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General model pseudopotential: Binary compounds
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A simple general-model pseudopotential is introduced, which is particularly suitable for energy-band

calculations in binary and more-complex semiconductors. It includes a point-charge Coulomb potential plus a

repulsive core part whose simple analytical form in both direct and reciprocal space is characterized by three

independent parameters. The resulting ionic potentials are screened by a semiconducting dielectric function;

off-diagonal screening effects are accounted for in heteropolar compounds by explicitly adding to the

Hamiltonian the contribution due to the charge transfer. The electronic band structure of the III-V and II-VI

compounds has been accordingly computed and a good agreement has been obtained with previously

published results. The ionicities computed from the corresponding charge transfers turn out to be rather close

to the Phillips values.

I. INTRODUCTION

A few years ago it was claimed' through the
aid of a remarkably large quantity of numerical
data that it should be possible to produce, within

a common theoretical framework, useful. pseudo-
potentials for many elements in many situations.
Though no general theorem justifies the use of
superposition and linearity principles for the
pseudopotentials, this claim seems to apply to
semiconducting compounds as well as to normal.
metals. Actually some satisfying semiconductor
band structures have been cal.eulated" by using
the Heine-Abarenkov4 model potential screened
by a Penn-type' dielectric function. This method,
however, did not prove to have a wider applica-
bility.

In this paper we suggest that a substantial im-
provement over the above approach can be gained
by replacing the Heine-Abarenkov model potential
with a new one whose built-in features make it
look much more promising for solid-state cal-
culations. It turns out that a local, energy-in-
dependent, general-model pseudopotential can
be found so to obtain satisfying band structures
for the groups IV, III-V, and II-VI semiconduct-
ors. The positive outcome of such a fitting pro-
gram is in itself a notable result: a more im-
portant point, however, is that this end has been
accomplished without sacrificing (or, maybe
better, thanks to) the physicai meaning of the
parameters introduced. In this connection a par-
ticularly interesting feature is the introduction
in the Hamiltonian of the contribution due to the
charge transfer which occurs in heteropolar com-
pounds.

As is reported elsewhere' our approach proved

to be easily appl, icable to band-structure calcula-
tions of ternary compounds without any readjust-
ment of the parameters. In Sec. II we define our
general-model pseudopotential and discuss the
physical meaning of its parameters. The resulting
curves in real and reciprocal space for all of the
elements we have considered are given in Sec.
III together with the band structures we have com-
puted. Section IV contains a summary and some
concluding remarks.

II. GENERAL-MODEL PSEUDOPOTENTIAL

A model potential may be defined as a physically
meaningful expression whose parameters are to
be determined by some fitting procedure. Heine
and Abarenkov' fitted the param. eters of their
model to the atomic energy levels, therefore being
able to make an independent evaluation of each
one of their potentials. If the fitting is made to
the optical spectra of heteropolar compounds such
independent evaluations are no longer feasible
and the whole process of finding some "best" set
of parameters may become very involved. In
retribution, however, one may get far more ac-
curate band structures than in the preceding case;
furthermore in this way the transferability of
pseudopotentials' may be given a quite unambig-
uous formal definition.

According to the above discussion our basic
idea was to look for a model potential capable
to describe satisfyingly the known band structures
of binary semiconductors. The extension to more
complex compounds is then quite straightforward
and is obviously an important test of the physical
reliability of the resulting potentials.

%'e chose to look for a local and energy-inde-

15 3980



15 GENERAL MODEL PSEUDOPOTENTIAL: BINARY COMPOUNDS 3981

B=1/4P,

C =y/2V.

(4)

The fitting process developed as follows: First
of all, systematic energy-band calculations based
on plane-wave expansions were performed for
the elemental semiconductors Si, Ge, and Sn by
regularly varying the values of the parameters.
The "best" values of a, I3, and y were then used
as starting values for the elements of the corre-
sponding rows of the Periodic Table. It must be
noted that in all our cal.culations the bare potential
has been screened by the Schulze and Unger' di-
electric function corrected for exchange through
the Hubbard' approximation. As is shown in Table
II the resulting band structures of Si, Ge, and
Sn compare quite satisfyingly with those ones of
Cohen and Bergstresser. '

The next step was to seek the laws of variation
of our parameters along each row. An important
clue was gained by connecting the height and the
width of the core part in real space with the cor-

pendent potential which has a simple analytical
expression in both direct and reciprocal. space.
Neglecting nonlocality and energy-dependence
effects stemmed out from our feeling that such
an approximation would have been consistent with
the limited overall accuracy attainable in band
structures computed with a small number of pa-
rameters for a great number of compounds. The
requirement of simple analytical forms was dic-
tated both by simplicity and physical reasons;
in fact the use of an analytical expression for the
model potential. in reciprocal space considerably
eased the fitting process, whereas the analogous
choice in real space allowed a more direct physi-
cal interpretation of the parameters.

