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The charged excitons are moving bound states of an exciton and an electron or a hole in semiconductors. The
theory of these charged quasiparticles is given for direct-gap materials in the framework of the effective-mass

approximation, taking into account the spin-orbit coupling and the electron-hole exchange interaction as a
perturbation. The special cases of CuC1 and CuBr are studied more extensively because they correspond to the
most important binding energies. As a result charged excitons are stable enough to be observed in CuC1 and

CuBr. Arguments are given in favor of the interpretation of some lines as due to transitions between positive

or negative charged excitons and free holes or electrons.

I. INTRODUCTION

Recently, much interest has been displayed in
the electronic excited states of semiconductors.
These states may be conveniently described in
terms of different kinds of electron-hole quasi-
particles. The existence of neutral complex exci-
tations as the exciton or the excitonic molecule is
now well established, but the question of the exis-
tence of charged quasiparticles remains open.
The simplest ones may result from the binding of
an exciton X with an electron (e) or a hole (h)
leading to the excitonic ion X or the excitonic
molecule ion X,'. These two kinds of charged
excitons are quite analog to the hydrogen ion H

and to the hydrogen molecule ion H, '.' But there
exist some essential differences between them be-
cause the mass ratio of the two-component parti-
cles of opposite charges is not so small as in the
atomic case, and because of the surrounding
crystal electrons and ions. Up until now, there
is no strong experimental evidence of the exis-
tence of charged excitons in spite of a recent con-
troversy' 4 about the possible occurrence of X
as bound to an isoelectronic N impurity in GaP.
Nevertheless they may, if observed, display some
very interesting properties due to their fermion
behavior at low densities. Furthermore, the
charged excitons may play an important role as
intermediate states in the formation of biexcitons
and also of an electron-hole plasma by lowering
the threshold of the Mott transition from the in-
sulating excitonic phase to the metallic electron-
hole plasma. ' They might be observed at high
excitation intensities and also as classical optical
transitions. Indeed they are expected to have
giant oscillators strengths in connection with rela-
tively low binding energies.

The stability of both charged excitons against
dissociation into an exciton and a free electron or
hole has been investigated recently by different
authorse-io and js well establjshed6-8 by means of
very accurate variational calculations for all val-
ues of the effective-mass ratio c. Furthermore,
if o =m~/m„* is smaller than unity the binding ener-
gy of the X,' molecule ion is larger than that of
the X ion. The computed energies appear to be
the most important in the case of copper halides
because the mass ratio o is very small in these
materials. Further, the effective dielectric con-
stant &* which takes into account the electronic
and the ionic polarization effects appears to be
smaller than the usual static dielectric constant
&o. Nevertheless it must be stressed that the
values obtained for X are not much higher than
the free-exciton exchange energy. So it is of im-
portance to compare the electron-hole exchange
energy of charged excitons with the previously ob-
tained binding energies.

The aim of the present paper is to investigate
the stability of charged excitons under the elec-
tron-hole exchange interaction. We restrict our-
selves to the case of the most favorable materials
which are the copper halides CuCl and CuBr which
are polar direct-gap materials. In a preliminary
paper" we have shown that the short-range ex-
change interaction does not destroy the stability
of charged excitons in CuC1 and CuBr. In the
present work we give the theory of charged exci-
tons including short- and long-range exchange
interactions. In Sec. II, we define three-particle
excited states of the crystal which are eigenstates
of an effective electron-hole Hamiltonian taking
into account the spin and spin-orbit band degen-
eracies and generalizing that obtained by Haken. "
The electron-hole exchange interaction is treated
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in Sec. III as a perturbation. We show that it
separates into a short-range and a long-range con-
tribution. In Sec. IV, we particularize to the
special cases of CuCl and CuBr. As a result the
long-range contribution vanishes in CuC1 for both
charged excitons whereas in CuBr further split-
ting arises due to that contribution. Finally, in

Sec. V we compare our results with the experi-
mental situation and discuss the interpretation of
some lines as due to charged excitons.

operator, but with K the time reversal operator.
So we conventionally define the hole Bloch func-
tions by $3(()=Kg, ($).

Now we define the states of the charged excitons.
The cases of X and X,' are analogous under per-
mutation of the electrons and the holes. Therefore
we treat only the case of X explicitly. We denote
by l4', ) the Hartree-Fock ground state of the crys-
tal. Let us define crystal states of three particles
of the following kind.

II. THREE-PARTICLE EXCITED STATES

OF A SEMICONDUCTOR

Q,k ($) =c„(()exp(3k r),

p.»3(g) ="s($)exp(3k r),
(2.1)

and correspond to the energies E,(k) and E„(k).
Because the effective one-electron Hartree-Fock
Hamiltonian includes spin-orbit interaction, it
does not commute with Ko, the complex conjugation

