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We study the vibrational density of states of glassy AX, systems such as SiO, and GeS2 which consist of
tetrahedra linked together to form a random network. We show that the higher-frequency modes can be well

represented by a model with a single-nearest-neighbor central force, This model leads to an isomorphism of the

vibrational modes to the electronic properties of the tetrahedral network studied by Weaire and Thorpe. This

allows us to study the metamorphosis of the vibrational modes from molecular-like to band-like as a function of
the AXA bond angle and the masses. The spectral limits delineating the allowed frequency regions and the

character of the modes are found. These are independent of the detailed nature of the random network. The

effect of a noncentral force is considered for the two extreme limits of AXA bond angles (i.e., 90' and

18(P). We conclude that it is justified to consider an amorphous network as an assembly of weakly

interacting molecular units when the AXA bond angle is close to 90' and the angular forces are weak. We

classify BeF2, GeS2, and GeSe, as being dominated by molecular effects, whereas the solid-state effects are

most important in SiO~ and GeO&.

I. INTRODUCTION

Although a good deal of experimental data is
now available' on amorphous materials, particular-
ly semiconductors, our theoretical understanding
of the vibrational properties of random networks
is much less complete than it is for crystals. This
is because the lack of microscopic translational
invariance prevents the vibrational excitations
being described in terms of plane waves propagat-
ing from unit cell to unit cell.

The principal theoretical approaches used to date
have involved either numerical techniques to de-
termine the modes of random networks ' or at-
tempts to identify molecular units that retain
their integrity to some degree in the amorphous
solid. 4 Numerical techniques have been applied
to Si02 networks' and Si networks. ' The Ax~
glasses, of which SiO, is a prototype, are general-
ly believed to be continuous random networks of
nearly perfect AX4 tetrahedra. ' These networks
can be hand-built and typically contain -500 mo-
lecular units. The problem is then reduced to one
of diagonalizing a large matrix and finding the
associated density of eigenvalues. Some special
techniques have been developed for handling such
problems, but there is ultimately a limitation in
that only a finite piece of network can be handled.
With care over the treatment of the surface,
rather good density of states have been obtained
(good in the sense that they are representative of
the infinite network). The results show that
amorphous Si is best regarded as a giant covalent-
ly bonded molecule and cannot be subdivided into
molecular units in any obvious way. This is also
true in SiO„where the density of states is broad
and does not contain any sharp features as would

be expected if it cauld be decomposed into weakly
interacting molcular units.

Qn the other hand, Lucovsky and co-workers"
have had considerable success in interpreting the
spectra of the chalcogenide glasses (As, se„GeS„
etc) in terms of molceular modes. Indeed, the ex-
perimental spectra do show sharp features in con-
trast to Si and Si02, where broad bands are ob-
served.

In previous work, ' we have shown that the spec-
trum of Si can be understood in terms of a five-
atom tetrahedron of Si atoms embedded in an ef-
fective homogeneous medium whose properties
are determined so that all five atoms vibrate iso-
tropically with the same amplitude. However,
it was found that the resulting density of states
bore little resemblance to the "molecular modes"
of the isolated tetrahedron —that is, the coupling
to the rest of the network was strong.

This work was extended to SiO, by including four
0 atoms midway between the central Si and the
outer four Si atoms' so that Si-0-Si formed a
straight bond. The straight bond used as the basic
unit had high symmetry that facilitated calculation.
Although the resulting spectrum contained both
sharp features and extended structure, it was
again concluded that the modes of an isolated SiQ~
tetrahedron gave little indication about the position
of the sharp features in the network. The reason
for this is clear. By far the strongest force in
the problem is the nearest-neighbor central force;
and while a 0 experiences only a single force
from the Si in the Si04 molecule, it experiences
forces from both Si atoms in the Si-0-Si bond of
the network. Thus the frequencies in the network
are inc~eased considerably.