We started from the following expression for
the bare potential in real space

V(r) =ae e' sinyr/r —Ze'/r,

where Z is the number of the valence electrons
of the element under consideration and n, P, and

y are disposable constants. This potential has
no discontinuities in the relevant range of r values
and is made up by a Coulombic part plus a re-
pulsive core term, thus reflecting two essential
features of the true potential. The particular
form chosen for the core term has the important
property of being easily Fourier transformed.
In reciprocal space we get

V(q) =Ae s' sinh(Cq)/q —4mZe'/q', (2)

where A, B, C are connected to the preceding
constants n, P, and y through the relations

A= ,'[ (a/sP)'~-'e "~"), (3)
III. NUMERICAL RESULTS

Our resulting model potentials in real and re-
ciprocal space are reported in Figs. 2-7. The
corresponding parameters are listed in Table I
together with some of the main features of the
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FIG. 1. Repulsive part parameters as a function of the
atomic number.

responding features of the actual atomic cores.
The real breakthrough, however, was to regard
Z too as an adjustable parameter in heteropolar
compounds, subject to the condition that the sum
of the valence charges over the unit cell should
remain unchanged. The point, as is stated more
precisely in Sec. III, is that in this way one es-
sentially introduces in the Hamiltonian the con-
tribution due to the charge transfers that char-
acterize the ionic bond. Therefore this choice
allows the core-part parameters to be fitted to
essentially atomic features, without being in-
fluenced by the particular strength of the ionic
bond involved in the formation of the compound.
Of course the charge transfers are supposed to
be of the point-charge type and localized at the
atomic sites. This approximation notwithstanding
we feel that this specific attention to the problem
of the ionic bond is the key, together with the use
of a proper dielectric function, of the success
of our fitting program.

As it was to be expected from the preceding
discussion the values of a, P, and y turned out
to be relatively slowJ. y varying for elements on

the same row of the Periodic Table. The best
results were obtained by keeping P constant along
each row and varying o. and P in a nearly sym-
metrical way around its value for the group-1V
element. The regularity of the variations of ~
and y along the rows is shown in Fig. 1, where
the corresponding values are plotted versus the
atomic number.
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Ga
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As
Se
Cd
In
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Sb
Te
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98.45

0.2532
0.2532
0.2532
0.2532
0.2651
0.2651
0,2651
0.2651
0.2651
0.2260
0.2260
0.2260
0.2260
0.2260

1.692
f .708
1.796
1.853
1 .502
1.611
1.700
1.791
1.906
1.286
1.382
1.473
1.567
1 .678

1.76
1.71
1.63
f.52
1.95
1.82
1.71
1.62
1.51
2.29
2.09
1 ~ 96
1.84
1.72

1.25
1.50
1.65
1.90
1.10
1, .30
1.55
1.70
1.90
1.00
1.20
1.40
1.55
1.65
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TABLE II. Main interband transitions energies in eV, with symmetry labels appropriate to the diamond structure.
Columns 1 give the experimental values, columns 2 our values, while columns 3 refer to values of Ref. 9. Unmarked

values of columns 1 are quoted from Ref. 9.

I'2 —I 25
2 3 1 2 3

L i
—225

2
x, r'„

1 2 3
Ll —L3

1 2 3
x, -x,

1 2 3

si
AIP
A1As
GaP
ZnS
A jsb
GaAs
InP
Ge
ZnSe
GaSb
InAs
ZnTe
Sn
InSb
CdTe

3.6*
3 1 Q.

