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We present the results of a calculation of the energy- and liquid-structure function of the ground state of liquid

He in the density range 0.0180-0.0257 A, ', using both the Lennard-Jones 6-12 potential and the second

Morse-dipole&ipole potential of Bruch and McGee. The method is to determine the optimum Jastrow trial

wave function by multiple iteration of the paired-phonon analysis, and then calculate the contributions of three-

body factors in the wave function. Tables of values are given at several densities for the radial distribution

function, Jastrow function, and liquid-structure function. We also present a variational formulation of the

paired phonon analysis and numerical examples of its convergence and self-consistency.

I. INTRODUCTION

In this payer we yresent the results of a calcula-
tion of the energy and structure of the ground state
of liquid He. Our methodof calculationistosolve
the equations generated by functional variations of
the expectation value of the Hamiltonian in Jastrow
and extended Jastrow functions. Results are yre-
sented for the density range p = 0.0180-0.0257 A ',
which includes the experimentally observed den-
sity range of the liquid. Two commonly used phe-
nomenological interaction yotentials are used, en-
abling us to investigate the sensitivity of the re-
sults to the yotential.

We begin with a brief introduction to the varia-
tional theory of the ground state of liquid He. Sec-
tions II and III contain a discussion of the yaired-
phonon analysis, which is the method used for solv-
ing the Jastrow variational problem. The results
of the Jastrow calculation are given in Sec. IV, fol-
lowed by an estimation of three-body extended Jas-
trow corrections in Sec. V. The reader interested
only in the results of our calculation and not in the
supporting formalism may omit Secs. II and III.

The theory of the ground state of liquid 'He has
been the subject of much work during the last de-
cade. ' The principal experimental information
about the ground state is the ground-state energy
E, and liquid-structure function S(k). Both are
measured at low temperatures and then extrapo-
lated to zero temperature to give the correspond-
ing ground-state values, defined by

H+o = E4o

3 (&) = (1/»&+.Ip.-p r Il'g/&+o l4'g,

where 4'o is the ground-state wave function, H is
the Hamiltonian for the N helium atoms, and p„- is
the density fluctuation operator

Ngeit r~

i =1

A straightforward ayproach to the theory of the
ground state which has given reasonably good
agreement with these experimental quantities is
the Jastrow variational theory, where the ground-
state wave function 4, is approximated by a trial
function of the Jastrow form 4 ~:

(3)

The variational yrinciyle tells us that the expecta-
tion value of the Hamiltonian in +~ provides an uy-
yer bound on the ground-state energy

E,= &q, lff lf. p/&w, Il,) - E,. (5)

Variational calculations to optimize this upper
bound are usually carried out by considering a u(r)
with a few parameters, most frequently' '

u(r) =- (5/r)P, (6)

and then minimizing E~ with respect to these ya-
rameters (5 and p in this case). Except for the
long-wavelength structure' this simple form has
produced reasonably good agreement with experi-
ment.

The several methods for calculating the expecta-
tion value E~ fall into two categories: essentially
exact calculations for 10'-10' particles; and ay-
proximate integral equations for infinite systems.
The first of these simply uses the Monte Carlo"
or molecular-dynamics' integration of the expec-
tation value for the finite system. Most of these
calculations have used the Lennard- Jones 6-12 po-
tential with the deBoer-Michels parameters [Eq.
(63) below], obtaining p = 5 and b = 3.0 A at the ex-
perimental equilibrium density (p, =0.021 85 A ).
Murphy has investigated several potentia1s, using
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the variational principle to set limits on the pa-
rameters of these potentials so that E~ does not
fall below the experimental energy at any measured
density. '

The uncertainties in these Monte Carlo and mo-
lecular-dynamics calculations are due to finite size
of the system and to the fact that only a finite num-

ber of configurations can be sampled. These er-
rors can be eliminated, for a price, by introducing
approximations such as the hypernetted-chain ap-
proximation'(HNC}, the Percus- Yevick approxima-
tion' (PY), or the Kirkwood superposition trunca. —

tion of the Bogoliubov- Born-Green-Kirkwood- Yvon'

(BBGKY) hierarchy (BBGKY-KSA}. The price is
that these approximations produce systematic er-
rors. These errors may be estimated by some
reference procedure. We discuss one such pro-
cedure below.

While these parameter variations have led to a
reasonably good accounting of the experimental en-
ergy and structure near the equilibrium density for
liquid He, improvements can be expected if a
wider space of variational functions can be easily
sampled. For example, it is expected that the best
u(r) has a more complicated structure than the sim-
ple monatonic form of Eq. (6), particularly at long
wavelengths and at high densities. Furthermore,
this short-range structure of u(r) is adequate only
for the 6-12 potential (and then P = 5}.

Several years ago, Feenberg and one of us
(C.E.C. ) showed how to obtain the optimum Jastow
function (in the variational sense) from the cia,ss
of all Jastrow functions. " It was shown that a par-
tial diagonalization of the Hamiltonian introduced
earlier by Jackson and Feenberg as a theory of the
quasiparticle model" (referred to as the paired
phonon analysis) has as its ground state the opti-
mum Jastrow wave function. In Sec. II we give an
alternative (and we believe simpler) derivation of
this result for the ground state by a direct appli-
cation of the var iational principle.

From an operational point of view, the applica-
tion of the paired-phonon analysis to the problem
of determining the optimum Jastrow trial function
requires two choices. Both of these choices are
discussed in Sec. GI. The first is the choice of
which procedure to use for calculating the energy
from a given Jastrow function, be it an "exact"
procedure such as Monte Carlo integration, or an
approximation such as PY or HNC. We discuss the
self-consistency condition for choosing amongst
the various approximations which are available or
may become available. " The second choice comes
about because the paired-phonon analysis is a pre-
dictor-corrector scheme when applied to the
ground-state problem, and, as such requires an
initial choice of Jastrow trial function. The paired-

4,(r„.. . , r„)= exp[-,'P(r„. . . , r„)],
where Q may be resolved into a sum of n-body
short- range functions

(7)

~ ~ ~

A j

This form suggests a systematic approximation
scheme whereby only a few terms in the sum over
n are retained. For example, the Hartree approx-
imation for a boson system is obtained by retain-
ing only the u, (r) term in P and determining it
variationally. The Jastrow form is obtained by re-
taining u, (r) and u, (r, r } [u,(r)=0inatranslational
invariant system, and u, (r, r') =u(~r —r'

~) to pro-
duce the form of Eq. (4)].

A parametrized variational calculation including
three-body factors [u, in Eq. (8)] has been done by

phonon analysis produces a new Jastrow trial func-
tion which is an improvement over the initial choice
in the sense that the expectation value of the Ham-
iltonian is lowered. The new Jastrow function is
then used as the initial Jastrow function for a repe-
tition of this procedure, which is then iterated un-
til successive iterations produce negligible change.
The final Jastrow function is the variational opti-
mum Jastrow function from amongst all possible
Jastrow functions, independent of any particular
choice of parametrization. " In particular, it
should not depend upon the original Jastrow func-
tion in this iterative procedure. In Sec. GI we
demonstrate by example the insensitivity of the
optimum Jastrow function to the beginning function
of the iteration. On the other hand we note that the
rate of convergence to the optimum function is sen-
sitive to the initial choice.

In this paper we restrict our calculations to the
HNC approximation since it is the simplest self-
consistent approximation in the sense discussed in
Sec. III. In Sec. IV we use a reference procedure
for correcting the errors due to this approximation.
We calculate our estimates for the ground-state
energy and liquid-structure function at several den-
sities and for two choices of the He-He interaction:
the Lennard- Jones 6-12 potential and the second
Morse-dipole-dipole (MDD-2) potential.

