
PH YSICAL REVIE% B VOLUME 15, N UMBER 9 1 MA Y 1977

Longitudinal and transverse dielectric functions of a tvro-dimensional electron system:
Inclusion of exchange correlations

A. K. Rajagopal
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

(Received 12 April 1976)

The calculation of the longitudinal dielectric function for a two-dimensional electron system is of importance
in discussing the properties of electrons in semiconductor-insulator sandwiches and those confined to the
surface of liquid helium. We present here a calculation of this function when exchange processes are included.

A variational solution to the vertex equation is used to solve the integral equation. We also compute the
plasmon dispersion and the static dielectric function in powers of the wave vector, by solving the appropriate
vertex equation exactly in these limits. The latter is important in a theory of gradient expansion for the
inhomogeneous counterpart of this two-dimensional system. This may be used in the calculation of the band
structure of such systems. We also calculate the transverse dielectric function in the same scheme. From these
two, we deduce the orbital susceptibility of the system. As in three dimensions, we find that screening of the
electron interactions is essential to give finite values for the orbital susceptibility and the coeAicient of the
gradient expansion term in the theory of inhomogeneous systems.

I. INTRODUCTION

There has been enormous activity in the
study of the electronic properties of (quasi) two-
dimensional systems such as found in inversion
layers in metal-insulator-semiconductor struc-
tures and electron layers on liquid helium. ' There
is much evidence to believe that the many-body
effects are more pronounced in these systems
than in the three-dimensional systems. ' Zia' cal-
culated the correlation energy of the system in
the high-density limit and concluded erroneously
that the correlation energy approaches a constant
rather than lnr, . In two separate papers, ' we shall
discuss the correct version of the Gell-Mann-
Brueckner theory of this system along with other
aspects of the problem. We find" that in the high-
density limit, the correlation energy per particle
in rydbergs is —0.38-0.172r, lnr, and not what
Zia found, thus invalidating his conclusion. In
Ref. 3(b), we have evaluated the correlation energy
in the Gell-Mann-Brueckner scheme exactly on a
computer and also calculated the pair correlation
function that is consistent with the total energy
calculation. [r, is the usual electron-gas param-
eter related to the system density per unit area
n =(vr', a') ', where a, is the Bohr radius of the
three-dimensional hydrogen atom. ] Beck and
Kumar' calculated the contribution to the plasmon
dispersion due to exchange correlations and found
it to be larger by a factor of 3.2 than what we ob-
tain in the present paper. They also discussed the
effect of thickness. Stern' calculated the longi-
tudinal dielectric function in the random-phase
approximation without including exchange contri-
butions and calculated the asymptotic screened
Coulomb potential and the plasmon dispersion. In

view of the importance of the problem, we here
present calculations of the longitudinal and trans-
verse dielectric functions following the methods
employed by us recently in the study of the corre-
sponding functions in three dimensions, ' which
incorporate the exchange contributions appro-
priately. The longitudinal and the transverse di-
electric functions were calculated by a variational
procedure for solving the appropriate vertex equa-
tions in Ref. V, whereas in Ref. 6, these were
solved exactly in the suitable limits of static and
dynamic situations. For instance, we could com-
pute the plasmon dispersion beyond the linear
term to find out the effect of exchange. In the
static limit, the calculation of the polarizability
to second power in the wave vector leads to an
expression for the gradient expansion for the
inhomogeneous system. ' The effects of exchange
contributions must be handled with care and our
formulation is well suited for this. Using a re-
lationship between the magnetic susceptibility and
the two dielectric functions, we can deduce the ef-
fect of exchange interactions on the orbital sus-
ceptibi. lity. '

In Sec. II we calculate the longitudinal dielectric
function in various limits and also give a varia-
tional expression for it, valid for all frequencies
and wave vectors. In Sec. III we calculate the
transverse dielectric function and deduce there-
from the orbital susceptibility in the static long-
wavelength limit. A summary of the results is
given in Sec. IV.

