard.® The effect of this correction is
to broaden the quasiparticle energy level in analogy
with the disorder scattering in a binary alloy.
Secondly, the spin on each site may flip, giving
rise to the “resonance broadening” of Hubbard.®
Since the quasispins are composed of conduction
electrons, it is desirable to treat these two effects
simultaneously under the same formalism because
the level width of the conduction-electron state
must be related to the life time of the quasispins.
The coherent-potential approximation (CPA) is
ideally suited for this purpose.’ !° We show in
this paper that when the calculation is carried to
self-consistency, the size of the quasispin is
solved from a transcendential equation in close
resemblance to the Anderson model of local mo-
ments.' The condition for the existence of a non-
zero quasispin is the same as the Stoner criterion
for ferromagnetic ground state, as pointed out
earlier by Friedel.'? The quasispins persist in the
paramagnetic phase as was shown by Schrieffer
et al.'* and Cyrot.'* Conversely, when the Stoner
criterion is not satisfied, the high-temperature
susceptibility of the system is Pauli-like, and at
low temperatures the system can at most order
in a spin-density-wave state,

In the simple form of CPA used here, it is as-
sumed that the reversed spins are randomly dis-
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tributed in the lattice. This is not a good repre-
sentation of the true state of ordering, especially
near the critical temperature where short-range
order exists. An improved theory taking the short-
range order into consideration will be the subject
of another publication.

II. FERROMAGNETIC SYSTEMS AT ELEVATED
TEMPERATURES

In Ref. 1, we proposed the band Hamiltonian for
the quasispin problem to be

H:%’i+v@)+2wo(¥-ﬁ,mi-a, @.1)
m 7

where V(T') is the spin-independent part of the
crystal potential, and W, (¥ - R,) is the spin-depen-
dent potential which is defined in the unit cell
around the site R;. The unit vector #; is the direc-
tion of the quasispin at ﬁ,-. In a single-band and
constant-matrix-element approximation the Hamil-
tonian has the form

,
H=Z€iciacio

-AZZ Th(C +Cirp=CEiCTy)
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2.2)
where fij = i},
For the ferromagnetic system the ground-state
electron levels are

€rs =€ FA,

and the spin per atom is given by

S=o € - S Enl,
where f (e) is the Fermi distribution function, and
N is the total number of atoms. The sum on k can
be transformed into an integral on energy by de-
fining a density of states per spin per atom

1
N(e) = 2 0l = €).
k
Then

=% fN(e)[f(e —A)= fle +a)]de . 2.3)

To make contact with the more familiar results
we further assume that the interaction matrix
element A is proportional to the spin, i.e., A =US,
where U is the proportionality constant. Note that
U is not the bare Coulomb repulsion between two
electrons on the same site, which is of the order
of 10 eV. Instead, it is related to the average
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Slater exchange in the ferromagnetic state. The
size of U has been determined from self-consis-
tent band calculations to be about 2 eV.!> Under
this assumption Eq. (2.3) becomes a self-consis-
tent equation for S, and the condition for nonzero
solution for S is the Stoner criterion UN(1)>1,
where p is the Fermi energy.

Now we consider the system at an elevated tem-
perature so that there is a number of reversed
spins at random sites. At any time the probability
of a site to be in spin-up state is p,, and in spin-
down state p_, with p, +p_ =1. The magnetization
per spin is S(T')=S(p+ - p.). In the lowest order
we treat the z component of the scattering potential
by the coherent-potential approximation. A spin-
up electron sees a potential ~A at a spin-up site
and a potential A at a spin-down site, The num-
bers of spin-up and spin-down sites are given by
Np, and Np_. In the coherent-potential method
this fluctuating potential is approximately repre-
sented by a complex energy-dependent potential
V. (E) such that the Green’s function for the elec-
tron is

Gk, E)=[E-eg+u - V. (E)] Y, (2.4)

where E is measured from the Fermi level. The
t matrix for repeated scattering of a spin-up elec-
tron from a site ¢ is solved from

Liv =Vie + Vi Gyt 2.5)

where

G“+(E)= %’; G+(E, E)