While the results of Sec. IV give reasonable re-
sults for some of the properties of liquid He, re-
cent interest has been focussed on enlarging the
class of trial functions beyond the Jastrow form
[Eq. (4}]to obtain further improved agreement with
experiment. "" This is accomplished by noting
that the Bose ground-state wave function can be
chosen as real and positive semidefinite, and thus
may be written in the form"'"
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Woo and Colcbvell by using Monte Carlo integration
for two-dimensional liquid 'He. " One of us has de-
veloped an optimization procedure for determining
the best u„(n) 2} similar to the paired-phonon an-
alysis. " We briefly review this formalism in Sec.
V and give the results for the n = 3 modifications to
the energy- and liquid- structure functions at the
same densities and potentials as in Sec. IV.

in Eq. (11) is

«(r„)= pic„(p-fp„/I-I 1-),

and 4 takes the form

+ = @,Z[e '~"/exp[i(p-p -/II)cf] .
k

(14)

II. VARIATIONAL OPTIMIZATION OF THE JASTROW
FUNCTION

ln this section we derive a procedure for calcu-
lating the optimum Jastrow factor in a trial ground-
state wave function for the boson system. The re-
sults of this section are identical to those obtained
in the paired-phonon analysis in Ref. 10. The meth-
od we employ to derive these results is variational
rather than an approximate diagonalization of the
Hamiltonian.

We begin with an initial trial function +0.
epp(r e. . . er„)lp (9)

where all we specify about Q, is that it is real and
has a well-behaved expectation value for the Ham-
iltonian. Q, can be resolved into n-body short-
range functions as Eq. (8). In particular we write

Note that with this definition the variational equa-
tion, Eq. (12), becomes

&+ I(H-E&pfp -I+& =o (18)

where

E= &4 IIII'&/(e I4& .
To calculate the energy it is convenient to follow
Jackson and Feenberg by introducing an auxiliary
function"

V(r„.. . , r„)= Y(r„.. . , r„) — V', in%2,

(18)

where m is the mass of the atoms and V is the
total potential [ordinarily

t((r)p„. . . , r„}=g up(r, &)+Qp(r„. . . , rN), (10)
i&y

where g contains no two-body terms We s. hall not
have to be more specific about g until later

We now sappose that the expectation value of the
Hamiltonian can be lowered by a different choice
of two-body function than u„so that we seek an
improved trial state in the form

e(e„.. . , ,)=e,( „.. . , ,)eee ' pe ( „)).
i& j

A formal statement of the variational problem
which we wish to solve is

the sum of two-body potentials, but the formal
analysis permits a general form for V]. The ad-
vantage of this function is that the energy is given
by the expectation value of the function V:

E =&~
I
v Ie&/&~ I4 & .

)l((n) )l(e+vA ei( (n) )1( +&(vp4

where V, is defined in Eq. (18) with +, replacing
4'. Then the normalization integrals of these two
functions in Eq. (20} serve as the generating func-
tions for the respective energies:

(20)

We next use two wave functions which depend upon
a variable a:

[5/5& ( )]&4 IIII'&/&4 I4&=0. (12) E =—lnI(n}, Ep =—lnIp(n)
d

dQ dQ (21)
A simpler expression of this variational condition
is obtained by introducing the Fourier transform
of «(r):

1«(r) =—Qc-„e'"' .
k

(13)

Then the function which appears in the exponential

where

I(n) = &4'(n)
I
@(n)&,

I,(n) = &+,(n) I+,(n)& . (22)

The normalization integral I(n) may be written in
the form

( ) = .( )( ll ~ *'"'& .( )l ll "'"""-'"(.( ))) (& .( )
l .( )) ) ',

k, k„&0 X,a~)o
(23)
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where we define

c-(a) = (1+a}I2k'/4m)c. ,

and we use the fact that c- = c
&

= c; [4u(x) is real
and has inversion symmetry] to restrict the pro-
duct over k to a half-space.

With this set of definitions, the remaining task
is to evaluate the last factor in Eq. (23) as a func-
tion of c . That factor has the general form

(24)

J([y„-]}=(x. l II
k,kx&O

(25)

where yo is some normalized state and (y„.) is a
set of dummy variables. The function has been
shown numerous times in the literature to be ap-
proximately given by"'"

J((y„-))= II [I-yp.(k)]',
k.~x~o

(26}

E=EO+ Q E-=ED+BE,
k,ax&o

where

k 'k' (K'k '/4m)S, (k) + X(k)
4m I I 1 —cP,(k}

where we have defined

(27}

X(k) =—So(k, a)
8

where'8

1 (4 (a) Ip-p "I+,(a)}
N (4,(a}(4,(a)) (3o)

Minimizing E~ with respect to c~ gives

c;=(1—[S,(k)+4mX(k)/0'k']'@)/S (k) (31)

which gives

E„"= —[5~k 2/4mSO(k)]

x(1 [S,(k)+4mX(k)/I'k']'s] (32)

The liquid structure function for the new wave
function 4 may be obtained from the generating
function J by

where S,(k) is the liquid-structure function for the
state yo. We don't rederive this approximation
here, but simply note that it is the result one ob-
tains by retaining only second-order cumulants of
the density fluctuation operators in the cumulant
expansion of Eq. (25)." This is the only approxi-
mation we use in this section, and we discuss its
consequences below.

Equation (21) is used with this approximation (26)
for the last factor in Eq. (23}to obtain for the en-
ergy

slnJ([c-„))
(33)

with g, = 4,. With the approximation in Eq. (26)
this becomes'

S(k) = S,(k)/[1 —crS,(k)] . (34)

This completes the formal derivation of the shift
in the wave function which produces the optimum
Jastrow factor for the evaluation of the energy.
We are still faced with the task of calculating X(k)
and with the estimation of the error introduced by
the approximation in Eq. (26). The evaluation of
X(k) is taken up in Sec. III.

Concerning the error introduced by approxima-
tion (26), we note that the result of the calculation
is a new wave function of the form of 4„but with
the Jastrow part u, (r) replaced by s,(r)+ &u(r).
Consequently the new energy E may be evaluated
directly by the same procedure as that used for E,.
Similarly, the new liquid-structure function may
be evaluated directly for the new wave function and
compared to the approximation in Eq. (34). Be-
cause of the approximation 4 will not be precisely
the optimum wave function and thus this directly
calculated energy and structure function will not
agree exactly with the values calculated in Eqs.
(27) and (34). The entire procedure can be iterated
by treating 4 as the initial wave function and calcu-
lating a new shift in the energy and structure func-
tion. With an adequately chosen initial 4„ this
procedure will converge to the trial function with
the optimum Jastrow factor in several iterations. "
In Sec. III we demonstrate by example that the final
result of this iterative procedure is independent of
the initial function u, . But the rate of convergence
is sensitive to the choice of u„and a poor choice
of u, may result in no convergence at all.

III. SELF-CONSISTENT APPLICATION OF THE
PAIRED-PHONON ANALYSIS

X(k) =(5 k /4m)[1 —So(k)] . (36}

In this section we complete the analysis of Sec.
II by discussing procedures for calculating the
function X(k) defined in Eq. (29) and study in detail
the application of the paired-phonon analysis at the
experimental equilibrium density of liquid He.

Using the definition of 4,(a) in Eq. (20), X(k)
may be rewritten

x(k) =N '(4'o
l v[PfP - Ns (k}]l4'0)/—(0'o l4 ) .

(35)

From Eq. (31) we see that the condition that the
initial wave function has the optimum Jastrow fac-
tor (so that cg vanishes) is'0
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It can be verified that this is equivalent to the vari-
ational condition stated in Eq. (16) with @ replaced
by y lo

In principle X(k) may be calculated by using the
Monte Carlo or molecular-dynamics integration
routines for a finite number of particles. For a
practical calculation we now restrict our attention
to the Jastrow function space by setting Qp =0 in
Eq. (10). Even with this restriction V, is the sum
of two-body functions

used approximations are the HNC and PY approxi-
mations which are defined below in Eqs. (55)-(58).