We consider semiconductors with a direct gap at
the point I'(k =0). At this point the degenerate
valence and conduction Bloch functions &3(() and
c ($) belong to the irreducible representations l;
of the complete point group of the crystal. We
have 5 = [r, g], where r and & =+-,' are spatial and

spin coordinates. a and P are row indices for each
representation. A Bloch function of wave vector
k transforms under the action of the symmetry
operations of the point group into a linear combina-
tion of Bloch functions with wave vectors k' ob-
tained from the wave vector k by means of these
symmetry operations performed on the reciprocal
lattice. So at any point k of the first Brillouin
zone the wave functions of the electrons in each
band separately are linear combinations of Bloch
functions corresponding to the different vectors k'.
However at symmetry point I' the linear combina-
tions reduce to one sole Bloch function. We can
restrict our linear combinations to one Bloch func-
tion as for the point I' and approximate its periodic
part by the corresponding one at k =0. Indeed the
band states with small momentum play the princi-
pal role in the formation of excitonic complexes,
if the electrons and holes are created by direct
optical absorption. Thus the conduction- and
valence-electron Bloch functions read approxi-
mately

(2.2)

where ak„and dk 8 are creation and annihilation
operators of an electron and a hole in the Bloch
states of the conduction band and the valence band,
respectively. For small k values the above states
constitute approximately a basis for a representa-
tion of the point group of the crystal. This repre-
sentation is reducible because the direct product
I;XI; is always reducible at least into a symme-
tric and an antisymmetric part. We denote by

4"3'(k k, k))

+a a 8+k1a1nk a ~k 8 I 3) (2 2)
fag R2 8

x- ) = Z ck k k 1@333 (k„kk, k3)) .
k~k2k~

(2.4)

V

Here cg g,k, denotes the envelope function in k
space. We anticipate that for the ground state it
belongs to the identity representation of the point
group. & is the opposite symmetry label of &. In
some cases the electron-hole exchange interaction
may mix the states (2.2) belonging to the irreduci-
ble representations of the point group. This point
will be discussed in Sec. IV.

The wave function F»- of the charged exciton in
g space reads

a crystal state belonging to the ith rom of the ir-
reducible representation I'„„. v is a symmetry
label which is (+) or (-) according to whether I;
is symmetric or antisymmetric with respect to the
two electrons, whereas the y ",'„,8 are numerical
coupling coefficients corresponding to a unitary
transformation. In order to obtain eigenstates of
the crystal Hamiltonian, we take linear combina-
tions of the above crystal states:

x 1t 2t 3 ~ k1kkk3 M +a1a2834ek1a1(~1)43kka2(~2)Ahk383(~3) '
kl»2k3

' ' ' a1%83
(2.5)
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For charged excitons of large orbits the wave func-
tion I»- separates into a product of a crystalline
function f»- and an envelope function P»-:

F»"(g„(s, g, ) =0'is/» (r„r„r,)f "'
(f,„g, $ ),

(2.5}

where

'4-(r| rs rs)

=0 '~ c- - - exp(ik rk1k2k3 1 1

klk2k

+ik, r, —ik, r),

H=Hp+Hc y

where

(2.9)

HpEp+EcCkaQkaMEvdk8dk8 2.10t
ka k8

f»-' ((„5., (,) = Q r~'~s, c,(5,)c~((,}ff~s,(5,)
011C}t283

(2.8}

0 =NQp denotes the volume of the crystal contain-
ing N elementary cells of volume Qp.

The crystal states (2.3) are eigenstates of the
following effective electron-hole Hamiltonian:

whereas

(2.7)
is the Hartree-Fock Hamiltonian in which Ep is
the energy of the full valence band. The correla-
tion Hamiltonian reads

e
ak ak dk sdk s dtd ~ 4k (~)'4k s(~)lr rl 4kk s(~)@k

k1k2k 3k4
&1 8283~4

~ekg~g(~ )~kksss(~ } lr
e'

+ — z ak, „,ak, ~ak, ,ak, „, d'h 't' P,k, ,(()4.k, ~(5 ) l- -.
l

4.k, ,(&')4'.k, ,(&)
k1k2k3k4
Ot1 0f2 A%3 fX4

t e'
+ — Z ~k, s,dk, s ~» s dt s d'5d't' Ask, s, (&)kkk, s, (& }l;;il Akt', s, (&'}&k%,s,«).

k1k2k3k4
81828384

(2.11.}

The two first terms describe the electron-hole
direct and exchange interaction, respectively,
whereas the two remaining terms correspond to
the electron and hole interactions, respectively.
The intraband exchange interaction has already
been taken into account in the Hartree-Fock ap-
proximation.

Anticipating that the spatial extension of charged
excitons is large, and neglecting in a first step
the electron-hole exchange interaction, it may be
shown that the Schrodinger equation separates
into an equation for the crystalline function and

another equation for the envelope function which
reads

I'2 S2 h2
+2 Q2 Q2

2m+ 2m +

e2 1 1 1
+ — — — —E» P»"- (r„r„r,) =0 .

r12 rl3 r23

(2.12)

Further the effective masses of electrons and
holes are assumed for simplicity to be isotropic
in the terms corresponding to kinetic energy. Up
to now we have not taken into account the polariza-

P»-(r„rk, r,)—= Q» (r, R, Rs)

=Q exp(iKO ~ Ro)4»-(r, R),
(2.14)

Here Rp, K„and Mp=2m,*+m„* stand for the
center-of-mass coordinates, momentum, and
mass. R and r are related to the coordinates of
the three particle by

R =s(r, +rk) —r„r =r2 —r, . (2.15)

tion effects which are important in ionic materials
such as copper halides. Therefore we introduce
an effective dielectric constant e in Eg. (2.12). The
total three particle binding energy E»- is connected
with the crystal excitation energy by the relation

E„„„„=2E,(0}—E„(0)+E» (2.13)

Owing to the translational invariance of Eq. (2.2),
we can separate the center-of-mass motion from
the relative motion. We define the wave function
associated to the envelope of the relative motion
+»- and corresponding to the three particle rela-
tive energy E»-„„:
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Equation (2.12) has been previously solved for
the ground state in the cases of X and of X,' for
all values of the effective mass ratio o =mR/mRR.