_ N(e)de
f E-€+u-V,(E)" 2.6)

The potential V;, on site ¢ is V;, =—A - V,(E) if the
spin state of that site is up, and V;, =A - V,(E) if
the site has spin down. Thus for a spin-up site

-A - V+(E)
1- [_A - V+(E)] G“-r(E) ’

biy=

and for a spin-down site

A-V.(E)
IR -V®I6LE @.7

The coherent potential is determined self-consis-

tently by the requirement that the average ¢ matrix
vanishes, i.e.,

t,

Pityr +p_t, =0, (2.8)

Similarly, for spin-down electrons we obtain a set
of equation with all A replaced by —A. The equa-
tions are solved self-consistently to find the local

electron propagators and the local densities of
states
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P;io(E)=(1/1)ImG,;,(E). 2.9)
Then the average spin per site is
5= [ lbu®-p@f@®)aE, @10

where f(E) is the Fermi distribution function.
The meaning of these results becomes clear
when we examine the atomic limit, N(e)=0(e - ¢,),
where €, is the energy of the one-electron orbital.
In this limit the CPA is trivially exact. Equations
(2.5)-(2.8) and their spin-down counterparts are
easy to solve. The results for p;,(E) and S are

P;o(E)=[)+5(E—ed + U iA)+p_6(E—ed+u ;A),
and

S=3(p.-p.) [ [8(E-¢+n +a)

~ 8(E - €, +u - A)f (B)dE.

The integral in the expression for S is just the
number of unpaired electrons per site, so

S=S(p.-p.), (2.11)

where S is the spin per site. Therefore, in the
following discussion we will use Eq. (2.11) to re-
late the size of the local moment to the average
local spin in Eq. (2.10).

We now show that when the spins are not com-
pletely ordered the criterion for the existence of
local moments is identical to the Stoner criterion.
For this purpose we substitute the expressions for
the ¢ matrices in Eq. (2.7) into the self-consistent
condition Eq. (2.8) to obtain a relation between the
Green’s function and the coherent potential

(V3 =82%)Gy; . (E)+V, £A(p+ - p_)=0. (2.12)

At the threshold of local moment formation the
local level splitting A is infinitesimal, so we may
solve for V, to obtain

Vt":‘ ¥A(P+—[)_).

This may be recognized as the same result as
predicted by the random-phase approximation,
It follows that

Pio(E)=NE +u tA(p, - p_)],
and

=(p, - p- )Af Mf(E)dE

The last result, together with Eq. (2.11), give the
threshold value of U for the formation of local
moments

1= Uf dN(E*“)f(E)dE (2.13)

For transition metals p=1eV measured from the
bottom of the d bands. So even up to the typical
Curie temperature of 1000 K the temperature ef-
fect of the Fermi distribution function is entirely
negligible. Then Eq. (2.13) reduces to the Stoner
criterion 1 =UN(u). Thus, if the material is ferro-
magnetic at low temperatures, the local moments
persist up to the Curie temperature.

Above the Curie temperature we have the condi-
tion p, =p_ =3, so the equation for the local mo-
ment becomes ambiguous. However, if an infinite-
simal magnetic field is applied to polarize the sys-
tem ever so slightly, we again find local moments
on the sites if the Stoner criterion is satisfied.

We therefore conclude that in a ferromagnetic
metal the disordered state is a state of persistent
but randomly oriented quasispins. Neutron scat-
tering experiments in the paramagnetic state of Fe
support this view.!®* Conversely, if the Stoner
criterion is not satisfied there can be no local
moments in the paramagnetic phase. Furthermore,
if the system orders, it cannot order ferromag-
netically. Examples of systems which order at
low temperatures but have no local moments at
high temperatures are chromium and its alloys.!'”