Having introduced an approximate relationship
between u, (r) and g,(r) of the form of Eq. (42}, we
must examine again the variational calculation.
our objective is now defined as minimizing the en-
ergy self-consistently within the chosen approxi-
mation. The energy is defined by Eq. (39) where

g, satisfies Eq. (42). Then the Euler-Lagrange
equation for the optimum u(r) is

(3'I)
6E/5u(r) = 0,

which from Eq. (39) is"
(43)

and thus, since it is multiplied by pfp ~ in Eq. (35),
the three- and four-particle distribution functions
are needed to evaluate X(k). Another way of il-
lustrating the difficulty is to note that X(k} is a
fluctuation and thus requires a much more accurate
Monte Carlo or molecular-dynamics evaluation than
is necessary for E, and S,(k).

It was pointed out in Ref. 10 that an alternative
procedure is to make use of the formal similarity
between the square of the Jastrow function and the
Boltzmann factor of a classical system to generate
approximations for X(k). Specifically, the radial
distribution go(r) for 4'o is defined by

g,(r) =,
@ exp Q u, (r„)dr„. . . , dr„,

p +o +p i&y

(38}

where p is the number density of the system and
the integrand is just the square of the Jastrow func-
tion 4(,. Using Eq. (19) for the energy shows that
it only depends on gp:

g'v'g(r) -, 5g(r') d-,
4m 6u(r)

(44)

The functional derivative on the right-hand side
may be evaluated within the approximation by

»[u, g;r]
6u(r') 6u(r') (45)

(46)

We now have the extremum condition within the
approximation given by these last two equations on
one hand, and the paired-phonon optimization con-
dition Eq. (36) on the other. In the absence of any
approximation we observed that these two condi-
tions are equivalent, which is the essential feature
which makes the paired-phonon analysis a useful
predictor- corrector procedure for generating the
optimum Jastrow function. " To compare these
two conditions within an approximation like Eq.
(42), we note that the (fefinition of X(k), Eq. (29),
may be written

Ep zNp gp r Vp r dr (39)

where

V,(r) = V(r) —(5'/4m)V'u, (r) . (40)

It has been noted that the form of Eq. (38) is such
that g,(r) is also the radial distribution function
evaluated in the canonical ensemble for a fictitious
classical fluid with two-body potential P„(r) at
temperature T chosen so that'

where g, (r, a) is defined as in Eq. (38) but with
uo(r, a) replacing uo(r), where

u, (r, a) =u,(r)+ aV,(r) (4 I)

sg(ra) K g ( )aa ~ 4m (48)

[i.e., 4', is replaced by 4,(a)]. Then the paired-
phonon optimization condition [Eq. (36)] may be
Fourier transformed to give

@„(r)/k T=-u (r) . (41) To compare this to Eq. (44), we use the chain rule
for the left-hand side of (48):

With this observation it has been possible to take
advantage of the numerous approximate relations
between P„(r) and go(r) derived in the theory of
classical fluids. These approximations are char-
acterized by the fact that they have a closed func-
tional form"

sg.(r, a)
en

II'V'g, (r) V (,)
6g,(r) d-,

4m ' 5u(r')

dr'Vo(r') o dr',, 6go(r) -.

so that Eq. (48) becomes

(49)

(50)

g()(r) =F [u(), g(), r], (42)

which is to be solved for g,(r). Two frequently
Thus a sufficient condition for the variational con-
dition [Eq. (44)] to be equivalent to the paired-pho-
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non optimization condition [Eq. (50)] is that the
functional derivative of g(r) with respect to u(r'}
be symmetric under interchange" and y':

Ife(r) k(r —r') 1 d.„.„., 1
)}dk

sg(r') g(r) (2v}' S(k)'

(59)

sg(r)/5 (r') =sg(&)/5 (r) . (51)

A useful observation for generating approxima-
tions which satisfy this self-consistency condition
is that it is satisfied for any approximation which

can be expressed as an approximation for the nor-
malization integral:

and (PY)

su(r) S(r —r'} 1 1
sg(r') g(r) 1 + P(r) (2»)'

1fk (1 g') —1 dk.
S(k)' (60}

I= II e"'&s d&r„. . . , dr„. (52)

This is seen by noting that g(r) is generated by the
functional derivative of ln I:

g(r) = p '5 lnI/su(r},

and consequently

Sg(r}/Su(rq) = p '9 lnI/su(r') Su(r)

=sg(r')/6 (r) .

(53)

(54)

This gives a restriction which should be imposed
upon any approximation used in conjunction with
the paired-phonon analysis. Stated in terms of the
fictitious classical system, the radial distribution
function should be proportional to the functional
derivative of the logarithm of the partition function
with respect to the classical potential. " of course
the exact relationship between g(r) and u(r) satis-
fies Eq. (53), which reaffirms our previous demon-
stration' that the paired-phonon analysis optimi-
zation condition is equivalent to the variational ex-
tremum condition in the Jastrow function space.

It was noted in Ref. 10 that the HNC approxima-
tion is an approximation for which these two con-
ditions are equivalent, while the PY approxima-
tion is not. This is easy to demonstrate in terms
of Eq. (51). These two approximations are" (HNC) where

x[1—S,(k)'], dh, (61)
0

Equation (59) is symmetric under interchange of
r and r', but Eq. (60) is not because of the P(r) in

the denominator of the second term. Consequently
the paired-phonon analysis provides a predictor-
corrector procedure for determining the best Jas-
trow function within the HNC approximation, while

it does not within the PY approximation. A similar
analysis shows that the BBGKY-KSA approximation
is not self-consistent in the present sense. We

have not investigated the more complicated approx-
imations such as improvements upon HNC and PY.
In the remainder of this section we will restrict
our attention to the HNC approximation.

To determine the paired-phonon analysis func-
tion K(k) within the HNC approximation, the func-
tion u,(r, c() [Eq. (4V)] is substituted for u(r) in

Eq. (55), so that g(r) =g,(r, o(). Then both sides of
Eq. (55} are differentiated with respect to c( and

Fourier transformed to give X(k) in accord with

Eq. (46). Since the right-hand side of Eq. (55) de-
pends upon g(r), the equation obtained for 3C(k) is
a linear integral equation'

Z(k)
( ),

——e (k) ~
( ), f [1 —k (krk)]

g(r) e(k(r&kP&r&

and (PY)

(ss)
q,(k)=qf e"'d(r))r (r)dr .

g(r) = e"'"'[1+P(r) ], (56)

where P(r) depends upon g(r) through the liquid-
structure function:

( )
1 g.; [S(k) —1]

(»)'p S(k) (5V)

k(k) —1=qf [d(r) —1]e""dr . (58)

For these two approximations it is simpler to in-
vestigate su(r)/sg(r'), which should also be sym-
metric in r and r' by Eq. (51). The results are
(HNC)

We now give the details of the solution of this
optimization problem within the HNC approxima-
tion at a single density (experimental equilibrium,
p =0.02185 A ') and a single potental, the Len-
nard-Jones 6-12 potential with the de Boer-
Michels parameters [see Eq. (63) below]. We fol-
low the iterative procedure described at the end
of Sec. II, i.e., we begin with a reasonable initial
u, (r) from which we calculate g,(r), E,/N, and

S,(k) through Eqs. (55), (39), and (58), respective-
ly, and X(k}, I&.E„and 4u, (r) through Eqs. (61),
(2V), (13), and (31). The entire procedure is then
iterated with the new initial function u, (r) =uo(r)
+d&u(r), repeating the iteration until the minimiza-
tion condition, Eq. (36), is satisfied. We examine
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the sensitivity of the final result of this procedure
to the initial u, (r) by using two different initial
functions, one with u, (r) =-2(2.62/y)', the other
with u, (r) =-2(2.5/r)'. The energy as a function of
iterationnumberis shown in Table I. In that table, E„
is calculated directly from u „ through Eqs. (39) and

(55), and is not identical with the paired-phonon
estimate, E„,+&E„,. The difference is due in

part to the approximation in Eq. (26) and in part
due to the numerical integrations. The former er-
ror shrinks rapidly as the iterations converge,
while the latter error should be of roughly the
same order of magnitude for all iterations.