The question then arises as to why the molecular
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model has had considerable success in the chalco-
genide glasses. It has been implicit in the work of
Lucovsky et al.'~ that the molecular units are
joined by bond angles that are closer to 90' than
to 180' as, for example, the Ge-S-Ge bond angle
in GeS, that is expected to be ™105'fromchemical
bonding considerations. ' There is no direct
evidence for this from x-ray diffraction as the
data are difficult to analyze because of the pres-
ence of two atomic species. '

Thus there is a broad range of situations, and
we find that as the AXA bond angle increases from
90' to 180, the molecular modes corresponding
to those of AX4 tetrahedra become less useful.
As the bond angles increase, the coupling among
the tetrahedra increases, and one expects a band
picture to emerge. In order to study this meta-
morphosis of band-like modes out of molecular
modes, we introduce a simple central-force
nearest-neighbor interaction model in the next
section. Remarkably, we find that this model has
an isomorphism to the tight-binding electronic
Hamiltonian for Si random networks studied by
Weaire and Thorpe. In the model, the bonding
and antibonding bands emerge from the sP' hy-
bridized atomic orbitals. The character of the
vibrational modes in the AX~ network can be found
in an analogous way.

In Sec. III, we consider the effects of also in-
cluding a nearest-neighbor noncentral force P
(typically for AX, glass, f)/a=0. 2). For p «a,
the bands generally broaden (in uP) linearly with
P. We have previously studied the effect of P for
the 180' case, ' and in this paper we present the
other limit, where the AXA angle is 90 . In this
case it turns out that the optic modes continue to
appear in two regions with weights 1 and 3, closely
resembling the molecular modes. We conclude
that if the AXA angle is less than cos '(-2m/SM)
and the noncentral forces are small, the molecular
model should represent the frequencies of these
high-frequency modes reasonably well. Note that
M is the mass of the A atom, and m that of the
X atom. In Sec. IV we compare these results with
other theoreticaL work and with experiment.

play an important role in determining the vibration-
al spectra of these systems. Indeed, this role is
analogous to that of the sp' orbitals in tetrahedral
networks (i.e., Si and Ge). The AXA angle in
general is random. For example, in glassy SiO„
Mozzi and Warren" estimate this angle to lie be-
tween 120' and 180 with the maximum in the dis-
tribution around 140 . This angle determines to
a large extent how the solid-state or collective
effects are brought about as it forms the connect-
ing bridge between AX~ tetrahedra. In this section
we introduce a simple model using a nearest-
neighbor central force (a) between A and X atoms.
This allows us to study the metamorphosis of the
molecularlike modes into extended band1. ike
modes as a function of the bond angle e in the AXA
bridge, which for simplicity we take to be constant
for a given network. This model provides a useful
framework to study the interplay between the local
tetrahedral order and the solid-state effects.
The noncentral force constants are generally
small, and so the high-frequency optic modes are
well represented by this model. However, the
network has no resistance to certain kinds of
shear motion, and so it is not possible to discuss
the low-frequency modes without the inclusion of
some other forces such as a near-neighbor non-
central force P, which we do in Sec. III for bond
angles of 90 and 180'.

Let o.'be the central force constant and M and
m the masses of the cation (A) and anion (X), re-
spectively. The potential energy is then given by

where the summation goes over all nearest-neigh-
bor pairs (ij) consisting of A and X atoms. The
displacements u, refer to either type of atom, and
r„ is a unit vector along the AX bond. We examine
the equations of motion for a particular bond and
eliminate the degrees of freedom of the bridging
X atom, shown as x and y in Fig. l. (Note that

II. A MODEL WITH CENTRAL FORCES ONLY

We have pointed out in the Introduction that there
is a large class of glasses such as GeS, and SiO,
whose structure is generally believed to be a
three-dimensional random network made of the
basic AX~ tetrahedral units. It is also generally
believed that these basic tetrahedra largely retain
their integrity in the various crystalline phases
of these materials as well as in the glassy forms.
We expect, therefore, AX~ molecular modes to

FIG. l. AX4 bond showing the bond angle e and the
various displacements used in the text.
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The quantity e is in fact an eigenvalue of the elec-
tronic s-band problem" onto which many of these
simple random network problems map. " The com-
plete spectrum for (4) also contains & functions at
M&' =0 and —,'n. We will consider these ~ functions
in our problem later. With the mapping discussed
previously, Eq. (4} becomes

M(u' = —', (a4 —a'e) (4a)
FIG. 2. Allowed frequency regions are shown by the

shaded area as a function of cose (right scale) and 8

(Left scale). The horizontal axis is linear in w, and a
mass ratio m/I =

28 appropriate to SiO& has been used.is

The character of the band edge modes is shown as are
the limiting frequencies for 8= 90' and 180'. The two

heavier lines give the position of the 6 functions, and

the angle at which the two bands just touch (e~) is indi-
cated.

