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A theory of the nucleation of superfluid transitions near container walls of 'He-'He mixtures is developed. The

theory uses a local-continuum model, which accounts for wall-potential-induced concentration and pressure

gradients, supplemented by an important coherence-length correction to account for the finite thickness of the

nucleation films. An excellent one-parameter fit to the available experimental data is obtained. The theory

provides support for the concept of universality in phase-transition phenomena.

I. INTRODUCTION

In several recent papers' superfluid transitions
in liquid-helium mixtures were studied within

a continuum model which included concentration
and pressure gradients induced in the systems by
the Van der Waals forces acting between the
helium and its container walls. The continuum
model was a purely local one in which local equa-
tions of state derived from bulk properties of
spatially uniform mixtures were used. Such a
model is, of course, inexact in that it cannot
rigorously describe systems in which properties
vary significantly over distances of a few inter-
atomic spacings. ' From our point of view, how-
ever, this is not an extremely serious defect;
local models have been widely used for many
years (at least since the introduction of the well-
known Thomas-Fermi model for atoms) and are
known to describe average properties of systems
rather well. More serious here is the fact that
coherence-length effects associated with continuous
(i.e., second-order) phase transitions are im-
properly accounted for unless all lengths charac-
terizing important variations in system prop-
erties are large compared to the coherence length
in question. In particular, the local model for
'He-'He mixtures predicts that even for a mix-
ture nominally quite rich in 'He, the local 'He
concentration near a container wall will be rather
small (~8@). This leads to the conclusion that,
for a certain range of temperatures T and 'He
number concentrations X„a thin superfluid phase
can exist near the walls in a system where the
bulk remains normal. As T is lowered from a
relatively large value, X, being fixed, a point
mill be reached where the superfluid film will
begin to appear. With continued lowering of T

the film thickness will grow from zero to larger
and larger values, bulk superfluidity finally being
obtained. While superfluid film formation act-
ually occurs, ' this description cannot be correct.
Bulk properties of superfluid 'He, for example,
certainly do not suffice to predict A. temperatures
for thin 'He films. The A. transition for bulk 'He
is 2.17 K, whereas transitions in very thin (thick-
ness approximately equal to a few atomic layers)
films occur at temperatures of the order of 0 ~ 1-0.2
K." The extent of the failure of the local con-
tinuum model is shown in detail in Sec. III ~

One very fruitful way in which to look at the
behavior of thin 4He films (or, more generally,
'He under conditions of restricted geometry) is
to fix the temperature T and vary the thickness
d from very small to larger and larger values.
Given that T is not too small but nevertheless
is less than 2.17 K, a thickness d, (T) will be
reached at which superf low in the film can first
be observed. There is considerable evidence
(discussed in Secs. III and IV) that this thickness
is at least in essence proportional to the coherence
length $(T) in bulk superfluid 'He.

In the present work we use the idea that a film,
predicted to be superfluid on the basis of local
bulk properties alone, will not in fact become
superfluid until it reaches a certain minimum
thickness related to a coherence length. The pre-
cise relationship, which invokes careful spatial
averages of the superfluid density p, since system
properties vary with position for our system, is
given in Sec. II, where the local-continuum model
of Ref. 1 is also reviewed.

Our results are described in detail in Sec. III.
With a single fitting parameter we find excellent
agreement with experiment for all temperatures
greater than 0.87 K, the tricritical temperature
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for bulk mixtures under vapor pressure. This
is consistent with, and provides evidence in favor
of, the notion of universality' in the theory of
critical phenomena. For T& 0.87 K tricritical
phenomena in the films near the walls begin to
play an important role, the full nature of which
will be explored in a future article. In imple-
menting the coherence-length idea a new and
widely applicable semiphenomenological expres-
sion for p, is developed. Section IV summarizes
our work and contains additional discussion.