The final results for E, g(r), and S(A.) all agree
to within 1.5/p. Figure 1 shows each initial u, (r)
and the final u(r). u(r) is tabulated in column 4 of
Table VI. The final S(k) is plotted as the dashed
line in Fig. 2 and tabulated in Column 2 of Table
II, and the final g(r) is tabulated in column 4 of
Table IV. This calculation provides a good ex-
ample of the insensitivity of the optimal wave func-
tion to the starting function of the iterative pro-
cedure.

In an independent calculation Shen eI; a/."have
demonstrated the same feature in a paired-phonon
analysis optimization of the ground state of 4He in
two dimensions and the ground state of "home-
work" neutron star matter. Their starting func-
tions appear to differ from one another by more
than ours, so their test of the paired-phonon analy-
sis is stronger than ours. The agreement between
their final results is not as good as we have ob-
tained here, but the agreement would undoubtedly
improve with more iterations. It should be noted,
however, that they obtain the energy by summing
the predicted energy shifts E„, rather than recom-
puting the energy at the end of each iteration. "

) I I ) (

0—
~[-vt0l

-3
1&

l

7 8 910
f'(A )

FIG, 1. Optimum Jastrow function [Eq. (4)] for liquid
4He at the experimental equilibrium density po

=0.02185 g 3 (curve C) compared to two different ini-
tial Jastrow functions for the paired-phonon analysis
iterations: curve A, u (r) =-2(2.62 A/r)~; curve B,
u(r) =-2(2.5 A/r) .

1.2

Returning to our calculation as summarized in

Table I, we note the rapid convergence with itera-
tion number. The choice of u, (r) which converges
most rapidly (three iterations) is the choice of the
form of Eq. (6) with variationally determined pa-
rameters. The fact that the power in that u, (r) is
5 corresponds to the r " core of the Lennard-Jones
potential. The rate of convergence of the P =6
choice may reflect the fact that the difference be-
tween P =5 and P=6 can be corrected only approx-
imately by a finite sequence of Fourier transforms
nu(r). That observation is given some support by
the results of our calculation with another potential

TABLE I. Iterations of the paired phonon analysis to
obtain the ground-state energy of liquid He at density
0.021 85 A in a Jastrow function using the HNC approxi-
mation. Column A begins with the Jastrow function de-
fined by go(r) =-2(2.62/x), while column B begins with

go(r) =-2(2.5/r) . E„ is the calculated energy; ~„is the
paired-phonon analysis estimated shift.

s(s)

1.0

0.6

0.4

0.2

DE)
E2

DE3

A
('K)

-4.4i4
—0.204
-4.609
-0.004
-4.6i5
-0.00i
—4.6i7

B
(K)

—4.205
-0.35i
—4.522
—0.0i5
-4.527
—0.004
—4.540
-0.003

E4

E

E7

B
( K)

-4.542
-0.002
—4.549
-0.002
—4.549
-0.002

4.552

0 I 1

0 0 5 l.0 1.5 2.0 2.5 3.0
k[4']

FIG. 2. Liquid-structure function of liquid 4He at ex-
perimental equilibrium density p()

——0.021 85J:0, x-
ray scattering at T = 0.38'K (Ref. 28); k, x-ray scatter-
ing at T =1.1'K (Ref. 29); a, neutron scattering at T
=1.1'K (Ref. 30); dashedline, fromtheoptimum Jastrow
function using the Lennard- Jones potential (Fig. 3); and
solid line, from the optimurh. Jastrow function using the
MDD-2 potential (Fig. 3).
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TABLE II. Liquid-structure function S(k) calculated for the ground state of He at several dif-4

ferent densities using the Lennard-Jones potential of Fig. 3. Sz(k) is obtained from the optimum

Jastrow trial function [Eq. (4)] within the HNC approximation. S(k) includes the effect of three-

body factors in the ground-state wave function [Eq. (65)]. The wave number scale is in units of

X ', where X = (p/ po)' 3.

X-'k(A
0.021 85

S,(k) S(k)
0.023 88

S (k) SA)
0.025 71

S,(k) S(k)
0.028 44

S&(k) S(k)

0.1

0.2
0.3
0,4
0.5
0.6
0.8
f.0
1.2
f,4
1.6
1.8
1.9
2.0
2.f
2.2
2.3
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

0.039
0.072
0.101
0.126
0.150
0.174
0.227
0.295
0.388
0.523
0.718
0.974
1.103
f .204
1.256
1.258
1.225
1.176
1.077
1.005
0.963
0.946
0.947
0.960
0.978
0.996
1.009
1.015
1.016
1.013
1.008

0.037
0.068
0.093
0.115
0.136
0.158
0.207
0.275
0.371
0.517
0.738
1.040
1.190
1.303
1.348
1.330
1.271
1.200
1.074
0.992
0.950
0.936
0.942
0.958
0.980
0.999
1.013
i.018
1.018
1.013
i.007

0.032
0.061
0.086
0.110
0.133
0.156
0.207
0.274
0.367
0.505
0.710
0.997
1.142
1.247
1.297
1.290
1.239
1.174
1.063
0.988
0.949
0.937
0.943
0.961
0.984
1.003
1.015
1.020
1.017
1.012
1.005

0.031
0.057
0.080
0.100
0.120
0.141
0 ~ 189
0.255
0.351
0.501
0.736
1.081
1.254
f.372
1.410
1.374
1.288
1.195
1.056
0.972
0.934
0.926
0.938
0.961
0.987
1 ~ 008
1 ~ 020
1.023
1.019
1.012
1.004

0.028
0.053
0.076
0.098
0.120
0.142
0.192
0.257
0.349
0.488
0.700
1.018
1.179
1.287
1.335
1.318
i.248
1.168
1.050
0.973
0.938
0.929
0.941
0.964
0.989
1.010
1.021
1.023
1.017
1.010
1.002

0.027
0.050
0.071
0.090
0.109
O. f 29
0.175
0.240
0.334
0.487
0.732
1.121
1.318
1.440
1.469
1.415
1.299
1.187
1.038
0.953
0.921
0.918
0.936
0.965
0.994
1.017
1.026
1.026
1.018
1.010
1.001

0.024
0.045
0.065
0.085
0.105
0.125
0.172
0.235
0.323
0.464
0.685
i.048
1.239
1.348
1.390
1.357
1.256
1.155
1.029
0.951
0.921
0.919
0.939
0.969
0.999
1.021
1.028
1.026
1.016
1.007
0.998

0.023
0.042
0.060
0 ~ 078
0.095
0.113
0.157
0.219
0.311
0.465
0.724
1.183
1.424
1.548
1.560
1.473
1.310
1.170
i.011
0.926
0.902
0.908
0.935
0.972
1.007
i.029
i.034
1.029
1.016
1.005
0.996

in Sec. IV. In that case the short-range behavior
of the optimum u(r) is not r ', so even beginning
with the optimum u, (r) of the form of Eq. (6), it
still takes seven iterations to obtain the same con-
vergence.

IV. OPTIMUM JASTROW FUNCTION AT SEVERAL
DENSITIES

In this section we calculate the liquid-structure
function and energy expectation value in the opti-
mum Jastrow function as a function of density. We
use a reference procedure to correct approximate-
ly the systematic error caused by the HNC approx-
imation. 24 The procedure is to first obtain the
density dependence of the optimum energy E,""
from the simple parametrized form, uo(r) = (b/-
r)', within the HNC approximation, and then apply
the self-consistent paired-phonon analysis to this

EMC + (EHNc EHNC) (62)

The self-consistent paired-phonon calculation is
done at the following densities: p = 0.017 96,
0.01946, 0.020 96, 0.021 85, 0.023 88, and 0.025 71
(A '). Two different interaction potentials are
used": the Lennard- Jones 6-12 potential

V(r) = 4e [(o/r)" —(o/r)'], '

& =10.22 (K), o'=2.556 (A),
and the second Morse-dipole-dipole potential
(MDD-2) of Bruch and McGee.'""