The main conclusion was that charged excitons
are stable with respect to the dissociation into an
exciton and a free electron or hole, but without
taking into account the electron-hole exchange
interaction, which will be treated in Sec. III.

(3 4)

Qwing to translational invariance, states with
different K0 vectors are not mixed. Further, we
neglect a possible hybridization of the envelope
states due to the exchange interaction. Using
(2.4), we may write the matrix elements (3.4):

)P "(K)'-=2 Jd (d'') , d'(, P"-(( „2„)2*

III. ELECTRON-HOLE EXCHANGE INTERACTION

IN CHARGED EXCITONS

2

r, —r, ~

(3 5)

The electron-hole exchange Hamiltonian reads

Qk Qk dk 8 dk 8
k j k2k3k4
cXy B2 830f4

d'4d'&'4&% a &' 4~~ 8

g2
X ~,

~

y)2) () (()P,k (g).

(3.1)

For charged excitons of large orbits, we get a
good approximation in first-order perturbation
theory. The nonperturbed states (4'"„")are as-
sumed to be eigenfunctions of the Hamiltonian
(2.11) neglecting the exchange terms. The exchange
corrections 4E are the eigenvalues of the follow-
ing secular equation:

The factor 2 is a direct consequence of the Pauli
exclusion pr inc iple. The electron-hole exchange
takes place only with one of the two electrons, at
the same time. The wave function Fx- has to be
normalized to unity

d'$, d'$2d'g, F~'- $„$2,$, *

xp ~ (~, g, t, ) =5„,5,, (3,6)

This condition separates into two orthogonality
conditions for the envelope and the crystalline
functions, respectively, using the decompositions
(2.6) together with (2.14). Because of the period-
icity of the crystalline function and its rapid varia-
tion with respect to the envelope function, it is
easy to see that the condition (3.6) is satisfied if

d rKd'fl I212" (r, R)~'=1
02

I
H"'-"(K,) —~E(K,)6,.6(~ I

= o,

with the orthogonality condition

(3.2)

(4",' [4' (3.3)

The exchange matrix elements between states be-
longing to the zth and 3th rows of the representa-
tions I; and I; read:

"f»"- ($„(„5,) =6„,~;, . (3.7)

Taking into account the above separation, we may
write the matrix elements (3.5) as follows:

EP„'"~(K ) =20' d'g, d'g d'$, exp iK '-" (r, —r, ) @x-(rR —r2)*ir-(r, —r, )

(3.8)

where we have defined 21(r-(r)—= @r (r, Rr). Owing to the periodicity of the crystalline function and to
the slow variation of the envelope function, we obtain in a first step

R„""(K)=20' e„"-(R, —R-, ) e„'-(R,.—R„)e 2 —'K, ' " (R, , —R,„,))~t~l jOt
0

2
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where the sum runs over the lattice points Rf At

this stage, it is convenient to separate this sum

into two terms: a short-range (SR}contribution,
and a long-range (LR) contribution.

The short-range part corresponds to R, =R,
and reads after transforming the lattice sum into
an integral, and using the symmetry properties of
the function f:

X iSR 0 X X tSR

where the envelope exchange integral

(3.10}

Ix = d'z' 4x (3.11)

is the sum of the squares of the probability ampli-
tudes that an electron and a hole are located at the

same point. The short-range crystalline exchange
integral reads

0

e2

esR) r —r~)
(3.12)

where we have introduced a phenomenological
short-range dielectric constant, which is different
from that of the effective envelope.

Now, we determine the lattice sum corresponding
to the long-range part of the matrix elements (3.9),
by expanding the Coulomb potential energy in terms
of multipolar momenta. "'" Using the orthogonality
relations between Bloch functions, we obtain in a
straightforward way successively

EF„"„'„(K,) =20' 4» (R, - —R, )*4'» (R, -R, )exp -iK, ' " (R, , -R,
)litt )ttl Mp

and

2

d'h, d'h, d'5, f»" ((„5„-k,)*-
x f(r, r, )(R, —R, ) —3[r, (R, —R, )] [r, (R, —R, )]}f»"-(g, g, g~) (3.13)

2n2 nz,*+m„* - - 1
H»* 'LR(K, ) =-, ~ exp -iK, ' (R, -R, - )

Mo iR, —Ri- i'
gt ~gltl

&& Dx" o. 'Dx"- o. , -R, . 2

—3/[D»~-(o)* (Rl ~ -Rl- )][D»"- (~) '(Rl -Rl")]