The CPA equations are also easy to solve near
the Curie temperature where p, — p_=§<<1, The
solutions are of the form

G;i:(E)=G(E) £ g(E),
V.(E)=V(E) £ EV(E),
where

N(e)de
E-e+p-V(E)’

G(E)=V(E)/[a% - V¥(E)],
g(E)=-a/{V2(E) - A% +[2G(E)W(E) +1] /¢(E)},
V(E)=g(E)/$(E),

N(e) de
¢(E)=f [E-c+p-VE" (2.14)

The size of the local moment is given by

G(E) =

S-= 17 f °w Img(E) dE . 2.15)

Given a density of states function N(€) one can
solve the above set of equations to find S. The re-
sult also applies to the paramagnetic phase as
discussed earlier. In general we expect the size
of S in the paramagnetic state to differ from that
in the ordered state.

III. RESULTS OF MODEL CALCULATIONS

In this section we report the results of a few
model calculations to further illustrate the nature
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FIG. 1. Nearly square density of states model.

of the CPA. A particularly simple model density
of states is the Lorentzian model

N(€)=@/mT/[(e =pF +T?],

where € >0, The local moment in the ordered
phase is given by

S=(1/m)tan"*(a/T).

At elevated temperatures the solution of the CPA
equations are

Gii0(E)=[E - V,(E) +iT(E)] ! (3.1)
and

A2 F[E +iT(E)]A(p. - p.)
E +iT(E)*¥A(p+ - p.) °

V4(E) = 3.2)
where I'(E) = 1I" according to whether E>0 or
E<0, and E is measured from the Fermi level.
The expressions for the Green’s functions may be
reduced to

D+ . b
E A +iT'(E) ~ EFA +il'(E) °

Giio(E) = (3.3)

The local electron densities are

T 'R p-
pw(E)=T< (E+aR+T2 " (EzA) +r2) ’

and the size of the local moment is identical to
that in the ordered phase.

The fact that the size of local moment is inde-
pendent of the ordering is easy to understand.
The assumption of Lorentzian density of states
reduces the band to a set of local resonances. This
has the effect of decoupling the atoms and making
the coherent-potential method exact. Neverthe-
less, the results are useful in demonstrating the
following point. The propagator in Eq. (3.1) is
clearly in the form written down by Hubbard after
making the scattering correction. On the other

hand, the equivalent form in Eq. (3.3) indicates
that the site ¢ switches back and forth between
spin up and spin down with relative probabilities
P+ and p_. This is just the resonance broadening
effect discussed by Hubbard. Thus, our theory,
though different in mathematical approach from
Hubbard’s work, actually treats the scattering
and resonance effects under the same formalism,

For a nontrivial model we choose the nearly
square density of states

N(e) = %r—‘ [ta.n" <€ gl‘) - tan“<6 ; F)] ,

where 2T is a measure of the bandwidth and 26
a measure of the squareness as shown in Fig. 1.
In the limit 6 — 0 the shape of N(¢) becomes square.
The CPA equations must be solved numerically.
We find that for energies near the maximum of
N(€e) the numerical solutions for the potential V,(E)
converge very slowly. To avoid this difficulty
we assume 0.8 electron per site so that the Fermi
level is slightly to the left of the maximum. The
size of the local moment S is computed as a func-
tion of U for 6 =0.2T in both the ferromagnetic
phase and the paramagnetic phase, and the results
are plotted in Fig. 2. Both curves approach the
limit S =0.4 in the large U limit, but the spin value
in the paramagnetic phase falls consistently below
that in the ferromagnetic phase. The explanation
of this effect can be traced to the line broadening
in the paramagnetic phase due to random spin
scattering of the electrons. The added broadening
in the paramagnetic phase gives an effectively
broader band and smaller density of states at the
Fermi level. For intermediate ordering the spin
value is bounded by the two curves.

The decrease in spin value with increasing dis-
order gives rise to an increase in internal energy

T T
o5 =08 —
8:02T
04 —
03
(/2]
0.2 .
o -
0 1 1
2 3 4 5
u/r

FIG. 2. S-vs-U curves for the nearly square density
of states model. The upper curve is for the ferromagne-
tic state and the lower curve for the paramagnetic state.
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of the system, This energy is in part the coupling
energy between the local moments. In Sec. IV we
discuss another important contribution of the cou-
pling energy which comes from spin-flip scattering
effects not treated in the CPA.