(62)

result to obtain the optimal HNC energy Eopg The
energy shift Ez EoH~wvc EoHNc js then added to the
optimized Monte Carlo or molecular-dynamics
energy E", based upon the same parametrization,
giving our estimate of the optimum Jastrow en-
ergy as
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1.987 04V x 10' exp(-3.4573r-0.262 06r')(K); r & 0 89. 19 A,

V(r) ( 10.7498(exp[2c(1 —x)] -2 exp[c(l —x)]) (K); 0.8919&r&3.682 A,

-104(1.0213 V6/r +2.V6V 132/r ) (K); y)3.682 A

(64)

where

c =6.12'l 768, y =r/3. 0238 A

These potentials are compared in Fig. 3. The en-
ergies obtained in these calculations are tabulated
in the first six columns of Tables VIIIand IX. Re-
sults are also given for the Lennard- Jones poten-
tial at p =0.028 44 A ', the lowest density of solid
'He. The Monte Carlo results for both potentials
used here are those obtained by Murphy and
Watts. ' The optimum Jastrow energy as a func-
tion of density is compared to the Monte Carlo re-
sult and experiment in Fig. 4, where it can be
seen that the optimum Jastrow energies obtained
by such a reference procedure give a better agree-
ment with experiment than the parametrized Monte
Carlo energies. Both the equilibrium density and
the magnitude of the energy obtained from the
Lennard-Jones potential agree better with experi-
ment than the same quantities calculated with
MDD-2 potential.

The results of our Jastrow calculation of the
liquid-structure function are shown in Fig. 2 at
equilibrium density and in the columns labeled S~

(a)
L-J

e5

E/N

+}

7

I

0.018
I I

0.020 0.022
p (A-')

I

0.024

in Tables II and III as a function of density. We

have used no reference procedure to correct for
the HNC approximation for S(k) since the relative
errors are much smaller than in the energy cal-
culation discussed above. Except for long wave-
lengths, the HNC approximation differs from the

L-J
MDD-2

E/N
t'K)

-1.0— M 7

I

1.Q
I

2.0

I

O.o&8
I I

0.020 0.022
p (A-')

I

0.024

FIG. 3. Two candidates for the interaction between two
helium atoms: dashed line, the Lennard- Jones 6-12 po-
tential; and solid line, the MDD-2 potential (Ref. 25). r
is in units of fT=2.556 A, and V(r) is in units of e
= 10.22 'K

FIG. 4. Energy per particle as a function of density
for (a) the Lennard- Jones potential; and (b) the MDD-2
potential. Curve MC, the parametrized Monte Carlo
calculation of Ref. 6; OJ, the optimized Jastrow result
of Sec. IV; J3, the result including three-body factors
(Sec. V); and EXP'T, the experimental results.
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TABLE III. Liquid-structure function S(k) as in Table II, but using the MDD-2 potential of

Fig. 3. Note that there are only three common densities with Table II, and the wave-number

scale is changed.

k Q.-
0.01946

S,(k) S(k)
0.021 85

Sg(k) S(k)
0.023 88

Sq(k) S(k)
0.025 71

S,(k) S(k)

0.1
0.2
0.3
0.4
0 ' 5
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1.9
2.0
2.1

2.2
2 ~ 3
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

0.043
0.081
0.112
0.138
0.163
0.188
0.244
0.317
0.419
0.568
0.786
1.056
1.174
1.247
1.264
1.237
1.188
1.133
1.038
0.978
0.949
0.943
0.953
0.972
0.992
1.008
1.016
1.017
1.013
1.007
1.002

0.042
0.076
0 ~ 103
0.126
0.148
0.170
0.224
0.296
0.403
0.566
0.814
1.132
1.266
1.341
1.339
1 ~ 288
1.214
i.142
1.030
0.966
0.938
0.936
0.950
0.973
0.995
1.012
1.019
1.019
1.014
1.007
1.001

0.032
0.061
0.087
0.111
0.134
0.157
0.208
0.272
0.363
0.497
0.702
0.992
1.145
1.265
1.316
1.301
1.247
1.180
1.059
0.983
0.943
0.932
0.941
0.962
0.986
1.007
1.019
1.021
1.017
1.010
1.003

0.031
0.058
0.081
0.101
0.121
0.142
0.189
0.253
0.348
0.493
0.728
1.076
1.261
1.398
1.436
1.389
1.297
1.202
1.051
0.966
0.928
0.922
0.936
0.962
0.990
1.012
1.024
1.024
1.019
1.010
1.002

0.026
0.051
0.073
0.094
0.115
0.136
0.182
0.241
0.322
0.443
0,632
0.922
1.096
1.256
1.351
1.359
1.306
1.229
1.083
0.989
0.940
0.923
0.930
0.951
0.979
1.004
1.020
1.025
1.022
1.014
1.005

0.025
0.048
0.068
0.086
0.104
0.122
0.165
0.223
0.307
0.438
0.654
1.005
1.223
1.421
1.519
1.495
1.390
1.271
1.078
0.970
0.920
0.909
0.922
0.950
0.983
1.011
1.027
1.030
1.024
1.014
1.004

0.022
0.044
0.064
0.083
0.101
0.120
0.163
0.216
0.291
0.400
0.573
0.852
1.036
1.226
1.368
1.411
1.367
1.281
1.109
0.998
0.938
0.916
0.919
0.940
0.970
1.000
1.021
1.029
1.026
1.018
1.008

0.022
0.041
0.059
0.075
0.092
0.109
0.148
0.200
0.276
0.394
0.591
0.930
1.163
1.411
1.581
1.602
1.494
1 ~ 350
1.109
0.976
0.915
0.897
0.909
0 ~ 938
0.974
1.008
1.030
1.036
1.030
1.018
1.006

Monte Carlo calculation of S(k) for the same u(r)
by only a few percent. " In particular, the maxi-
mum in S(k) is 1% less in the HNC calculation than
in the Monte Carlo calculation for the parametrized
u(r) of Eq. (6) with parameters chosen to minimize
the Monte Carlo energy. The reason that the HNC
approximation works so well for S(k) is that the
error it makes is greatest when u(r} is large,
which is where g(r) is small and thus contributes
little to S(k) . Both the potential and kinetic energy
have large contributions from this region, so they
are in larger error. Furthermore, the minimiza-
tion of the energy with respect to the parameters
in u(r) produces a value of b greater by 1% than the
value obtained in the Monte Carlo calculation.
Consequently the small discrepancy between the
HNC and Monte Carlo S(k} is reduced by compar-
ing the S(k}'s at their respective optimum values
of b. Our conclusion is that the HNC calculation
of S(k} is a very good approximation to the result
that would be obtained by the Monte Carlo calcula-

tion.
The calculated S(k) at equilibrium density using

each interaction is compared with x-ray and neu-
tron scattering results in Fig. 2. The long-wave-
length x-ray scattering is at a temperature of
0.38 K,"the intermediate-wavelength x-ray mea-
surements are at 0.79 K,"and the neutron scat-
tering results are at 1.1 K." The calculation us-
ing the MDD-2 potential is in slightly better agree-
ment with experiment than the one using the Len-
nard- Jones potential, although both have a broader
first maximum than experiment. From Tables II
and III it can be seen that the peak in the calculated
S(k) increases in magnitude and moves to larger
values of k with increasing density. Experimental
neutron scattering results have the same qualita-
tive behavior, "but, as can be seen in Fig. 5(a),
the quantitative agreement of the density depen-
dence of the calculated and observed S(k) is not
good. It should be noted, however, that the exper-
iment was done at a somewhat elevated tempera-
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1.6—

1.2

max

1.6—

1.2—

I I I

(a)

t I I I I I

I l I I
l

i I I I

for the Lennard-Jones interaction, in spite of the
fact that the minimum value of the latter interac-
tion is at smaller ~. On the other hand, the maxi-
mum value of g(r) is larger for the MDD-2 poten-
tial as one might expect from its greater depth .
The optimum u(r) for the Jastrow trial function

is tabulated in Tables VI and VII. Note that there
is some structure in u(r) similar to that seen in

Fig. 1, including an inflection near the peak posi-
tion in g(r) which develops into a maximum at high-
er density. Nowhere, however, does u(r) come
close to changing signs and becoming positive in

contrast to a recent suggestion that a positive max-
imum is necessary for a self-bound system. "

l I I I i l

0.020 0.025 0.030

1' [& *]

FIG. 5. Maximum value of the liquid-structure func-
tion as a function of density. (a) Obtained from the op-
timum Jastrow function; (b) the effects of three-body
factors. The experimental points are from neutron
scattering; k, T 1.1 K (Ref. 30};and 6, T =2.05, 2.02,
and 1.94'K with increasing density (Ref. 31}. The
ground-state calculation is for the Lennard- Jones po-
tential (0) and the NDD-2 potential (H) at the densities
indicated by the points. The lines are to aid the eye
only.