a'= —mar'a' cos8/[(mid' —a)' —a' cos'8] . (3a)

This provides a complete description of the dy-
namics of each AXA bond. A diagonal term o'„
is also introduced into the dynamical matrix at
each end of the bond

a'(m &u' —a sin'8)
Q~=O+

(m(u' —a)' —a' cos'8 '

This then maps the complete problem involving
the AX, network onto one just involving the cation
motion. This problem has been studied by Weaire
and Alben' for Si in a tetrahedral network. They
find that the vibrational modes for a Si with only
nearest-neighbor central forces are given by

M(d =pa(1 —f},
where

(4)

motion perpendicular to the bond has no restoring
force associated with it.)

(M(d —a)ul = —(a sill@8}pl—(a cosg8)$,

(m ~' 2a si—n'-,'8}x= —(a sin-", 8)tu, + (a sin-,'8)u, ,

(m&o' -2a cos'-,'8)y = —(a cos-,'8)u, —(«osg8)u2.

(2a)
We find that

[M~ —a —(a»n k8)/(m~' —2a sin'-,'8)

—(a cos-,'8)'/(m(d' —2a cos'-,'8)]u,

= [(a cos-,'8p/(moP -2a cos'-,'8)

—(a sin-,'8)'/(m4d' —2a sin' &8)]u, . (2b)

We can now define an effective force constant
0."that connects the ug and u, displacements shown

in Fig. 1.

which, using (3), gives the frequencies explicitly
as

2o. o 2e n cos8 . 40.'6 cosg

This leads to two bands whose edges are given by
6 =+ 1, l.e.,
(u', =(a/m)(1+cos8), (u', = (a/m)(1 —cos8},

(d4 = (dl+ 4a/3M, &e4' = ~,'+ 4a/3M .

A1 MODE F2 MODE

FIG. 3. Eigenmodes of an isolated &X4 tetrahedron
showing the singlet (A&) and triplet (E2) mode. The
other modes lie at zero frequency because there is no
restoring force associated with the motion with only a
nearest-neighbor central force.

These allowed energy bands are shown in Fig. 2

as a function of cos8. Note that as 8-90, the two
bands degenerate into 8 functions at e' = a/m, a/m
+4a/3M. These are just the modes of an isolated
AX~ molecule shown in Fig. 3, where the lower
frequency a/m is the breathing mode (singlet A,
mode) and the upper frequency is the triplet (F,
mode) in which all the motion is in either the
x, y, or z direction. It is clear that for bond
angles of 90', there is no coupling between the
molecular modes and that as the angle increases
from 90', so does the effective coupling.

There are a total of nine modes per AX, unit.
It is easy to see that five of these are at zero fre-
quency. This is because it is possible to move
the network in such a way that all the AX bond
lengths are unchanged if we impose four constraints
per AX, unit —leading to 9 —4=5 modes at zero
frequency. There are also & functions, each with
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FIG. 4. Eigenmodes associated with the g functions at

ue and co4 are made up of linear combinations of dis-
placements on individual bonds of the kind shown in the
figure.

weight 1, at ~, and ~4, as shown in Fig. 2. These
modes are sketched in Fig. 4. By arguments simi-
lar to the ones given above involving constraints,
it is easy to show that there is weight 1 in each of
thesetwo 5 functions. The remaining two modes are,
of course, the band modes. As the angle is in-
creased from 90', we go from the molecular A,
and I", modes with weights 1 and 3 to a crossover
at cos8, = —2m/3M. For larger angles than this,
we have two bands each with weight 2. Eventually
the bands spread apart, and the allowed fre-
quencies are higher or lower than the molecular
frequencies, which lie in the forbidden part of the
spectrum if 8 & cos '(-4m/SM). It was pointed out
in Ref. 7 that the molecular modes were complete-
ly unreliable for SiO, in the P-crystobalite form
with 8- 1SO'.

The 4, and I", modes are very analogous to the
atomic s and p states. '0 From Eq. (2) we see that
the coupling e' is proportional to cos8 and is zero
if 8 =90'. This case corresponds to V~=0 of Ref.
10 and describes completely decoupled atoms with
a singly degenerate s state and a triply degenerate
P state. Thus for systems where the AXA angle
8 is close to 90 nnd the noncentral forces are
weak, we expect the system will be weQ described
by the molecular modes. Notice that for 8 & 8„
the positions of the centn s of the two spectral
bands are given exactly by the molecular frequen-
cies. When 8 &8„ the separation of the two bands
is greater than predicted by the molecular model
and the weights are no longer 1:3, but become
2:2.