IV. CORRELATION ENERGY DUE TO SPIN-FLIP
SCATTERING

The spin-flip scattering terms in Eq. (2.2) are
not effective in the ground state. With a number of
reversed spins a spin-up electron may undergo a
spin flip when it encounters a spin-down site and
then flips again at a spin-up site. Similarly, a
spin-down electron may go through two spin flips
when it interacts with a spin-up and a spin-down
site in succession, Both processes contribute to
the self-energy of the electrons. For a spin-up
electron the self-energy is found to be

2(1)+(E) V(*-)Glm_ (E)V(-"')

where V{*~) and V{* are spin-flip matrix ele-
ments at site / and m, respectively. The self-
energy for a spin-down electron has a similar ex-
pression.

To calculate the spin-flip matrix elements we
need to know the quantum-mechanical nature of the
quasispins. In Ref. 1 we gave an intuitive way of
handling this problem base on the interconfigura-
tion fluctuation model of Hirst.'® In this model
the quasispin is a mixture of spin-zero and spin-3
states so that the state of an atom is represented
by

¥ =b|3,2)+b,0,0)
for a spin-up site and
¥ =b,]3,-2) +b,0,0)

for a spin-down site. The coefficients 6, and b,
are determined by the normalization, |b|? +|b,|?
=1, and the size of the quasispin,

S =(¥|s*|¥) =3|b,|2.

In a spin-flip transition we can easily establish
that

(W'[S7) = (¥[S*¥') =|b,|2 =25 ,

Using the definition n* =S*/S, we obtain the spin-
flip matrix elements

VO oy et oon,

When averaged over an ensemble of crystals with
all possible distributions of reversed spins, we get

Z;(UO(E) 4p P A Glm. o(E)
Upon Fourier analysis we obtain

SO, E)=4p, p_ 02G_4(K, E) . @.1)

The contribution of spin-flip scatterings to the
internal energy is

E‘”(T)-——Zf

=N[s?-s*(T)) 4(T), 4.2)

_ 20, E)G, (&, E)

where

0=~ [ 55

The physical meaning of the quantity J(7') is easy
to understand if we write Eq. (4.3) as

G.(&,E)G.(k,E). 4.3)

s(T)=2J®), (4.4)
where

- 4U2 dE
JRy) =~ N2 izi' 21 G+, B)

XG_G;', E)ei(i—i')"ﬁ;. (4.5)

The quantity J(R,) is the Ruderman-Kittel inter-
action between two spins separated by a distance
ﬁ,,,‘g In the ground state the interaction J(ﬁ,) can
be put into the more familiar form

_ 4U2 S =S5 icg-t%,

JR,)= 2 =gy © , (4.6
and it follows that §(0)=4U. In the excited state
the presence of the complex self-energy in the
Green’s functions gives rise to a complicated
temperature dependence to the interaction.

The idea that the local moments in ferromagnetic
transition metals are coupled together by the long-
range Ruderman-Kittel interaction was first sug-
gested by Friedel'? and formulated by Cyrot® and
Capellmann.?® The experimental evidence for this
view has been reported recently by Stearns.? How-
ever, there is an important distinction between our
result in Eq. (4.5) and the results in Refs. 6 and
20. In our work the quasiparticle damping is ex-
plicitly contained in the expression for J(ﬁ),
whereas the earlier works all take the quasipar-
ticles as free from damping even in the disordered
spin state. Physically the damping effect shortens
the range of J (ﬁ) such that with increasing tem-
perature the distant spin pairs are progressively
out of touch with each other. Consequently we
expect a weakening of the total coupling strength
at high temperatures. The experimental evidence
of this effect can be found in the neutron scattering
data on Ni for which the spin- -wave stiffness con-
stant is found to be 555 meV A? at helium tempera-
ture but 280 meV A? near the Curie temperature,2?
Therefore, unlike magnetic insulators, the spin
coupling 'm ferromagnetic transition metals de-
pends on temperature through the spin disorder




4286 S.

scattering of the band electrons.