II. BASIC THEORY

The local-continuum theory' begins with the
three exact equilibrium conditions for 'He-4He
mixtures. These conditions require that the 'He
chemical potential ]tL„ the 4He chemical potential
p„and the temperature be constant throughout
the system. Let U(r) be an external potential, the
same for both helium isotopes. The theory ap-
proximates p and p4 by their local values plus
contributions from U(r), i.e.,

p, = p„(P,X, T)+U(r) =const,

p,, y„,(P=, X, T)+U(r) =const.

(la)

(1b)

Here T is everywhere constant, the pressure P
and 'He number concentration X vary with r, and

p;,(P,X, T), i = 3, 4 is calculated for a uniform
system at the given values of P, X, and T.

Use of (1) and some straightforward thermo-
dynamic calculations results in the two very prac-
tical equations

vdP = -dU(r), (2)

(3)

in which

v =Xv, +(1-X)v„
4v =v -v

(4)

(5)

We denote by v, and v, the respective specific
volumes of 'He and 'He. The position dependence
of all quantities is induced by the position de-
pendence of U(r) in (2).

We are specifically interested in the case where
U(r) is the potential felt by the system in the pres-
ence of a planar container wall. The wall is lo-
cated at z =0, and the system occupies the half-
space z &0. Approximating the container by a
continuous system whose atoms interact with the
helium atoms via a Van der Waals potential yields

U(r) = -a/z'.

T=T (P, X) =T (z, X,P, T). (8)

Given that all T~ curves of importance here
possess the monotonicity property just mentioned, '
it becomes clear that for fixed X, and P, the super-
fluid phase will first appear, as T is lowered
from some relatively large value [say, a value
larger than T„=2.17 (K), where (8) evidently
has no solution], at z =z, with zero thickness.
The thickness e, (T Xp Pp) will grow as T is fur-

The value o, =2 f K/(layer)' for the Van der Waals
constant' has been used in our computations.

Data from measurements on bulk systems give
v, &v, and y as functions of T, X, and p. Putting
&v and y in (3) and integrating allows one to ex-
press X in terms of P, T, and the pressure P„
and concentration X, of a reference state, chosen
to be that of the bulk system far from the wall,
where all z dependence is negligible. We cal-
culate only for the case where P, =O is the vapor
pressure for nominal bulk concentration X, and
temperature T. The result for X is combined
with the data for v(X, T, P) and placed in (2), which,
in turn, is integrated from the state at z =~ to
a given point z. This gives P =P(z, X„P„T),
from which all other local thermodynamic quan-
tities such as X(z, X„P„T)may be found.

Various phase boundaries, as defined by bulk
measurements may be crossed in the course of
the calculation just described. One boundary
always reached, as a consequence of the very large
attractive potential near the container wall is
the solid-liquid phase boundary for the local val-
ues of P, X, and T. When this happens we simply
cut off the integration and take the system from
z =0 to the cutoff value z =z, to be solid. We have
no direct interest in any local properties of the
always-present solid film. In terms of atomic
layers (1 layer =3.6 A) z, varies little from a
value of 1.5.

Given the local values of P and X one can cal-
culate (if it exists) the local value T„(P,X) of
the z temperature for the system. [T~(P,X)
= T~(z, X„P„T)varies with position because P
and X vary]. According to the local continuum
theory the system will be superfluid wherever
T& T„(P,X). As mentioned in the introduction,
general features of our results are that X de-
creases with decreasing z (see Figs. 1 and 2).
In the temperature range 0.9& T& 1.2 K, of in-
terest here, this has the consequence that
T~(P, X) (see Figs. 3 and 4) is a monotonically
increasing function of z until z = z„at which point
T„drops abruptly to zero. ' Therefore, a super-
fluid phase, if it is present, will be localized
near the wall, its boundaries being determined
by z = z, and the point at which
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ther lowered, reaching infinity when T = Ty(PD X0)
The problem with the local-continuum model

is that it invokes the idea that the A. temperature
of a system is independent of its thickness. This,
as discussed in Sec. I, is in complete contradic-
tion with the data for 4He films4' as well as with

modern theory. '" What we shall do here is to
construct a modified continuum model. The nu-

merical results of the continuum model are re-
tained with the addition of the idea that super-
fluidity does not appear near the walls until

e, (T,X„P,) attains a value proportional to a super-
fluid coherence length, at which point the entire
film in the range z, & z & e, becomes superfluid.
The constant of proportionality is fixed by fitting
the theory to one experimental data point.