In order to understand the nature of the modes
better, it is useful to decompose the motion at
each frequency into cation motion (C), anion
stretching motion (S), and anion bending motion
(B). The latter two correspond to the x and y di-
rection shown in Fig. 1. This kind of decomposi-
tion was first used by Bell and Dean. Notice that
there is no anion rocking motion (R}perpendicular
to the AX4 bond except at zero frequency. We
define displacement-displacement Green's func-
tions in the usual way. ' By writing down equations
of motion, it is quite easy to show that

3M cos2&8 + -4o4
Img„„= 2 8 ~ 2 Img~,

—3M sin~~8 (u2 —(d~
Imp g Img~,

2m cos8 (d~ —co~

where Im denotes the imaginary part, the sub-
scripts on the Green's functions denote the dis-
placements (see Fig. 1), and the bar denotes an
average (i.e., summation) over all sites. The full
density of states per AX, unit is given by"

p(&}= ™(SMg„„+2mg„„+2mg„„),

and we can define the cation motion (C), anion
stretching motion (S), and anion bending motion
(B) by

-2M rmg ((u' —(o', ) (uP —&o', )
vp(uP) (o'(2(o' —(o', —(u,') '

—2m Img„-sin'-, '8 (~' —(a',)((o' —(u', )
vp((o*) cos8 (o'(2aP —uP, —(am)

'

-2m Img cos' ~~8 (~' —(v~2) ((o' —(F24)

v p(d') cos8 uP(2(o' —(o', —(u', )
'

(10)

(12)

These characters are completely indePendent of
the details of the structure and are sensible quan-
tities to delineate the nature of the modes. They
explain why these characters were found to be so
similar for SiQ~ in two different forms: P-crysto-
balite and Bethe lattice in Ref. V (where 8/n was
finite but small). From Elis. (10)-(12)we can de-
rive the useful sum rule:

(aP ~', )& + (&o' —~', )S = (&o' —4a/3M)C .
Note also that by definition we have that 3+S+C
=1.

These characteristics have been plotted in Fig.
5 for various bond angles. The dashed part of the
lines are the allowed frequency regions, and the
dotted lines are merely to guide the eye. [Note
that the denominators in Eqs. (10)-(12)blow up
at &u' =-,'(|u, + &u', ) =-,'(aP, + &u',), which is independent
of 8 and is the crossover frequency in Fig. 2.] It
can be seen that at the lower band edge &u„ the
motion is entirely bending (B),whereas at &o, it is
entirely stretching (S). At the two other edges
&~ and (o4, there are & functions, and there is no
stretching and no bending, respectively, at these
two frequencies.

The detailed shape of the phonon density of states
p(sP) will, of course, depend on the precise topo-
logical nature of the structure. For simplicity
and to illustrate the qualitative aspects, we use a
Bethe lattice network. " This is a treelike struc-
ture with no closed rings of bonds. By following
Ref. 10, we see that the one band electronic s-band
Green's function g can be obtained for the Bethe
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FIG. 5. Density of states is shown as thick solid lines
for three values of the bond angle 8 with masses appro-
priate to GeS2 (m/M =

72 5) and a =178N/m. The density
of states is for a Bethe lattice but would be similar for
any network except very close to the band edges. The

characters of the modes (B,S, and C) defined in the

text are shown as dashed lines in the allowed frequency
regions and as dotted lines for the guidance of the eye
only outside these regions. These characteristics are
the same for all networks. The central plots are
exactly at the crossover frequency ec- cos (- 2m/3M)
=107 . The scale at the left-hand side refers to the
characters, and the density of states is in arbitrary
vertical units. The 6 functions appear to have a width

because a small imaginary part was added to the fre-
quency.
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bond angle 8, viz. , 90 and 180'. The latter case
has already been discussed in Ref. 7, and we re-
produce the results in Fig. 6(a) for the Bethe lat-
tice (marked cluster) and for I) -crystobalite
(marked crystal). By comparing with Fig. 2 (the
lower part of Fig. 5 is also helpful), we see that

lattice, and using Eqs. (3)-(4) we find that g„„
satisfies the quadratic equation

g„„[9(M&u' 4o.~/3)' 16o.'"j= Q„„(M&@' 4n~/3)+3.
(13)