V. EXTENDED JASTROW CALCULATION

The results of the optimal Jastrow calculation
for the ground-state energy may be improved upon

by considering an expanded space of trial func-
tions of the form of Eqs. (7) and (8)."" To find
the optimal wave function in this enlarged space
we use the general optimization procedure for ex-
tended Jastrow functions developed elsewhere. "
For a practical calculation we first set u„=0 for
n «3 and use the optimum u, obtained in Sec. IV.
We then vary u, with u, =0 for n «4. Then the
trial function has the form

ture (about 2 'K). Mozer et al. also obtained data
at a higher temperature and found that the peak
value increases with increasing temperature, "
which may also explain the discrepancy between
the x-ray and neutron scattering data in Fig. 2.
We speculate therefore that the density dependence
of S(k) measured at much lower temperatures
would be in better agreement with the calculations
described in this section.

The results of our Jastrow calculation of the ra-
dial distribution function g(r) are tabulated in Ta-
bles IV and V. Note that the maximum value of
g(r) increases with increasing density, while the
position of the maximum decreases. This peak is
located at smaller r for the MDD-2 interaction than

x exp P —,(r„rr, )),
$A flak

(65)

where 4'~ is the optimum Jastrow wave function and
thus satisfies Eq. (36). The variational procedure
takes on a simple form when u, (r„r„r,) is ex-
pressed in terms of its Fourier transform:

u, (r„r„r,) =t)t p c,(k„k2, k,)IIe' ''(.
fk, f2,%

(66)

Then the wave function 4 becomes

e(r„.. . , r )=e' (r„.. . , r }exp( P p"'(k„k„k)c,(k„k„k, ), (67)

where
N

p(3)(k j g ) g e(&f& r)ke f2 r+ e f). r+.) (68)

The energy is then minimized with respect to c,(k„k„k,). The results obtained in Ref. 14 are

c,(k„k„k,) = —["R(k„k„kp)/R(k„kk, k~) j5), , ), +), ,(), (68)
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TABLE IV. Radial distribution function g(r) calculated for the ground state of 4He at several
different densities using the Lennard-Jones potential of Fig. 3. g(r) is obtained from the opti-
mum Jastrow trial function fEq. (4)] within the HNC approximation. The length scale of the last
three columns is A, = (p/po)', po ——0.021 85 A.

0.01946 0.02096 0.02f 85 xA. (A) 0.023 88 0.02571 0.02844

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.2
4 4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.Q

6.2

0.4x fp+
0.6x fp~
0.005
0.022
0.065
0.145
0.261
0.407
0.566
0.726
0.874
1.001
1.103
1.177
1.227
1.254
1.264
1.259
1.243
i.220
1.192
1.162
1.130
1.069
1.017
0.977
0.951
0.938
0.937
0.945
0.959
0.975
0.990
i.003

0.4x fp+
0.7 x10-'
0.005
0.025
0.072
0.158
0.283
0.437
0.605
0.772
0.924
1.052
1.151
1.221
1.264
1.285
1.287
1.275
1.253
1.224
1,190
1.155
1.120
1.054
1.000
0.961
0.937
0.928
0.931
0.944
0.961
0.980
0.998
1.011

0.4x fp+
0.7x fp+
0.005
0.025
0.073
0.164
P.294
0.455
0.628
0.799
0;953
1.082
1.180
1.247
i.287
1.304
1.302
1.286
1.259
i.225
1.188
i.150
1.112
1.044
0.989
0 ~ 950
0.928
0.921
0.928
0.943
0.964
0.985
1.003
1.016

1.8
1.9
2.0
2.1

2.2
2.3
2.4
2,5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3s3
3.4
3.5
3.6
3.7
3.8
3.8
4.0
4.2

4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2

0.2 x 10+
0.4 x 10
0.003
0.016
0.049
0.116
0.223
0.370
O.544
0.726
0.898
1.046
1.165
1.252
1.307
1 ~ 335
1.339
1.326
1.299
1.264
1.224
1.182
1.139
1.060
0.996
0.949
0.920
0.909
0.913
0.929
0.952
0.977
1.000
1.018

0.1 x 10
p. 2 x10
0.002
0.010
0.032
0.081
0.170
0.303
0.472
0.660
0.844
1.009
1.146
1.251
1.323
1.362
1.373
1.362
1.337
1.301
1.259
1.2f 2

1.165
1.076
1.003
0.948
0.913
0.898
0.900
0.915
0.940
0.969
0.996
1.018

0.6x 10 '
O. i x f0+
p, f xip
0.005
0.017
0.048
0.110
0.218
0.373
0.562
0.760
0.947
1.111
1.243
1.339
1.397
1.420
1.4f 7
1.393
1.357
1.311
1.259
i.204
1.100
1.014
0.948
0.903
0.882
0.880
0 ~ 894
0.921
0.955
0.988
1.018

where

X(k„k„k,) = —(8'/8m)(k', + k~+ k, )$(k,)S(k, )$(k, ) + (8 /8m )(k', —k', —k', )$(k, )

+ (I /8m }(k', —k', —k, )S(k,) + (5'/8m)(k', —k', —k', )S(k, )

+ (8 /4m) [k2/$(kz)+ k~/$(k~) + k~/$(k, ))S(k,}S(k,)S(k3)

and

S(k„k2, k3) = (8 /4m)(k', /S(k, ) + k2/S(k, )+ k', /S(k, ))S(k,)S(k,)S(k,}.
The convolution approximation for the three-body structure factor

(4(pk p@pp&3 ~4}=8~,~, ~ 0 S(k, )$(k,}$(k~}

has been used in these results. ' The shift in energy obtained in this manner is
—1 1
3! 2X

kq, k2, kq

k3+ k2+k ~
= 0

(70)

(71)

(72)
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TABLE V. Radial distribution function g(r) calculated for the ground state of He at several
different densities using the MDD-2 potential of Fig. 3. g(r) is obtained from the optimum
Jastrow trial function [Eq. (4)] within the HNC approximation. Note that there are five densities
in common with Table IV but the length scale is changed.

p (A+)
r &A}

1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4 ' 2

4.4
4.6
4.8
5 ' 0
5.2
5.4
5.6
5.8
6.0
6.2

0.017 96

0.5 x10 5

0.1 x fp+
0.002
0.009
0.032
0.083
0.167
0.284
0.426
0.582
0.742
0.892
1.023
1.127
1.204
1.254
1.282
1.290
1.282
1.263
1.236
1.205
i.f71
1.104
1.043
0.994
0.959
0.938
0.930
0.933
0.944
0.960
0.978
0.995

0.01946

0.5xfp 5

0.1 x 10
0.002
0.010
0.036
O.OS2

0.183
0.308
0.459
0.624
0.792
0.947
1.078
1.180
1.251
1.295
1.315
1.315
1.300
1.273
1.239
1.202
1.164
1.090
1.025
0.975
0.942
0.923
0.920
0.928
0.944
0.964
0.985
1.003

0.020 96

p.5xfp '
p.2x fp~
0.002
0.011
0.039
O. 100
0.200
0.335
0.496
0.670
0.845
1.003
1.134
1.233
1.298
f .334
f.346
1.337
1.313
1.279
1.238
1.196
1.153
1.072
1.005
0.955
0.924
0.910
0.911
0.925
0.946
0.971
0.995
1.014