II. LONGITUDINAL DIELECTRIC FUNCTION

The longitudinal dielectric function is given by

&~(q)=1+ V(q)v(q),
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where the polarization m is given by

d'k f,(k+ ,'-q) —f,(k--', q)

(2)

A is the irreducible vertex function and obeys the
integral equation

d k'
A(k;q) =1+,V(~ k-k'~)

f.(k'+ k q) f.—(k' —k q)
q, -Q' q/m

Coulombic it is 2ve'/~% —k'~. We will leave it
as a general function until we come to the end of
the analysis. f,(k) is the usual Fermi function,
and m is the mass of the electron. We use units
with 5=1. The three vector q stands for q, qp as
usual. The spin susceptibility in this same scheme
is also proportional to v(q). Stern' computed e(q)
when A = 1 in Eq. (2). Equation (3) for A incor-
porates exchange processes both in the one-parti-
cle self-energy and in the scattering among the
electrons. The methods of Refs. 6 and 8 can be
used to study the extreme static and dynamic lim-
its of the function v(q) or q~(q).

x A(k', q) 0 A(k; q)
q, —k' q/m

q, —k.g/m
(3)

V(~k-k'~) is the Fourier transform of the effec-
tive interaction among electrons and if assumed

A. Plasmon dispersion

We can solve Eq. (3) exactly as a power series
in k~q/mq, when this ratio is much less than
unity. k~ is the Fermi wave vector. We use the
identity

2

f(k+ —,ql —f(k ——, q)= —
( (E —5)( )+ [()'(E —E )+—, E cos ll II (E —'E }]")+ (4)

V(i k —k'i) = g V,(k; k') cosl(8, —8„),
l=o

2%' dg
V,(k; k') =-,'(1+ 6, ,) —coslHV(~k —k'

~) .
0

We first observe that

(6)

(6)A(k'q = 0, qo) = 1.
Then using (4), and expanding (q, —k q/m) in
powers of (k q/mq, ), to the order of interest to
us, we have A(k; q) in the form

k qA(k q)=1+ P A""(k)
mqo

+ " q'A" "(k)+ c osis
mq,

k'

where the primes denote differentiation of the 5
function with respect to the energy E~=k'/2m. Al-
so note that

e~(q; q,) =-1 —2V(q) 44m mqo

kx 1+ ~ [-'+A""(k )
mq,

+ j} A(2, 0}(k )] (8)

Using the solution (8) for A()2 o)(k~) we obtain

a,(e:q. ) —= (-2)'(s)—( )
(+ ( )

x (-', —(m/8 w)[2V, (k~; k~)

+ —', V2(k~;k~) 3 x ~ V, (k~;k~)]]

(10)

If we employed the bare Coulomb interaction for
the two-dimensional system, we obtain (n = k2z/2 v
is the number of electrons per unit area)

Substitute this into Eq. (3) along with the other
expansions and obtain AI" '(k) by equating like
powers of q"(k~/mq, ) on both sides of the equa-
tion, giving the result

A", '(k) = ——([Vo(k; k~) —( kk/~) ,' V,(k; k~)]6( —o

or the plasmon dispersion is

+ [2 V, (k; k~) —(k/k~) 2 V,(k; k~)]6, 2)l.

(8)

Also, to this order, we find

(12)

The first two terms were obtained by Stern. ' The
last term is due to the exchange correlations. It
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was estimated to be Sne'/3vk~ by Beck and Ku-
m~~, ~ which is 3.2 times larger than our result.
These authors, it appears, took into account only
the exchange contribution to self energy and did
not include a contribution of the same order to the
vertex function.