2.8
3.8
2.1

1.4
1.4
1.0
2.9
1.0
0.5
2.6

—0.2
0.5
1.9

3.4 3.8 3.4
3.6
2.8 4 4
2.9 2.7 4.9
3.5 3.7 7.1

2.1 1.9 3.9
1,4 4.6

1.4 1.6 4 ' 8
0.9 1.2 3.4
2.9 2.9
0.8 0.8 4.0
0.4 0.5 4.5
2.7 2.5 5.1

—0.1 -0.1 2.9
0.5 0.6 3.7
1.9 2.0 6.3

3.4 3.4
5.2
4 4
5.0 5.3
7.3 8.9
3.5 4, 1

4.7 4.5
4.9 4.6
3.5 3.5
6.8 7.9
3.8 4.4
4.9 4.6
5.2 6.7
2.9 3.0
3.8 4.1

6.0 6.6

1.8 1.9
3.4

2.3 2.4
2.6 2.7
4.2 5.3

1.9 1.9 2.0
1.9 1.7
1.5 2.0

0.8 0.9 0.9
3.5 4.5

1.1 1.4 1.6
1.3 1.6
2.8 3.8

0,3 0.5 0.6
1.2 1.5
2.6 3.5

1.1 1.2 0.8
2.5 2.6
2.2' 2.3
2.3 2.3 2.2

3.8 5.2
1.9 2.2 2.0
19 23 18

1.8 2.3
1.0 1.4 1.0

3.9 4.5
1.1 2.1 2. 1

2.0 2. 1

3.0 4.0
1.3 1.1

1.8 2.0
3.0 4.0

3.2 3.0 3.1
4.2

4.0 3.3
3.6 3.5 3.6
5.9 4.9 5.8
2.9 2.6 2.8
2.5 2.7 2.6
3.1 2.2 2.8
2.1 2.0 2.0
5.0 4.0 5.0
1.8 2.2 2.3
2.3 1.9 2.3
3.8 3.3 4.3
1.4 1.3 1.4
2.0 1.8 2.1

3.5 3.0 3.9

4. 1 4.2
4.9

4.6 4.6
5.1 4.7
6.8 5.7
4.2 4.1

4.6 4.5
4.4 3.6
4.3 4.0
6.4 5.4
4.1 3.9
4.5 3.6
5.3 4.5
3.5 3.2
4.0 3.3
5.4 4.0

4.0 0.0
0.25
0.65

4.6 0.35
6.7 0.90
3.9 0.70
4.0 0.50
4.2 0.80
3.8 0.0
6.0 1.25
3.8 0.20
3.9 0.75
5.2 1.10
3.1 0.0
3.5 0.55
5.1 1.15

'B. Monemar, Phys. Rev. B 12, 5711 (1973).

is then to be superimposed to the charge distribu-
tion implied by the use of our dielectric function.
If we suppose the transferred charge to be of the
~-function type and centered at the ion sites, the
corresponding potential can be written as follows:

(8)
AZe' ~ d Ze'

and can be then absorbed into the Coulombic parts
of Eq. (7) by defining effective charges Z„*=Z„
+&Z and Zg =Zs —b.Z. In Eq. (8) a positive value
of &Z corresponds to a charge transfer from A
to B. It must be noted, however, that the use
of the effective charges Z„* and Z~ in our cal-
culations implies a screening of V~ too, which
is certainly incorrect. Therefore the hZ values
which come out from the calculations and are

reported in the last column of Table II must be
multiplied by some average value of the dielec-
tric function in order to be compared, at least
approximately, with other charge transfers, e.g.,
with those ones resulting from the Phillips" the-
ory. This comparison can be made through the
equation"

f ~ =1 —(Z —nZ)l4e,

which connects the charge transferred from the
cation site [accordingly in Eq. (9) Z=3e for a,

III-V compound and so on] to the Phillips ion-
icity f, . In Fig. 12 we report the Phillips f,
vs our f*, ; the latter have been computed from
Eq. (9) by using the LZ values of Table II multi-
plied for the values of &(q) at q -=(2w/a)(1, 1, 1),
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FIG. 9. Band structure of AlP. FIG. 10. Band structure of Ge.
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which have been chosen, admittedly rather ar-
bitrarily, as average values. It is rather grati-
fying, in spite of the approximations involved,
that the best fit is obtained with a straight line
of about unit slope. Accordingly it can be said
that our fitting procedure for 2* leads to an "ex-
perimental" determination of the ionicity.

IV. CONCLUSIONS

In summary the main points of our work are
the following: (i) A general-model pseudopo-
tential is introduced which has a simple analytical
form in both direct and reciprocal space. (ii)
The parameters of the model are determined by
an extensive fitting of the optical properties of
the groups IV, III-V, and II-VI semiconductors.
(iii) The resulting potentials in real space seem
quite reasonable and an interesting correspondence
with the comparable experimental information
is established. (iv) The charge-transfer effects
which occur in heteropolar compounds are ex-
plicitly accounted for by defining effective valence
charges Z~ in each particular compound. (v) In
turn, the fitted values of Z* may be regarded
as giving information about the charge transfers
that occur in the corresponding compounds. The
overall agreement between Phillips and our ion-

FIG 12 f &
values [see text Kq (9)] versus phillips

ionic ities f&.

icities is another support of the reliableness of
our potentials.

A final comment should be made about the role
the covalent bond plays in our model. As we have
already remarked the neglect of nonlocality and
energy-dependence effects was a consequence
of our choice of forcing the wealth of nature into
the narrow bounds of an analytical expression.
Analogously we decided not to explicitly introduce
into the Hamiltonian the Phillips bond charges,
but rather to let their effect be indirectly account-
ed for through the fitting of the group-IV semi-
conductors. An additional excuse may perhaps
be the small effect that the introduction of these
charges would have on the band structures.
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