0.021 85

0.5x 10 '
0.2 xi 0+
0.002
0.012
0.043
Q. 109
0.213
0.352
0.517
0.698
0.877
1.038
1.168
1.263
1.324
1.356
1.363
1.349
1.319
1.279
1.235
1.189
1.144
1.060
0.991
0.943
0.914
0.902
0.907
0.925
0.949
0.976
1.001
1.020

0.023 88

0.6xfp ~

p.2 x fp+
0.002
0.015
0.051
0.126
0.242
0.395
0.575
0.768
0.956
1.119
1.246
1.332
1.382
1.401
1.394
1.367
1.325
1.275
1.221
1.169
1.119
1.029
0.960
0.915
0.892
0.888
0.902
0.928
0.959
0.991
1.019
f .036

0.025 71

0.8x10 ~

0.3x fp+
0.003
0.017
0.059
0.143
0.272
0.438
0.631
0.835
1.029
1.193
1.314
1.391
1.429
1.434
f.415
1.375
1.322
1.262
1.202
1.144
1.091
0.999
0.931
0.891
0.875
0.879
0.901
0.935
0.973
1.008
1.036
1.050

The new liquid-structure factor S(k) becomes

S(k) = S(k) exp g [S(k + 1 )S(l) —1]
—S(k) sf(k, I, -k —T)

7

(V4)

The numerical calculation is done at the same den-
sities and potentials as in Sec. IV. Adding the opti-
mum Jastrow energy obtained by the reference pro
cedure described in Sec. IV to the energy shift from
the three-body extended Jastrow factors found here
gives us our final estimate of the ground-state en-
ergy as a function of density. The numerical re-
sults for the energy are given in the last two col-
umns of Tables VIII and IX and are plotted in Fig.
4. As in the previous calculation at equilibrium
density, ' we find that the three-body factors make
a significant contribution to the energy, improving

agreement with experiment over the Jastrow result.
We also find, as should be expected, that the three-
body factors have increasing importance as the
density is increased. Consequently the calculated
equilibrium density is closer to the experimental
value. As in the Jastrow calculation in Sec. IV,
both the equilibrium density and the magnitude of
the energy obtained using the I ennard-Jones poten-
tial agree better with experiment than the same
quantities calculated with the MDD-2' potential.

The liquid-structure function at equilibrium den-
sity is compared to the experimental values in Fig.
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TABLE VI. Function -g(r) for the optimum Jastrow function of the form

determined variationally within the INC approximation using the Lennard-Jones potential of
Fig. 3. The length scale of the last three columns is & where X=(pjpo), po -—0.02185 Ai/3

0.01946 0.020 96 0.021 85 xA. (A) 0.023 88 0.02571 0.02844

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2

12.269
9.297
7.136
5.540
4.347
3.443
2.749
2.209
1.783
1.443
1.170
0.951
0.775
0.634
0.522
0.433
0 ~ 363
0.308
0.266
0.234
0.210
0.193
0.182
0.170
0.168
0.168
0.168
0.166
0.160
0.151
0.140
0.128
0.116
0.105

12.353
9.380
7.217
5.620
4.425
3.518
2.821
2.276
1.844
1.499
1.221
0.999
0.820
0.678
0.565
0.476
0.405
0.351
0.309
0.278
0.255
0.239
0.228
0.217
0.215
0.214
0.212
0.206
0.197
0.184
0.169
0.154
0.139
0.126

12.712
9.628
7.387
5.737
4.507
3.579
2.868
2.315
1.879
1.530
1.249
1.025
0.845
0.701
0.587
0.496
0.426
0.371
0.330
0.300
0.278
0.263
0.253
0.243
0.241
0.240
0.237
0.229
0.218
0.202
0.185
0.168
0.152
0.138

1.8
1.9
2.0
2.1

2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
42
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2

13.608
10.494
8.221
6.526
5.233
4.224
3.424
2.784
2.270
1.857
1.527
1.261
1.047
0.875
0.736
0.627
0.540
0.473
0.422
0.383
0.354
0.334
0.320
0.306
0.301
0.299
0.295
0.286
0.272
0.254
0.234
0.212
0.192
0.174

14.533
11.385
9.070
7.319
5.951
4.853
3.958
3.229
2.639
2.166
1.788
1.483
1.236
1.036
0.874
0.746
0.644
0.565
0.504
0.456
0.421
0.396
0.379
0.360
0.352
0.350
0.346
0.336
0.321
0.301
0.277
0.252
0.228
0.206

15.848
12.656
10.293
8.477
7.019
5.807
4.783
3.924
3.218
2.647
2.191
1.824
1.526
1.283
1.085
0.927
0.802
0.703
0.626
0.566
0.520
0.487
0.465
0.439
0.428
0.425
0.421
0.410
0.393
0.371
0.342
0.311
0.282
0.254

6. The height of the maximum has increased over
the value shown in Fig. 2 for the Jastrow calcula-
tion for both potentials. In contrast to the Jastrow
calculation, the Lennard-Jones potential now seems
to agree somewhat better with experiment than
MD/-2. The fact that the width of the first peak
in S(k) is too large continues to be a problem.

The calculated liquid-structure function at sever-
al densities is shown in Fig. 7(a) for the Lennard-
Jones potential and in Fig. 7(b) for the MDD-2 po-
tential. It can be seen in Tables II and III and Fig.
5 that the contribution of three-body faciors to S(k)
increases with density. The magnitude of the peak
in S(k) is compared to the experimental results in
Fig. 5(b). Again the calculated density dependence
seems poor, although we recall the discussion of

the same point in Sec. IV where we noted that the
temperature effects on the finite pressure S(k) may
be partly responsible for the poor agreement.

VI. DISCUSSION

The calculation described in this paper gives an
example of the sensitivity of the ground-state prop-
erties of liquid 'He to the interaction potential. A
reasonable objective for such a calculation is the
determination of a density-independent interaction
between helium atoms which reproduces the ex-
perimentally determined liquid-structure function
and binding energy for all densities. Since the en-
ergy is sensitive to the short-range behavior of the
potential and the structure function is sensitive to
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TABLE VII. Function —N(x) for the optimum Jastrow function of the form determined var-
iationally within the HNC approximation using the MDD-2 potential of Fig. 3. Note that there
are five densities in common with Table VI.

0.017 96 0.01946 0.020 96 0.021 85 0.023 88 0.025 71

1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.2
4,4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2

14.397
10.904
8.363
6.492
5.099
4.049
3.245
2.617
2.116
1.711
1.380
1.112
0.895
0.721
0 ~ 583
0.414
0.388
0.321
0.271
0.233
0.206
0.187
0.174
0.161
0.160
0.163
0.167
0.168
0.166
0.159
0.150
0.138
0.126
0.113

14.607
11.069
8.498
6.607
5.203
4.147
3.338
2.705
2.198
1.785
1.448
1.174
0.953
0.777
0.637
0.527
0.440
0.372
0.322
0.285
O. 258
0.239
0.227
0.215
0.214
0.217
0.219
0.217
0.211
0.200
0.186
0.171
0.155
0.140

14.943
11.320
8.689
6.756
5.323
4.247
3.426
2.783
2.267
1.848
1.505
1.226
1.002
0.824
0.683
0.571
0.483
0.416
0.366
0.330
0.304
0.287
0.275
0.265
0.265
0.267
0.266
0.262
0.251
0.236
0.218
0.198
0.179
0.162

14.992
11.341
8.696
6.762
5.337
4.272
3.459
2.820
2.303
1.879
1 ~ 532
1.251
1.026
0.847
0.706
0.593
0.506
0.439
0.390
0.355
0.330
0.313
0.302
0.293
0.294
0.295
0.293
0 ~ 287
0.273
0.255
0.235
0.212
0.191
0.173

15.161
11.478
8.813
6.857
5.434
4.363
3.542
2.895
2.369
1.938
1.585
1.299
1.072
0.892
0.750
0.638
0.551
0.487
0.440
0.407
0.385
0.370
0.361
0.355
0.357
0.356
0.350
0.338
0.318
0.293
0.267
0.240
0.215
0.194

15.273
11.561
8.882
6.931
5.497
4.425
3.602
2.949
2.416
1.979
1.621
1.332
1.104
0.925
0.783
0.672
0.588
0.526
0.482
0.453
0.433
0.421
0.413
0.410
0.412
0.408
0.398
O.380
0.353
0.322
0.290
0.259
0.232
0.210

the intermediate and long-range behavior of the po-
tential, that experimental information should be
more than adequate to determine the interaction
function. For the purpose of comparing to a ground
state theory it would be very useful to have the fi-
nite-pressure liquid-structure function measured
at a much lower temperature.