B. Static limit

find

&0)(0.0) P&o)(k )

v &»)(0. Q) — g&»)(k )
m

1 d (0) 1 d
Sm dE» 0 3 dE'

(15a}

For purposes of the gradient expansion in a
theory of inhomogeneous systems, ' we need
v(q;0) to order q*:

v(q 0)-=v' '(0 0)+q'v"'(0 0) (13)

x [—', A,' '(k)+AD& '(k}]
Ep=EF

(15b)

Using the same type of methods, we find this time

A(k;4, 0)= P [4]"(k}sq'A["(k}s ]sos(q, . (14)

Employing (4), and following the same methods,
we can solve for A&0)(k) and «»)(k). Before doing
this, let us calculate «"'(0;0) and v"'(0;0). We

(16)

where

r =(I —(m/2«)[VD(kz , kz) —'—V, (k~; kz)] j ',

From this we note we need only Ap"', Ap"', and
A2"'. We obtain after some algebra

a(,"(k)= rr(k)5, „

I'(k}=(1——[V(k;k ) —V(k;4 }]+— ' ' )((4 ——„—'V(k;k ))F
(18)

p2 E 'i'Vkk
A&')(k,}= —„r(k)V,(k; k,)- —'

E V (k'k )I'(k) 1 E„' V»(k; kF) 3 E» ' '
Vk(kq k»)

3 d@2 k 0 & F 2 E 2 2 EF 2
(19)

From (15a) then we finally obtain

v &"(o; o) = (m/v)r, (20)

and

v"'(0 0) = —A"'(k )
m

d+ —— r (k)Sm dE~

1 d+ —
g [E»r(k)]

EeEF-

(21)

As a very useful approximation for other re-
gions of q, we may solve Eq. (3) by a variational
method. ' For the sake of completeness we pre-
sent the answer here

f,(k+-,'q)- f,(k ——,'q)
q, -g.g/m

„f.(k'+» q) —f.(l ' - -'q)
q, -l&'. q/m

qp-k' 'q rn
(24}

v„(q) =2[v.(q)]'/[v. (q) —d(q)],

where

d'k f,(k+ —,
'

q) —f,(k ——,
'

q)
(2v}' q, —f .q/m

(22}

(23)

It may be of interest to point out here that from
this expression we get the same plasmon disper-
sion relation calculated to the same order as in
Eq. (12). In the static limit, while v„&0)(0;0) is the
same as the exact calculation, z„(»)(0;0) is slightly
different, and the answer is
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m' d E ' V kk E Vykpk
~o & ]6 2 dg 0 P g 2 g 2

&»(0. 0) — 2V(k. k ) )) & 4 F F & 4 F)

1 d 1 Eq ~ V(kk)
+ —,E~ 2VO(k;k~)+-

k

E~ '~'V, (k;kr) E~ '~'V, (k;kr) (25)

We will postpone the discussion of these results to Sec. IV.

III. TRANSVERSE DIELECTRIC FUNCTION

The transverse dielectric function is given by"

(4)= + * 4 *,. ~ 4„E())
(26)

where Kr(q) is expressed in terms of an appro-
priate vertex function Ar(k; q), which obeys the in-
tegral equation

Ar(k; q) = —k sin8„

+~t, v(~T-f'~)

f,( k'+ —,
'

q) —f,( k' ——,
'

q)
q. -k' yam

»r(k" 4f) — '
Ar(kent) ~

wavelength limit is of interest as it is related to
the orbital susceptibility of the system. We pre-
sent this calculation now. This orbital suscepti-
bility is

d2k
x —nm -2 2, k sine~

f,(k+ & q)- f,(k--,'q}
—(kq/m) cos8,

x 4„(k;4)) (28)

From Eq. (2V) we note that for q, =0, Ar(k;q, 0}
has the symmetry Ar(- k; q, 0) = —Ar( k; q, 0). We
therefore seek an expression of the form

(2V)

By employing the same methods we can compute
er(q) in the various limits. But the static long-

Ar(k; q, 0) = [A(~4 (k)+ q'A(~4 (k)] sinl8, . (29)
~1

The same procedures as above lead to the answers

A'"(k) = —k6, , (30}

A~'(k)= — g V, (k;kp)A02"(k~) ~ '( ' &) A("( )

(2m)'~' d', )2 V, (k; k') VB(k; k')
(31)

And finally

y„„(0,0) =—,[1+6k+~", (k~)] . (32)

From Eq. (31), we obtain

e' (E )"' 4' +e, v(k;k ) v(k;k ))
I

orb ]2&m& 4~ dg 2
Eg -E~

(33)