Ri
g

II
(3.14)

where we have introduced the effective electric
dipole vector related to band-to-band transitions:

D»-(o}=Z ~ ""8 d'«(&}erin 8(&). (3.»)
~'8 0

It must be stressed that there are many dipole
vectors, each corresponding to a possible state of
the third particle, whereas in the case of the exci-
ton, there is one sole dipole vector. Ne remark
that the main contribution to the sum (3.14) arises
from terms corresponding to slow R, vectors.
Further, taking into account the smooth variation
of the envelope function in r space, we separate
the long-range contribution into a product of
crystalline and envelope parts. It appears that the
last one is the same as for the short-range con-

tributionn:

(3.16)

where the long-range crystalline exchange inte-

grals read

r„s„,jj mif +my 1&»"-",R (K,) =Z exp -iK,
&L»IRil

x gD," (o}* D," (a} R;

(3.17)

Here we have also introduced a phenomenological
long-range effective dielectric constant &LR, which
may be identified"" with the high-frequency di-
electric constant e„. As a result, we obtain the
following expression for the exchange matrix ele-
ments:

H" "(K ) =20 I' [+"-„6„,+ +"-" (K-)].-
(3.18)
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It is of interest to compare these matrix ele-
ments with those quite analogous which are ob-
tained in the case of the excitonic ground state"

H,""'(K)=n,(!e (0}!'[J"„,",,5„,+~; „'{K,)].
(3.19)

the relative envelope wave function previously ob-
tained' for the ground state of the negative charged
exciton X . This function is symmetric with re-
spect to the exchange of the two identical particles
and reads

Here (@„(0)['=1/(wax}', ax being the 1s excitonic
Bohr radius, whereas

4 „'-(r, R) -=4'x- (s, t, u)

ks

-
(

f"(4„4,), (3.20)

(3.22)

where the coordinates s, t, u are related to the
three mutual distances &», &„, and &».

Jr"~a (K,) =+exp(iK, R,)
&.RIR~I

x [(DF ~ 4 4, Ds J )R2

—3(Dr'~ Rg)(Dx'~ 'Rg)]. (3.21)

The exchange integrals 4x-, Jx +, and ~x related
to the crystal structure will be determined in Sec.
IV for CuCI and CuBr.

In order to compute integral (3.11), we have used

~ =~~3+~2S~

t =x —s, -s «t&s,13 23 P

u =r„, (t( ~u~s.
(3.23)

The scaling factor k as well as the 34 linear pa-
rameters c ~ corresponding to the conditions
m+n+P «5 and n even, have been computed pre-
viously' by means of a variational method. The
normalization constant X reads further

(m+m'+n+n'+ p + p'+5)![(p +p') +2(n+n') +6]
2w ~& ~~ "~ (n+n'+l)(n+n'+3)(n+n'+P+P'+3)(n+n'+P +P'+5) (3.24)

As a result, the envelope exchange integral reads

+ 16m'
x k3 ~ mnP m'tt'P

mnP
ms'

x(m+m'+n+n'+p+p'+2)! .
(3.25}

In Fig. 1 we have reported the variations of
Ix x +/]4'r(0}(' vs o. The values corresponding
to the positive charged exciton X2 have been de-
duced from those obtained for o «1 for X by
means of symmetry considerations, as reported
previously. ' We remark that the above ratio is
always less than unity, corresponding to a more
extended wave function in the case of charged ex-
citons. Indeed the Coulomb repulsion between the
two identical particles and the Pauli exclusion
principle are lowering the probability of finding
an electron and a hole at the same point. Further,
for 0«1, we have Ix- «I» + which is consistent

2
with higher binding energies in the case of the
positive charged exciton.

ing spin-orbit coupling, the band calculations lead
to a lowest conduction band and an uppermost
valence band, with corresponding Bloch functions
belonging at k =0 to the representations I'j and I;
of the point group T,. The notations of Koster
et al. '~ will be used throughout this paper. The

065 I I I I t I r [

0.60
C)
~X

0.55

1V. STRUCTURE OF CHARGED EXCITONS IN CuC1

AND CuBr

CuC1 and CuBr are polar direct gap materials
whose band structure is well known. ""Neglect-

050 t I I t I I I I

0 0.5
0

FIG. l. Envelope exchange integrals of charged ex-
citons as a function of a=me /m&.
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j. 3
P =+2, +2, (4.1)

where the p-like hybrid functions {g„i=+1,0}are
related to the I', basis functions 4, :

Xg

tli„= v(i/W2)(4 „+iC,}, g, = iC, . (4.2)

The corresponding I', and I', valence hole func-
tions Ws(r, f) =KVs(r, f) are obtained using the
following phase conventions":

r, conduction basis function Q(r) is s-like, where-
as the I; valence basis functions {4...x; =x, y, z}
are P-like functions resulting from hybridization
of the 3p orbitals (CuC1), or the 4p orbitals (CuBr)
of the halogen and the Sd orbitals of the metal.
This last contribution is very significative in the
case of CuCl. Taking into account the spin-orbit
coupling, the I; level becomes I;, whereas the
I; level splits into I; and I;. In CuBr, the upper-
most valence band is now I; while the situation is
reversed in CuCI due to the important contribution
of the 3d copper orbitals. The spin-orbit splitting
&(r7 —I;) amounts to 549 and 1096 cm ' in CuC1
and CuBr, respectively. '0 These values are large
in comparison with the experimental exciton ex-
change shifts (-50 cm ') in both substances. This
fact justifies our perturbation method.