There are two requirements that the theory must
meet in order to make use of the experimental data
to determine the potential. The first is that the
structure of the model Hamiltonian is adequate and
the second is that the ground state of the model
Hamiltonian can be solved accurately. Concerning
the first requirement, in our calculations we have
assumed that the fundamental interaction between
helium atoms is a two-body interaction. Helium
atoms however are not elementary particles, and
consequently there are fundamental three-body and

higher interactions. Murphy and Barker have es-
timated that the contribution of the triple-dipole
three body interactions to the ground-state energy
per particle near equilibrium density is 0.14 (p/
p,)' 'K.~ The short-range part of the potential is
not known, but the amount it contributes should be
small due to the suppression of the wave function
at close approaches by the two-body potential.
Thus the contribution to the energy per particle
from n-body potentials with n ~ 3 is probably less
than 0.2'K, and the density variation is probably
less than 0.1 K over the range of experimental den-
sities.

The question which remains is whether the theo-
retical calculation presented in this paper is ade-
quate to sort out possible potentials. That is, have
we solved the ground-state problem accurately'
The extended Jastrow function is certainly not the
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TABLE VIII. Energy terms for the estimate of the ground-state energy per particle of 4He

interacting by the Lennard-Jones potential of Eq. (63). EopT is the variational extremum en-

ergy for the Jastrow function within the HNC approximation, E0" the minimum for the para-
metrization of Eq. (6), ~g=EopT —E0, E0 is the minimum for the parametrization of

Eq. (6) calculated using the Monte Carlo integration (Ref. 6), and Ez=E0 +~& is our estimate
of the minimum energy per particle from all possible Jastrow trial functions. ~3 is our
estimate of the energy shift introduced by three-body factors in the ground state, giving the

final column E =Ez+~3.

p (A 4 ) EHNC (oK) EHNC
0

EMc

0.017 96
0.01946
0.020 96
0.021 85
0.023 88
0.025 71
0.028 44

—5.223
-5.119
-4.858
-4.618
-3.846
-2.789
—0.5434

-5.109
—4.978
—4.681
—4.414
-3.568

2.453
-0.102

-0.114
-0.141
-0.177
—0.204
-0.278
—0.336
—0.441

-5.856
-5.958
—5.825
—5.703
—5.25
—4.73
—3.55

—5.970
-6 ~ 099
—6.002
-5.907
-5.53
—5 ~ 07
—3.99

-0.345
—0.444
—0.565
—0.656
—0.879
-1.138
-1.630

—6.315
-6.543
-6.567
—6.563
—6.41
—6.21
—5.62

ground-state wave function when only two- and
three-body factors are included. The method of
approach used here —considering first the Jastrow
function (i.e., two-body factors) and then adding
three-body factors —is sensible if the energy con-
verges rapidly as higher-order factors are in-
cluded. We are encouraged by the fact that the con-
tribution of the three-body factors is less than 10%
of either the potential or kinetic energy obtained
from the Jastrow function, and can hope that the
contribution of four-body factors would be down by
another order of magnitude, contributing of the or-
der of 0.1 K per particle to the binding energy. We
have no proof of that though and a calculation is not
presently feasible.

Assuming that two- and three-body factors in the
trial ground-state wave function are adequate for
the task of determining the binding energy and
structure function for the ground state, we still
found it necessary to make further approximations
in the variational calculation. The approximation
in the Jastrow calculation of Sec. IV was the HNC

approximation, which we then at tempted to correct
by the reference procedure employing the Monte
Carlo calculation for the parametrized Jastrow
function. An equivalent approximation is to say that

the shift in the Jastrow energy obtained by the
paired-phonon analysis AE~ of Tables VII and IX
would be the same in an exact calculation as it is
in the HNC calculation. We expect the error in
that assumption to be a few percent of ~E~, meaning
that the uncertainty in the binding energy due to this
approximation is probably less than 0.05 'K.

The error in the final step of our calculation —the
inclusion of three-body factors (Sec. V)—is much
more difficult to assess. There are two approxi-
mations in that calculation. The first is the use of
the convolution approximation for the three-body
structure function. The convolution approximation
does not satisfy a self-consistency condition for the
three-body optimization procedure like that satis-
fied by the HNC approximation in Sec. III. Conse-
quently the three-body optimization cannot be iter-
ated. Thus the second approximation is the use of
Eq. (73) to obtain the three-body contributions to
energy rather than calculating the energy directly
from an extended Jastrow function after several
iterations.

The accumulation of uncertainty is difficult to es-
timate precisely, but a conservative guess is that
the calculated binding energy is in error by as
much as 0.5 K. Thus we are not yet able to choose

TABLE IX. Energy terms for the ground-state energy per particle of 4He interacting by the
MDD-2 potential of Eq. (64). The notation is identical to Table IV.

p (A-') EHNc (oK) EHNC
0

EMC
0 Eg

0.017 96
0.01946
0.020 96
0.021 85
0.023 88
0.025 71

-4.933
—4.654
—4.160
-3.763
—2.548

1.017

-4.692
-4.360
-3.811
-3.360
—2.004
-0.345

-0.241
—0.294
—0.349
—0.403
-0.544
—0.672

—5.672
-5.621
-5.325
—5.059
—4.31
—3.50

-5.913
—5.915
—5.674
-5.462
—4.85
—4.17

—0.467
-0.609
—0.785
-0.905
-1.226
—1.581

-6.380
—6.524
—6.459
—6.367
-6.080
—5.753
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FIG. 6. Liquid-structure function of liquid 4He at
po-—0.021 85 A s calculated from the extended Jastrow
trial function including three-body factors [Eq. (65)].
The dashed line uses the Lennard- Jones potential and
the solid line uses the MDD-2 potential. The experi-
mental points are labeled as in Fig. 2.
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the best of the two potential energies discussed
here. We have hopes of removing the HNC approx-
imation for ~~ in the not too distant future by per-
forming a Monte Carlo calculation of the paired-
phonon analysis function X(k). Improving the three-
body calculation requires a new approximation for
the three-body distribution function satisfying a
self-consistency condition, or a Monte Carlo cal-
culation of the three-body version of X(k). The lat-
ter is prohibitively expensive, but a direct calcu-
lation of the total energy including three-body fac-
tors determined by some approximation may be
possible.

We conclude by noting that the results of this cal-
culation using the Lennard-Jones potential have
been applied elsewhere to the calculation of the
density dependence of the roton parameters
in liquid 4He. 35 We found a substantial improvement
over previous calculations when compared to experi-
ment with most of the improvement due to the three-
body factors. " Indeed the agreement there is much
better than that shown in Fig. 5(a) for the peak in S(k),
which is closely related to the roton parameters. The
difference may be due to the fact that the rotonparam-
eters are measured at lower temperature (1.3 'K)
than the finite-pressure structure function of Fig.
5(a)

1.2

1,0
gv)

0.8

06

04

0.2

I I I I I l I I I I I I I l

0 0.4 0.8 1.2 1.6 2.0 2A 2.8

& (&'I
FIG. 7. Liquid-structure function at several densities

calculated from the extended Jastrow function including
three-body factors [Eq. (65)]. (a) Lennard-Jones poten-
tial is used; (b) the MDD-2 potential is used. The den-
sities are A, 0.021 85 A s; 8, 0.022 88 A t; C,
Q.Q2571 g; and D, 0.02844 A
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