0.8—

0.6—

TER

This equation can be solved and the imaginary
part taken. Then, using Eqs. (8) and (9), we can
calculate p(&o'). In Fig. 5, we have plotted p(to)
= 2upp(&u') with parameters appropriate to GeS,
(m/M = 32/72. 5 and a = 178K/m). (Note that this force
constant is a factor —', less than the 400N/m used
by Bell and Dean in SiO,—this is discussed in
Sec. 1V.) It can be seen that, as expected for a
Bethe lattice, the band edges are not quite rea-
lized —there is a small gap between the upper two
6 functions and the rest of the band. Nevertheless,
the overall shape of the spectrum is clear, and
the crossover from two bands with weight 1:3
at low angles to two bands with weight 2:2 at
higher angles is clearly seen.

III. EFFECTS OF NONCENTRAL FORCE

In this section we study the effects of a finite
noncentral force in the two limiting cases for the
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FIG. 6. (a) Density of states for Si02 with straight
bonds in the Bethe lattice, (marked cluster) and p-
crystob~lite (marked crystal) using a = 400N/m and
p/0, '= &~a (from Ref. 7). (b) The character of the=3 2

modes. The dotted lines are for the guidance of the eye
only (from Ref. 7).
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the main effect of P is to raise the five modes up
from zero frequency. The upper doublet remains
detached from the rest of the spectrum, and the
slightly broadened & function at the highest fre-
quency is still very prominent. The lower doublet
merges with the five modes that are pushed up from
zero frequency, but the broadened & function is again
clear at 680 cm '. The characteristics of the modes of
these two structures shown in Fig. 6(b) are very
similar and, indeed, would be identical if p/a
=0. Note that the presence of sharp features in
the spectrum does not imply that the molecular
model is useful. Indeed, as we have seen from
the discussion of Sec. II centered around Fig. 4,
these modes are associated with Si-0-Si bonds
rather than with Si04 tetrahedral units.

It is rather difficult to do the calculation for an
arbitrary bond angle because of the difficulty of
precisely specifying the arrangement of bonds to
form a Bethe lattice. This is currently being in-
vestigated. '4 The situation for 90' is much sim-
pler, and we consider it below.

Let us fix our attention again on an AXA unit,
as shown in Fig. 1 with 0 = 90, and consider an
extra term added to the potential energy in Eq. (1)
so that

u,.—u& r,&
2+— u, —u& ',

where the symbols have the same meaning as be-
fore. We now introduce new labels for the de-
grees of freedom v, and v, in Fig. 1 where v, and
v, are at right angles to u, and u„respectively,
and in the plane of the bond. Also, zo, and u)2 com-
plete the two sets of Cartesian axes. By writing
down equations of motion, we can eliminate the
anion degrees of freedom x, y, and z (which com-
pletes the Cartesian triad x, y, z) and define effec-
tive force constants in a manner similar to that
used in Sec. III and in Ref. 7. The coupling be-
tween uy and v, and also between u, and v, is given
by P', where

P'= 2P/(m~-' —a P)-
and the coupling between ao, and u2 by

n' = —P'/(m(u' —2P) .

(14a)

(14b)

We see that, effectively, every A atom interacts

If we demand that the four vectors at right angles
to the four AXA bonds surrounding a single A
atom also form a tetrahedron, "then we get an
isotropic diagonal term in the dynamical matrix
&d, where

4 ~2 +p2 g2
Q =—&+2/+ 2 +d m+2 —n -P m+2 - 2P

with its neighboring A atom with a central force
o." and a noncentral force P'. The fact that the
local axes are rotated from site to site does not
disturb the mapping onto the elemental tetrahedral
network studied in Ref. 6. The allowed regions of
the frequency spectrum can be obtained from the
spectral theorem'

IM '- .I=el~'I+ lip'I (16}

Rather than discuss these spectral bounds now,
we will defer the discussion until after the Bethe
lattice has been used as an illustration. It should
be emphasized again that the spectral bounds (16)
apply to any network or crystal that satisfies the
required conditions. One can also show that for
any network or crystal, the following sum rule
holds:

[(u' —(4/SM) (a + P)]C

uP ——R+ uP — (S+&), (1&)
2P 2 ~+/
m m

where the only new symbol is R for the rocking
motion of the anion perpendicular to the AXA bond.
This sum rule is easily proved by writing down
a, few equations of motions. Notice that Eq. (17)
reduces to Eq. (12) when P = 0 if we note that R =0
except when ~2 = 0. The total density of states
per AX, unit is given by

p((u) = —(6M(u/zC) lmg„„, (16)

where u can refer to either u„v„or w„as we
have been careful in constructing our Bethe lattice
to retain the local isotropy at each A site.