It is a general result of theories for pure 'He,
notably the works of Qinsbur g and Pitaevskii and
Mamaladze, ' and Kosterlitz and Thouless, "that
for fixed T a system of reduced dimensionality
characterized by a length d (e.g. , a, film of thick-
ness d, or a fluid in a pore of radius d) will not

display superfluidity for d&d, -
g, where E, is a

coherence length and d, is the critical length.
Further, g is related to the superfluid density
by the equation

p, f /T = const.

Putting together the two ideas produces

p,d, /T = const.

(9)

(10)

m4'k~
y, = 4, = const = 0.138x 10 Sg/cm' K. {12)

In view of the rather unsettled theoretical situation
(the theories of Refs. 9 and 10 are based on rather
different physical ideas), we view (12) as pro-
viding solely an order-of-magnitude estimate.
This viewpoint is certainly supported by the avail-
able data on transitions in superfluid systems of
reduced dimensionality. Scholtz, Mclean, and
Rudnick4 fit a collection of data for planar ~He
films for TR 1 K with y, =0.298x10 'g/cm'K.
Thomlinson, Ihas, and Pobell" have done a de-
tailed study of superfluid flow of 'He-'He solu-
tions in cylindrical pores, where the geometrical
correction of Ref. 9 changes the theoretical y,

For films in which spatial variations in p, play
a role (the case for all very thin films), it is
certainly appropriate to generalize (10) to read

o, /T = const —= y, ,

where o, is the superfluid density per unit area.
The constant in (ll) will depend on the geometry.

If one uses the relation d, = m) of Ginsburg and
Pitaevskii for planar films and the standard def-
inition" of the coherence length, one obtains

to 0.213x10 8g/cm'K. Their experimental re-
sult is y, =0.66x10 'g/cm'K independent of 'He
concentration. The data of Chan, Yanof, and
Reppy' for 'He films in Vycor pores (where the
geometry is not well characterized) may be fit
with a y, =O.V&10 g/cm K.

The local-continuum model allows us to cal-
culate c, by calculating p, (P, X, T) =p, (z,P„X„T)
given p, as a function of P, X, and T in bulk sys-
tems, and then integrating. " Therefore, we
replace (11) by

"es(T,xD, PQ) p (z P,X T)S & ps p&

T C ' (13)

This completes our modification of the local con-
tinuum theory. The critical constant y, is ob-
tained by fitting to a single data point, i.e., a
point for fixed PD X0 and T. That the theory
should be expected to correctly fit the data for
other concentrations is the essence of the con-
cept of universality. ' Calculational details and
our explicit results, which do indeed agree with
universality, are given in Sec. III.

III. CALCULATIONAL DETAILS AND RESULTS

&v = B —2AP,

v4 ——B4 —2A4P,

(15)

(16}

where the constants B, A, B4, and A4 take on
different numerical values for different pressure
intervals, as given in Table I. These constants
are temperature and concentration independent
to within effects of the order of 1% in the do-
mains of interest to us here; the data in Table
I are derived from results for pure 'He and pure
'He. "

Our results for X(z,X„P„T}and P(z, X„P„T}
for several values of T and X, and P, = 0 are
plotted in Figs. 1 and 2. Note that the important

Prior to describing our results, we shall sum-
marize the experimental data used as input for
our calculations. In deriving the functions
P(z, X„P„T)and X(z,X„P„T),we needed ex-
perimental data for the quantities y(X, T, P),
v, (X, T, P ) and v, (X, T, P ). For y(X, T, P )

=(X/ksT)(8 p /BX)r ~ we have used the experi-
mental results of de Bruyn Ouboter et al,"who
give an empirical expression for p„ to derive

r(X, T, P ) = 1 —3.08(1 -X)X/T.