The electron conduction and valence band Bloch
functions at k =0 in both substances then read

I': C (r, f)=P(r)(g~o&, n=+ —,';
r : 1 2(' ~) = [ '&-' + P)]'"&2"i.(r)&&

I
-2&

[ (2 p)1'"ys „,(r)&f
~

—.'&, p=~2;

r.: I:(,t) =[-'(-.'.p)]'"~. „,(}«~-.'&

+[l(2 p)]'"-0,„„()(rI
~
-l&,

I', Cx x,, envelope functions which lead to the
most-stable states. 'The crystalline functions are
then antisymmetric with respect to the two identi-
cal particles. For small K, vectors, the charged
exciton states and the crystalline functions belong
to the same irreducible representation of the point
group, and we get for both substances

CuCl
x-: (r, xr, ) xr, = r„
z, '. r, x(r, x r, ) = r, ;
x.: (r, xr, ) xr, =r„

CuBr:
I' X(I', XI' ) = I' + I', + 2I',

(4.5)

where we have used the reduced form of the anti-
symmetrized products

(r, xr, ) = (r, xr, ) = r„
(r, xr, ) = r, + r, + r, . (4.6)

In Appendix A, we have reported the different
crystalline functions fx-'z', ($„$„(,) expressed in
terms of the electron and hole Bloch functions C,
Wz, and Wz. In the case of X,' in CuBr, we re-
mark that two independent sets of basis functions
correspond to the representation I',. But these
two basis sets are orthogonal so that the crystal
Hamiltonian, neglecting the electron-hole exchange
contribution, does not mix the two sets of I',
states, which remain degenerated.

Let us first look at the short-range electron-
hole exchange contribution. Using the orthogon-
ality and completeness properties of the basis
functions, we may write the short-range exchange
matrix elements 0""",. „ in terms of the param-

~ 2 t

eter:

Kg, =(-1)' 'g, , l =1;
K&r. ~o&=(-1)'"'&C~-o&, & =+2;

and read

(4.3)

(4.7)

J =N d rd r2$*X, )os,

ex-,x,+; s = 2~01x-,x,+J.

where J, denotes the "atomic" exchange integral

~;(r, ~) = (-1)'"'[-'(-'+p)]"'C „,(r)« i-.&

+ (-1)' '"[2(2'-p)]'"4 s.,r.(r)h ~
-2&, (4.8)

g s(r, &}= ( I)' '"(-'+-P)]'"g s. ii2(')&I -I -2&

+ (-1)'""[ ( p)]"'g s -i.(')«1-2&-

p++-', +-'. (4.4)

It must be stressed that the coordinates r and g
appearing in the hole Bloch functions are still
electronic coordinates. Furthermore, all the
preceding functions are assumed to be normalized
to unity.

In order to classify the nonperturbed charged ex-
citon states, we restrict ourselves to symmetric A K' g e (4.9)

As a result, the matrix Hx"x,„ is diagonal for
both complexes X and X,' in the case of CuCl,
and for X in CuBr. But, in the case of X,' in
CuBr, the two states l", are mixed and the I', —I',
degeneracy is already lifted by the short-range
contribution. After diagonalization, the two I',
representations lead to two four-times-degenerate
levels, which we will still note "I'," for conven-
ience, although they do not transform like I",
functions. Thus, we may write the short-range
exchange contribution
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r.. Zr3 r, 0 ZrX ~ X

Comparing Eqs. (4.9) and (4.10), we obtain

(4.11)

~E..,..., -2 z,.
ll~

(0}.l,
.E,;,„. (.12)

The short-range exciton exchange energies &E»~»
have been computed using the following experimen-
tal data for CuC1 and ~' CuBr:

CuC1:

hv»(I'~~) =. 25 SVO cm ',
hv»(I', )=25850 cm ',
hv» (I', ) = 25 808 cm ';

(4.13)
hv»(I', ) = 24026 cm ',

CuBr: hv»(I', ) =23946 cm ',
, hv (I'„I', ) = 23 912 cm ',

where the numerical factors Z" depend on the ir-
reducible representation under consideration, and
are listed in Table I. It is interesting to compare
the exchange energy (4.9) with the analog one that
we obtain in the case of the exciton

n, z" = n, le, (0) l'z',I„ (4.10)

where
l
4'»(0) l'- = 1/va»3, a» being the ground-state

excitonic Bohr radius. 'The numerical coefficients
Zx have the same meaning as the analogous Zx,
Zx, ones. The values that we have confirm those2'
reported previously"":

Cu( 1: Z 2=0, Z

(4.14)Wx-, »,', »= W»-, », + ~Er,».
are listed in Table I. We recall that Wx-, W», + are
the binding energies previously obtained' ' without
taking into account the electron-hole exchange in-
teraction. In conclusion, we may say that charged
excitons remain stable enough to be observed in
CuCl and CuBr, when taking into account the short-
range exchange energy correction only.