The effect of interaction is then contained in the second term in Eq. (33}. We can also solve the A„equa-
tion by the variational method for all q and the result is not given here. We may point out that this calcu-
lation also gives the same result as Eq. (33) in the static long-wavelength limit. We will discuss the re
suits obtained in Sec. IV.
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IV. DISCUSSION OF RESULTS

The main results of this paper are (i} the plas-
mon dispersion given by &i(q; qo) =0, Eq. (10):
This extends the work of Starn' and corrects that
of Beck and Kumar', (ii) the static dielectric func-
tion, in the limit q-0,

e( q; 0) = 1+ 2m e '1'/q = (q+ q,)/q,

where

1 —(m/2v)(VD(ke; k~) —
2 [V,(kr; k~)]j

(34}

is the two-dimensional screening constant. The
result with the denominator set equal to one was
earlier given by Stern' and Zia. ' The denomina-
tor appears because of exchange corrections. q,
is related to the compressibility of the interacting
system and it blows up for the Coulomb system
for r, =4.4; (iii) the polarization to order q2,

v(q 0)= v"'(0 0)+q'v"'(0 0)

Eqs. (19)-(21); (iv} the orbital susceptibility y„,
(0, 0), Eq. (33); results (iii) and (iv) have not
been derived before to the best of our knowledge.
We have expressed our results in terms of V„ the
lth Fourier component in the angular distribution
of the interaction, as it resembles the Fermi-
liquid parameter, which may be determined ex-
perimentally. The static lang-wavelength spin
susceptibility is proportional to v"'(0, 0} and shows
an interesting divergence for 1=(m/2v}(V, —-', V,},
signalling a ferromagnetic transition. '

We may make several comments here. If me
use a strictly two-dimensional model for the elec-
tron gas with V(q) given by the unscreened Cou-
lomb potential, 2''/lql, we find that v"'(0, 0)
and y„,(0, 0) diverge as in the three-dimensional
case." This can be overcome by screening the
Coulomb interaction, in the form 2ve'/(lql + $kr),
where P, is a screening constant. In the Thomas-
Fermi limit, ) =q, /kr where q, is given by Eq.
(34). More interestingly, the effect of finite size
of the electron gas, which we know to be confined
to a fairly thin size, may be taken into account by
considering them to be in their lowest quantum

state as far as the third direction is concerned.
This, along with the image forces that keep the
electrons confined, lead to an effective interac-
tion of the form~ "

V(I ~ I) =(»"/~ q}/(q}

where

(35)

&&~I%~I&= f 0

8-al z-g' I + 6 j —«2 e-a(~+a') 36
&i+ ~2

is a form factor for the thickness of the electron
system. Here f] and &, are the dielectric functions
of the two bounding surfaces confining the elec-
trons. Knowing the structure of f(lql} in detail,
the various V,(k; k') can be calculated and used to
compute the quantities of interest. This will also
remove the divergences alluded to above.

Recently, I received a preprint" from Jonson
where he reports calculations of correlation en-
ergy, dielectric function, and the pair-correla-
tion function of a strictly 2-dimensional system
and also the effects of finite thickness in the man-
ner mentioned above on these quantities, based
on a scheme due to Singmi. From such studies,
it is found that the effect of interactions and finite
thickness are competitive at certain electron den-
sities and thicknesses. Jonson, in a private
communication, informs me that the correlation
energy tends to a constant for r, -0 and agrees
with our result. He also points out that in the
plasmon dispersion, the effect of thickness may
be neglected in the low density limit while it dom-
inates for high densities for system parameters
corresponding to Si(100)-Sio, inversion layer. We
plan to investigate these and other aspects of the
finite thickness (ferromagnetism, etc. ) in a sub-
sequent paper. We therefore conclude that the
effects of interactions on the system properties
have interesting features in them with which the
present work is mainly concerned.

In an application of the density-functional for-
malism to calculate the band structure of these
systems, one needs v"'(0, 0}, Eq. (21), which we
hope mill be used in the future.
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