For the Bethe lattice, g is now obtained from
Ref. 6 for the elemental tetrahedral network.

r2[1+ (2a'g )~] t + 4[1+ (2P'g )2]~t2

= 1+g„„(M(a' n, ), (19)

where, as every site in the Bethe lattice is equi-
valent, g„„=g„„.The density of states for the
Bethe lattice using (16) and (19) is plotted in Fig.
7 for GeS, together with (S+B), R, and C. Figure
7 should be compared with Fig. 2 when 8 = SO'.
These spectral bands are as given by the inequality
(16) except for the small erosion near the band
edge that always occurs in Bethe lattices. The
A, mode at (o = a/m is shifted up to &o = (n+P)/m
but remains a 6 function with weight 1. .This cor-
responds to anion motion in the plane of the bond
and with the cations stationary. There are thus
2 &&2 =4 degrees of freedom per AX, unit and 1
vector constraint to keep the cation stationary,
leading to weight 4 —3 =1. This & function is
shown at 333 cm ' in Fig. V. The triplet I 2 mode
in Fig. 2 is broadened and moved upward also.
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FIG. 7. Density of states for GeS2 with right-angle
bonds in the Bethe lattice. The character of the modes

is also shown; the thindashed lines are for the guidance of
32

the eye only. The mass ratio m/M= 72 5, +=178M/m,
and P/a =—,7. The vertical bars denote the AX4 molec-3

ular frequencies for P= 0 {upper set) and P &0 gower
set). The slight tailing near the band edges is because
a small imaginary part was added to the frequency.

For small P, it can be shown using perturbation
theory that for any network the center of gravity
of the mode moves upwards in ~' by

(20)

This band is symmetrical about this shifted center
frequency in an uP plot, and the full width b, (&u')

is given by'

(21)

The remaining five modes that were at zero fre-
quency when P-0 are now at finite frequencies.
There is a band centered at 200 cm ' with weight
2 that is primarily anion rocking (R) and a band
centered at 100 cm ' with weight 3 that is of mixed
character.

It is interesting to examine the predictions of a
purely molecular model for this case with P in-
cluded. The high-frequency A, mode is predicted
to be at u&' = n/m (i.e., &o = 307 cm '). That is, P

has no effect on the molecular breathing mode
shown in Fig. 3. This mode remains a & function
in the network but is shifted to &u'= (n+P)/m (i.e.,
+=333 cm '). The extra term in P comes from the
linking together of the AX4 molecules to form the
network (i.e., it is an intermofecutar correction).
The upper F, triplet also shown in Fig. 3 is pre-
dicted by the molecular model to be at 399 cm ',
which is close to the lower edge of the F, band.
Thus we may say that svhen the central force is
dominant and cohen the bond angle is close to 90;
the molecular model is good for the ttvo high fre-
quency bands. The other molecular modes are

largely determined by P and lie in the vicinity of
the two lower bands in Fig. 7 at 129 and 165 cm '.
However, they are of little help in understanding
the low-frequency part of the spectrum of the net-
work.

1V. COMPARISON WITH EXPERIMENT

Having explored a simple model in some detail,
we are in a position to make contact with experi-
ment. Of course, we are looking for a qualitative
comparison as the potential energy in a real AX,
solid is almost certainly more complex than the
one we have used. The best available experiments
are infrared absorption and Raman scattering;
however, these measure the density of states
modified by a matrix element. This is an addition-
al complication as it is almost impossible to in-
clude matrix element effects except in an ad Roc
phenomenological way. ' It is, therefore, useful
to regard the computer simulations of Bell and
Dean' as "experiments. " These simulations are
on large (-300 molecular AX, unit) networks, using
the same model as in this paper, and give density
of states. We will discuss BeF„GeSe„SiO„
GeS„and GeO, which have mass ratios m/M of
2.11, 1.09, 0.57, 0.44, and 0.22, respectively.
There is no critical angle for BeF~, and one is
always in the upper part of Fig. 2 with two bands
with weights 1:3. For GeSe2, SiO„GeS„and
GeO„ the critical angles are 136', 117, 107',
and 98, respectively.