In order to get the actual corrected binding en-
ergies W» x...„,„we must also include the long-
range contribution (3.16) to the exchange matrices
(3.18). To this purpose, we have expressed in
Appendix B the effective dipole matrix elements
(3.15) in terms of the "atomic" matrix elements

d'~Q r ex,.4„, r, x,. =x, y, z. 4.15
Ap

We remark that there are many dipole vectors
corresponding to a given charged exciton and that
their polarizations appear to be linear along z or
circular (forward or backward) in the»-y plane,

which lead us to the values &E 5 =49 cm ' and
61 cm ' for CuCl and CuBr, respectively. [Recent
indirect luminescence measurements" in CuCl
using recombination of biexcitons lead to hv»(I', )
—hv(I', )=39 cm ' at high-density regime. The
computations done below are relative to the low-
density regime. ] The charged-exciton exchange
corrections 4E»»....~ as well as the correspond-
ing corrected binding energies

TABLE I. Binding energies of charged excitons in CuC1 and CuBr. 8' corresponds to the binding energies previously
obtained (Refs. 6 and 8) without taking into account the exchange interaction, using the following input parameters:
CuCl (Ref. 20): m*, /mp=0. 415; m)=20mp, . &~=5.41; CuBr (Ref. 20): me/mp=0. 2323; m)=23mp, &*=5.23. Due to the
importance of the polarization effects, we have used an effective dielectric constant & which takes these effects par-
tially into account.

Substance Complex

SR exchange correction
W I assR W

(cm ) ~$„(0))2 Symmetry & (cm ) (cm t)
+Eexch

(cm )

~exch
(cm ~)

Total exchange correction
Symmetry

or
degeneracy

Cucl

CuBr

X
x+

2

-83
-229

-50

0.5131

0.6099

0.5134

f
Y
1

Y

23

-184
38

34

—184

—16

x+
2 -152 0.6186 r ~cr yy

7» 8

ccr
8

i

i

1 57

-143
—124

—95

80

25

—107

-127
—144

-145
—147
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whereas in the case of the exciton the dipole vec-
tor is unique and corresponds always to a linear
polarization. The lattice sum (3.17) may be
summed in the limit of small K vectors. Indeed,
following Cohen and Keffer, "we have in the case
of cubic symmetry

exp(iK' ~ R )
' ' = ——'wN'x33X Y K'K'

KI2 t

~
~ ~ R2 —3Z2 Kg2+exp(iK' R,) ' ' = ' wN' 1+ 3

(4 16)

where

PB + Blh

0

and X„F„Z,are the components of the lattice
vector R„while K' is a "reduced" charged exciton
wave vector. Taking the Z axis along the wave
vector K, we obtain the long-range exchange ma-
trix elements (3.16) in terms of the parameter

gyre kl/2 gEI 7 1/2 ZI'7 9 38 cm 1
X X ~ SR X X, S t

CuCl:
AE 6'"/' =DE"6'" '=Z 6 9 =45 cm '

~ X2+ X2+ X2+ X2+, S t

(4.20)

The diagonalization of the X,' matrix in CuBr has
been done numerically and leads to the following
results:

2rs 80 cm &

fr 2rs= 0.8116fr8'
lw+

P 55] 5f rz, +s/2 +P 1927fr, vz/2.

r, 2r, Pcm

fr ~ 2r8 = w. Q.Q889f r8
& 2wk

+0.4426f"&" +0.8923f" '~' '

~Er„r8 5 t

~r7 ~ '"8= 0.5773f"8'""
J 3~%

0.7071fra'"/' + 0.4082f ' "'/'
+9x-,x2+;r, =20~x-, x +" -&" &0 ~ (4.17) (4.21)

n, Z„=O,, ~
qr(0) ii'Z" (J, '

w N'//. ,')
'(transverse excitons),

4.18
n Zr" = Qo

~
$r (0)

~

wZ r (Zo+ -'w ii P o)

(longitudinal exciton) .

So we obtain

CuCl:
)x,"

CuBr:
)x,"

9s =76 cm ',
9s =90 cm"';

9s =47 cm ', 9~ = 21 cm ',
9 =56 cm ', 9~=25 cm '.

(4.19)

We have reported in Appendix C the exchange ma-
trices (3.18) for X and X,' inboth substances. We
remark that the long -range contribution vanishes
in CuC1 for X and X,'. In the case of CuBr, this
contribution is diagonal for X, whereas for X,'
there appears a strong coupling in the two follow-
ing sets of states: (I"„I'„I',) and (I'„I'„I',). The
values of the exchange parameters 9s and 9~ are
estimated using the experimental excitonic ex-
change correction deduced from the results (4.13)
by means of the theoretical excitonic exchange
shifts formulasxs

Er6'r =45 cm1

f r6 21 8 0 3963fI 8 +j/2
t

+ Q 7312f rg +&/2 w. P 5553f re +&/2 ~

8- 25 cm2

f 6' 8 = + P.6563f r8'+

+0.1974f 8'" '+0.7283f' ~'" '.
r62r8 8 Cm3 t

fr6 2r8 —0 6421fr8 ~ +&/2

—0.6530f '" 0.4016f
The two representations 1", and l",' belong, re-
spectively, to I', && I'3 and I', & l",. The above
numerical values of the exchange corrections ~E
as well as the corrected binding energies W,„,„
are listed in Table I. In Fig. 2 we have plotted
the corresponding binding energies diagram. In
conclusion, charged excitons remain stable under
the exchange electron- hole interaction. Further-
more, in CuBr the degeneracy of the X,' levels
is lifted due to the long-range exchange interac-
tion. In that case, the remaining X,' levels are
only twofold degenerated.