We estimate this analytic expression to be valid
to within roughly 10% throughout the domain
(X & 0.75, 0.9 & T & 1.2 K, P & 25 atm) of concen-
trations, temperatures, and pressures of interest
here. The quantities bv =v, -v, and v, have been
used in the forms
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TABLE I. Values of the parameters used in the calcu-
lations of He molar volumes in several ranges of pres-
sure V4/R =B4—2A4P and {V3—V4)/R =B—2AP with R
=8.32, V4 and V3{cm ), and P {atm).

spectively; phonon contributions are neglected
in the temperature range considered. Thus, we
write

ps = p - psn p~n . (18)
B4

0 ~P &2 atm
2 «P &5 atm
5 «P &10 atm

10 —P &15 atm
15 —P& 25 atm

0.053 08
0.027 97
0.015 04
0.008 66
0.004 964

1.126
1.025
0.8964
0.7695
0.6587

0.01576
0.01576
0.012 41
0.009 71
0.007 39

3.319
3.319
3.298
3.244
3 ~ 174

variations occur within about six atomic layers
from the wall. The curves terminate at a dis-
tance of approximately 1.5 layers from the wall,
where the theory predicts solidification. The
predicted solid-layer thickness is quite consistent
with previous experimental estimates of the solid-
layer thickness in pure sHe." (Note that the
system studied here is almost pure 4He when the
predicted solidification occurs. )

The next quantity calculated is the local value
of T„. This is taken from bulk measurements of
T) (X,P),"which yield the approximate analytical
expressions

T~ = 2.5256 —2.4577X —0.0059P; 0.50 & X & 0.673,

T), = 2.38 —2.17X —0.0059P; 0.35 X ~ o.50,

T), = 2.214 —1.68X —0.0127P; 0.161- X 0.35,

T), = 2.17 - 1.41X —0.0127P ' 0 ~ X- 0.161.

Two typical results for T~(z, Xp P p T) are plotted
in Figs. 3 and 4. The temperature T is also
plotted in order that one may easily see the region
of superfluidity predicted by the local-continuum
theory.

In order to apply the correlation-length cor-
rections to the local-continuum theory we re-
quire an expression for the superfluid density
p, (X, T,P). At present both data and systematic
theory for p, are lacking over the rather extensive
ranges of X, T, and P required here. Only so-
lutions dilute in 'He, "and the A. and tricritical
regions of the phase diagram (see, e.g. , Ref. 12),
have received careful attention. Fortunately, we
do not require extreme accuracy throughout the
X,P, T domain of interest in computing the in-
tegral in (13). For example, contributions to
(13) coming from the )). region are not so im-
portant as to warrant use of the well-known T
dependence p, -(T~ —T) /s there. The exponential
T dependence arising from rotons is sufficient.
Our approach is to use a semi-empirical model,
which we believe to be entirely new, in which
the normal fluid contains only contributions from
rotons and 'He atoms denoted by p„„and p,„, re-

The roton part has the form"

[ (P )/Tl/2 j e l+P
)/T (19)

The function a(P) depends upon universal con-
stants and the effective mass p.„(P), and f).(P) is
the roton gap. Both p, (P) and d.(P) are taken to
depend upon P alone, their dependences on X and
T being known to be weak. " We use

a =8.7+0.065P (cgs units),

6 =8.65 —0.0082P (P in atm),
(20)

derived from the data given in the Wilks book."
The condition that p, =0 at T = T~(X, P) yields

6(p)/r y(x p)
T')/'(X, P )

(21)

at the A. transition. Neglecting the weak depen-
dences of p,„and p on T, we may combine (18),
(19), and (21) to arrive at the result

-h(p )/T },(x,p } a(P ) g(~ )/rPs
[ T (X P)]l/2 Tlf 2

(22)
Note that this result submerges all of the X de-
pendence of p,„(and hence that of p, ) in T},(X,P),
for which we have already given an expression
in Eq. (1'f). Two typical curves for p, (z, X„P„T)
are plotted in Figs. 3 and 4.