The effect of spin disorder on the energy bands
may be appreciated by studying the imaginary
part of the electron self-energy, which is the in-
verse scattering time. Taking only the CPA part
of the self-energy and using the explicit result of
the Lorentzian model, we find

71 T) =ImV,(E)

(1 sz(T)) raz
- S? ) Us*T)+I?

4.7

for electrons near the Fermi level E=0. As the
temperature increases the scattering time de-
creases steadily until the Curie temperature is
reached. Beyond that point the scattering time
levels off to a constant value. The asymptotic
value for the scattering time is

T3 () =Aa2/T > 1US?, (4.8)

For Ni with U=2 eV,?® and S =0.3, we estimate
751(«)>0.6 eV, which is a substantial fraction of
the total bandwidth of about 3 eV for the d states.
The corresponding mean free path of the electron
is of the order of the nearest-neighbor distance.
Therefore, near T, only nearest-neighbor inter-
actions are important.

The quasiparticle scattering gives rise to a
large, temperature-dependent spin disorder elec-
trical resistivity. The temperature dependence
of the resistivity for the Lorentzian model has the
form

e SZ(T) 1"2
p(T) =p( )<1 Y )U"’S"’(T)+1"2 ’ 4.9)

where p(») is the spin disorder resistivity of the
paramagnetic phase. This result is very similar
to those of Kasuya® and deGennes and Friedel®
which are derived from the s-d model by using
perturbation theory.

The contribution of the spin-flip scattering to the
quasiparticle level width is also of interest. This
is because the total level width determines the
size of the quasispins, so it may be necessary to
include the spin-flip scattering effect self-consis-
tently in the calculation of S. As discussed pre-
viously the spin-flip scattering is unimportant at
low temperatures when there are few reversed
spins. So we will limit our study to the paramag-
netic state for which p, =p_=3. Then the relative
importance of the spin-slip scattering versus the
CPA contribution to the level width may be as-
sessed by looking at the imaginary parts of
Z{® @, E) in Eq. (4.1) and V,(E) in Eq. (3.2) for
electrons on the Fermi level, €g =y, E=0, We
find
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Ing)(km 0)=T

and
ImV,(0)=a%/T,

The ratio of the two terms is (I/A)?. Thus the
spin-flip scattering is unimportant when the band-
width is small compared with the band splitting,
i.e., the condition under which local moments are
stable, We conclude that the concept of quasispins
coupled by spatially damped Ruderman-Kittel
interaction is valid under this condition.

When A and T' are comparable in size, the CPA
may result in stable local moments but the spin-
flip scattering may severely modify the size of
the moments in the disordered phase. It becomes
questionable whether the concept of quasispin is
meaningful. However, one must bear in mind that
the CPA ignores completely the short-range order
of the spins near the ordering temperature. It
therefore leaves out the cooperative effects of
many sites in the formation of a cluster of par-
tially ordered spins. At the same time the spin-
flip scattering effect is overestimated because
such scattering events between nearby sites are
inhibited by short-range order. What is needed is
an alloy theory which includes the short-range
order effects as the starting approximation. Such
a theory has been formulated recently by Kittler
and Falicov,?® and the application of their method
to the itinerant magnetic system is now under
investigation.

V. SUMMARY AND CONCLUSION

The results of this work may be summarized as
follows: (i) the disordered phase of an itinerant
ferromagnetic material is better described by a
collection of randomly oriented local moments;
(ii) the effective coupling energy between pairs of
local moments progressively weakens with in-
creasing disorder; and (iii) the disruption of elec-
tron bands gives rise naturally to the magnetic
contribution to the electrical resistivity.

These conclusions are only of qualitative validity
because (a) the one-band model is an oversimplifi-
cation of real transition metals; (b) the CPA is a
mean-field theory, and is therefore quantitatively
unreliable in dealing with long-range, oscillatory
spin pair interactions; and (c) the separate treat-
ment of the longitudinal and transverse electron-
spin scattering is not valid at high temperatures.
Although the third point may be studied within the
framework of CPA by including higher-order ef-
fects, e.g., vertex corrections, we feel that the
additional insight that may be gained from such a
calculation will be minimal.
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