V. DISCUSSION

The exchange energy corrections may then be
written as follows

Though no experimental evidence about the ex-
istence of charged excitons has been reported up
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g y1
h v» —(Ke) = h vx + Wx —e„a —

2
(5 1)

to now, the binding energies obtained in the pre-
vious section show that the charged excitons are
stable enough to be observed in CuC1 and CuBr.
Different radiative processes may be suggested.
The most simplest consist in the transitions be-
tween free electron or free hole ground states
and negative or positive charged exciton states.
The free carrier may originate from previous
ionization of impurities, band to band transitions
or collisions between other quasiparticles. At

high excitation intensities, this last process will
be predominant. The energy balance correspond-
ing to direct optical transitions reads for both
complexes:

CuCl

O
rrrrrrrrrrrrrrrrrr

-200—
X,

S.R. L.R

CuBr

~ ~

v

~ ~

-18

L,

X, r-l

S.R. L.R.

k Ko @+1
h vx + (K,) =hv„+ &» + eec~ ——

2

hv» stands for the free I', (CuC1) or I'„I', (CuBr)
exciton ground-state transitions. An important
peculiarity of charged exciton lines consists in
that the transition frequency depends on the wave
vector K, due to the difference between the free
carriers and charged excitons masses. The
charged exciton band should be disposed on the
low-energy side of the threshold frequency
hv» - » + (0) = h v» + W~ - »2+ .exch ~ Considering only
transitions near k= K, = 0, we obtain the following
transition frequencies:

X
CuC1

X~

25763 cm ',
I",: 25624 cm ';

X: I ~: 23896 cm

I' ~ 23875 cm ' .

CuBr(

X2 23840 cm ',
23 805 cm ',
23785 cm ',
23768 cm ',
23767 cm ',
23765 cm ' .

(5.2)

These levels are twofold degenerate.
In CuCl, at low temperature there appear two

absorption and emission bands v, (25814 cm ') and
v~ (25654 cm ') observed as well at low" and
high' excitation intensities. The energy locations
of these two lines seem in good agreement with the
calculated absorption and emission thresholds of
the charged excitions X and X,'. The v, line has
been previously" interpreted as being due to a

FIG. 2. Binding energies of charged excitons in
CuCl and CuBr taking into account short-range (SR) and
long- range (LR) electron-hole exchange interaction.

transition between a neutral acceptor state (A')
and a bound exciton state (AO, X) because of a four-
fold splitting in a magnetic field. This observed
splitting remains consistent with the hypothesis of
a transition between a I', hole and a I", charged
exciton X,'. The v, line has not been interpreted
up to now at the authors knowledge. Nevertheless,
it has been reported" that this line disappears at
about 77 K together with an enhancement of the
exciton resonance line. The corresponding therm-
alization energy is quite the same as the X bind-
ing energy, 8'=-45 cm ', which is also the dis-
sociation energy into an electron and an exciton.

The optical spectrum of CuBr is more compli-
cated. But we may remark that the luminescence
spectrum" shows a set of close lines located at
h v = 23 766, 23 791, 23 806, 28 939, 23 847 cm ',
which might be interpretated as being due to the
dissociation of positive charged excitons X,'. The
calculated X transition energies fall on the low-
energy side of the (I'e —I',) exciton band, which
exhibits a not quite well interpretated structure.

Further, we remark that in CuCl the v, and v,
bands appear at high excitation intensities together
with the excitonic molecule bands v„. %e suggest
that charged excitons might play the role of inter-
mediate states in the formation of biexcitons. In-
deed, the electron-phonon interaction induces a
long-range exciton-exciton repulsive inter-
action, ""whereas the h-X and e-X,' inter-
actions are attractive. The previous tentative
interpretation have to be supported by further in-
vestigations, mainly by splitting experiments un-
der various perturbations and mobility experi-
ments in an electromagnetic field.
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APPENDIX A: CRYSTALLINE WAVE FUNCTIONS OF CHARGED EXCITONS

%e restrict ourselves to antisymmetric functions.