We are now in a position to discuss the spectra
of these various AX, solids.

BeFz. As noted, there is no critical angle, and
we are, therefore, in theupper part of Fig. 2,
where the two high-frequency bands are derived
from the molecular A, and F, bands. The work
of Bell and Dean' (more details are given in Ref.
17) shows clea, rly that, indeed, the triplet F,
band (at -700 cm ') is split off from the rest of the
spectrum and is rather symmetrical. This we
would expect because, in the absence of noncen-
tral forces, there would be & functions at both
sides of this band. The A, mode has merged with
the rest of the band but is still a rather pronounced
shoulder at around 350 cm '. BeF, is unusual be-
cause of the light Be mass; and although it is in no
sense molecular, its spectrum is clearly evolved
from the molecular spectrum in the sense that we
are in the upper part of Fig. 2, and the upper band
has evolved directly from the F, molecular mode.
We would, therefore, predict that this upper band
tvould be seen very strongly in infrared absorption
but have almost no human activity. As far as we
know, there are no optical data available.

GeS& and GeSeq. These materials have been
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studied extensively experimentally. " The experi-
mental spectra have been interpreted very suc-
cessfully in terms of a molecular model. The
measured spectra of GeS, have two strong peaks,
which are a Raman active A, mode at 342 cm '
and an infrared active I', mode at 367 cm '. These
modes are surprisingly sharp. This is clear
and unmistakable evidence that we are in the

upper part of Fig. 2 with 8&8,. For GeS„
8, =107', and so we conclude that the bond angle in
GeS~ is less than 207'. This is a very useful
conclusion and is what would be expected from
chemical bonding considerations. ' Direct struc-
tural information on the bond angle is difficult to
obtain from x-ray diffraction and has not yet been
done. We can see this kind of situation in Fig. 7

for a 90 bond angle. We have scaled the force
constants used by Bell and Dean' by a factor, +

to bring the frequencies closer to experiment.
A similar situation probably holds in GeSe„
where the bond angle must be less than the critical
value of 136' if the molecular interpretation is to
work.

SiO& and Geo~. For SiO, and GeO» we have the
situation where 8 &8,. For SiO„ it is generally
believed that there is a fairly broad distribution in
bond angles, with a maximum around 140'." The
situation is probably similar in GeO, . We are,
therefore, in the lower part of Fig. 2, where solid-
state effects predominate, and it makes more
sense to use the AXA bond as a starting point
rather than the AX4 molecule. The work of Bell
and Dean"" shows that there is a high-frequency
band (around 1000 cm ') with weight 2 that has
more strength on the high-frequency side as we
would expect from the evolution of the 6 function.
The lower doublet has merged with the lower fre-
quency modes but is still apparent as a wing -700
cm . It is more difficult in this case to make pre-
dictions about the optical activity, but we would
expect the high-frequency band to be both Raman
and infrared active because of the mixing of the

molecular A, and I', modes.
We have deliberately desisted from giving a

more quantitative comparison between theory and

experiment. We could have done so. However,
we believe that the usefulness of the central-force
model is in giving an overall understanding of the
behavior of the upper part of the frequency spec-
trum.

V. SUMMAR~

The effective coupling of neighboring tetrahedra
in the presence of central forces only, is zero when

8 =90' and increases to a maximum when 8 =180'.
We have shown that the modes of a molecular
tetrahedron AX4 may be useful in locating the
modes in the solid state if the AXA bond angle re-
mains below a critical value. For angles larger
than this, effective coupling among the tetrahedra
render these into solid-state modes whose charac-
teristics are determined more by the AXA bonds
than by the AX4 tetrahedra. The character of these
modes ranges from pure anion bending to pure
anion stretching in the central-force model.
These characteristics are found to be independent
of the structure, although the density of states does
depend weakly upon the structure of the network.
We have shown that the inclusion of a small non-
central force does not substantially modify these
conclusions. We have also shown that the molecu-
lar effects are dominant in BeF„GeS„and GeSe„
whereas solid-state effects are most important
in SiO and GeO .
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