Given the calculated values for p, (z, P„X„T)
we can numerically compute the integral given
in (13), which provides us with the correlation-
length correction to the local-continuum theory.
The critical constant y, has been fixed by cal-
culating the value of the integral for one of the
experimentally determined points at which wall
film superfluidity first appears. This point has
coordinates X, =0.65, T = 1.01 K. All points have
P, = 0 so we omit further reference to values of
P, . To obtain the remaining points we fixed X,
and varied T until the integral took on the value
y once again. The resulting T-vs-X curve is
shown in Fig. 5, along with the available experi-
mental data points. '

The agreement between theory and experiment
is very good over most of the range of applicability
of the theory. The agreement is least satisfactory
for the lower temperatures. However, this is
to be expected since for temperatures near and
below 0.87 K tricritical and phase separation
effects will become important, invalidating a
theory based on a coherence length related to
superfluidity alone.
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FIG. 5. Phase diagrams of 3He-4He mixtures. The
experimental measurements of superfluid onset tempera-
ture for a given bulk concentration {circles, Ref. 20 and
other data, Ref. 1) are presented with results of our cal-
culations (dotted line) using o,/T = 0.27&& 10 8 g/cm2 K.
In the insert, the dashed line shows the calculated super-
fluid onset curve, neglecting coherence-length effects.

viously discussed (in Sec. II) value of 0.298
x10 'g/cm'K obtained by Scholtz, Mclean, and
Rudnick4 for pure unsaturated planar 4He films
for 1'a 1 K. The difference between the two val-
ues is within the approximate 10% accuracy of
the data used as input for the local-continuum
theory. The essential equality of the two values
should be regarded as an important verification
of the universality concept, ' especially when it
is noted that the 'He films possess a free sur-
face, whereas the mixture films dealt with here
do not.

Our theory also yields the thickness e, (T,X„P,}
of the superfluid wall films at the point at which
they become superfluid. The results are plotted
in Fig. 6.

IV. SUMMARY AND DISCUSSION

We have presented a theory of the nucleation
of superfluid transitions in liquid 'He-'He mix-
tures near container walls. The theory is based
on the local-continuum model supplemented by
coherence-length corrections accounting for the
reduced dimensionality of the nucleating wall
films. Choosing the critical constant y, of the
theory to fit a single data point was sufficient
to provide an excellent fit to all the data in the
range of applicability of the theory, in agree-
ment with the idea of universality. That the so-
obtained y, is essentially the same as that found
for unsaturated pure 'He films provides further
evidence in favor of universality.

It is instructive to compare the predictions of
the local-continuum theory alone, without the
modifications developed here. These predictions
are shown as a dashed line in Fig. 5 and lie well
above the experimental data. The reason that
the dashed line intersects the X line is discussed
in detail in the second of Refs. 1. In essence
what happens is that the relative importance of
P and X in determining the local A. line near the
container walls is reversed. The local A. tem-
perature falls rather than rises as the container
wall is approached, and the A. transition com-
mences in the bulk far from the walls, a film of
normal fluid remaining near the walls. " Of
course, the present modified theoretical curve
has the same intersection with the A. line as does
that of the unmodified theory; on the scale of the
figure this is impossible to depict, however.

The value of y, determined by the procedure
just described is y, =0.27xl0 'g/cm'K. This
is well within a factor of 2 of the estimate based
on previous theories [see Eq. (12}]. More im-
portantly, the result is quite close to the pre-

10
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FIG. 6. Thickness of the superfluid phase on the super-
fluid onset curve, shown as the dotted curve in Fig. 5.
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To our knowledge the application of the local-
continuum theory to account carefully for the
spatial variation of p, within the wall films is the
first time such spatial variations have been care-
fully treated in the field of superfluid film phys-
ics. The importance of these variations is evi-

dent in Figs. 3 and 4.
We hope to extend our work to the case of wall

film nucleation at lower temperatures (T~ 0.87 K)
where accounting for tricritical and phase sep-
aration phenomena in the films becomes impor-
tant. '
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