1. CUCj

fx' '(&„&-„&3)=(1/&2)[c»2(&,)c»2(&2}-c „2(&,)c»2(&2)],'(&3), I6 =+-.';
f» + ($„$2,$3) = (1/&2)C„(51)[W', /2($2)W'1/2($3) —W'»2()2)Wi/2()3)], a =+&

2. CUBr

f» (5„h„-( )3=(1/v 2) [-C»2($,)C,/2($2) +C»2($1)c»2($2}JWq($3), P =as, as

f» + ($„$„$3)=2C2»2(5, ) [W'»2(52)W', /2(53) —W', /2(52}W', /2(53)

+W3/2($2)W-3/2($3) W-3/2((2)W3/2((3)]

f»' (5„(„$,) =+(1/W&) [C„/,(g,) [W'„/, (kgW'„/, (&,) —W'„/, (&,)W'„/. (5,)]

+—,'C»2((, }[W3'/2($2)W', /2((3) -W, /2($2)W, /2($3)

f»2+ ($11 $21 (3) =+2 C 3»2((i) [W-»2((2)Wi/2($3) Wi/2()2)W-»2($3}

-3/2(&2) 3/2(&3 — 3/2(&2) '-3/2(&3))
SE I exr3 &3/2

fx,' (&, &2 &3) -+sc»/2(&, )[W»2(&2)W3/2(&3) -W3/2(&2)W1/2(&3)

-3/2(~2) -1/2(~3) -1/2(~2) -3/2(~3)J 1

rs~ re"rs "//
fx,' (&1 &2 &3) = (1/~2)c. »2(&1) IW'»2(&2)W'3/2(&3) -W'3/2(~BW'»2(&3)]

f '+ ' ' ($„$„$,) = (1/v 6}[C„/,(E,)[W'„/, (g,)W„„(f.,) —W'„„(0,)W'„„(&,)]

31/2 ~1 [ 3/2(~2 i/2(~3) 1/2(~2) 3/2(~3

+W', /, (ggW', /, (t',) -W', /, ($JW', /, ((3}J}

APPENDIX B: EFFECTIVE ELECTRIC DIPOLE VECTOR

%e express these vectors in an orthonormal
basis set (e„e„e,). Furthermore, it is conveni-
ent to define the vectors e, = (1/vY)(e, + ie, ) re-
lated to backward and forward circular polariza-
tions.

I. Exciton

It may be shown that the dipole vectors

CuCl.

D r5, ys
X 3 0 x~

5
X 3 0 yP

0r53 &V —~2I 3 VO

CuBr:

yc'tg d'F C $ er&Vg E

are nonzero only in the case of I'5 representa-
tions. In that case, we may choose the degener-
ate eigenstates so that the corresponding dipole
vectors are

DI5 ~ x~4
X 3 0 x &

D r5, " ~4p0e
3

Dr5, » ~4p, e .X
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2. Charged excitons

CUCl:

(i/-W) po e

j,
2

(i/~p, ,e, (i/vY)p, e,
——,

' (i/~p, e , -(i/vY)p, e,

CuBr:

1
2

3
2

(i/v-T)p, e (i/vY) p, e, (i/W) p, e, , 0

-(i/W) p, ,e (i//3) g, e, (i/W) p, ,e,

Dx,'+' (P):
3
2 2ZPpe

(i/2&Y) p, e,

3
2

1
6 zp. pe (i/3-vY) p, e, ,

(i/2vY) p, ,e

-(i/2vY)p, e (i/R-) geo, ,

2Zpoe-

(i/2-vY) p, e,
——,

' -(i/W2)g, e, 1
6 zpoe

I GI( Xr
2

(i/~6-p, e, 2 zp, oe+

1
2

3
2

(i/2/3) p, , e

1
2

3
2

—
2 Zgoe

(i/2W)p, e,

(i/W) p, e, (i/2vY) p, e,

(i/2~p, e -(i/W) p, e,

2 zp, pe

2zpoe

(i/W&) p, ,e,

1
2

3
2

—3ZPoe

(iWPp, e

(i/3/2 )p, e, ,

(i/W)p, e„

(i/W) g, e

1
2

(i/W)g, e,

(i/W6) g, e

3
2

(i/Sv+) p, e

——,z'po

APPENDIX C: MATRICES OF THE EXCHANGEXOUPLING COEFFICIENTS H~'-'~

1. CUC1

r7, fj
HX- 28X- S ~f, g H+2 +2, S f,j

rs ~ '& 2 ex-, s +ex-, L,
X

—,'(e, , -e, ,) ~, ,

~ Z~2 =+2

8 z,j =+-,'.

2. CUBr

Hx'a": Nondiagonal terms appear between the states (Z'„Z'„Z",} and (Z'„Z'„Z,'). pre den~t~ Z a„d Z to
be representations arising from the direct products F,x 1"3 and 1,x I'„respectively. The initial 12x 12
matrix may be block-diagonalized into four 3x 3 diagonal blocs, which read, with
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ex s=es md ex L,
=—8

z.p 3/2
8 p 3/2

8
p- a/2

7 z I-3/2
8

p-3/2
8 p j./2

7

(-*,(e, .e, ) -((//(()(e, +e, ) —) /2 e, ) ( -*, (e, +e, ) -((//(()(e, +e, )

—,
' e, (i/2W) e, —,'e,

—:., ')
-', vTe~

-(1j2&)e,
/'

pg L/2
8

pz/a
8 pl/26

pI -1/2
8

+-X/2
8 z.- 1/2

6

-', e, -e, 1 e, —e,
1 8

, e, )

-', (e, -e, ) ((//(()(e, -e,) o
~1 1~es ~8~

—;e,)
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