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A semi-infinite Ising model is studied by renormalization-group techniques in the position-space formulation

due to Niemeijer and van Leeuwen. We show how to set up the calculation of thermodynamic properties {both
critical and noncritical) of a sample with a free surface by iteration of a set of recursion relations for spatially

inhomogeneous couplings and magnetic fields. Surface and bulk properties are clearly distinguished. The
method is illustrated by a calculation {using a two-cell cluster approximation) of the magnetic-surface critical
exponent in two dimensions, where exact results are available for comparison.

I. INTRODUCTION

Critical phenomena associated with free mag-
netic surfaces have been studied recently in the
mean-field approximation, ' ' via phenomenological
scaling theories, '""by series""' and Monte
Carlo6, io methods, and via renormalization-group
techniques in e expansion about four dimensions"
(d = 4 —z). Exact solutions for surface properties

are available for the spherical model' "and the
d ~2 Ising model. '"'4

For specificity we consider an Ising model on a
hypercubical lattice of unit spacing which is semi-
infinite in the z direction (0 ~ z&~) but infinite in
the (d - 1) directions parallel to the surface r„
=(x,y, . . .) (-~&x,y, . . . &~). Take magnetic and
nearest-neighbor pair interactions which may de-
pend on z but are translationally invariant in the
parallel directions, so the Hamiltonian reads,

—pK= H=g K-,(z)+h(z)p(z, r„)+K,(z)p(z, r„)p(z+I, r„)+K„(z)Z p(z, r )p(z r +B)
II

5

where p=+ I, 5=(1,0, . . .), (0, 1, . . .), . . . , and

K,(z) is a spin-independent contribution to the en-
ergy, which we shall need later but plays no role
here. We confine ourselves to ferromagnetic
couplings, E,I, It",&0. To discuss scaling behavior
it is convenient to specialize further, singling out
the surface layer z =0,

h(0)=h+h„h(z&0)=h, K,(z)=K„

K;, (O) =K(1+D), K„(z& O) =K,(z) =K.

The bulk free energy per spin f~(K, h) depends only
on the bulk couplings K and It, whereas the surface
free energy per surface spin" f,(K, D, h, h, ) de-
pends in addition on the surface-layer magnetic
field It, and coupling enhancement D.

For d&2 and sufficiently positive surface en-
hancement D it is known" "' '~ that the surface
may become ferromagnetic at a critical tempera-
ture T, higher than the bulk critical temperature
T,. In this situation the bulk free energy f~ is
analytic at T„while the surface free energy f,
exhibits critical behavior with exponents charac-
teristic of a (d —1)-dimensional system. In this
paper we shall deal with the "ordinary" situation,

where f, is analytic except at the bulk T,. Near T,
the bulk free energy then scales in the usual' ''
way,

f, =t' O, (h/t ), t=~ K- K~/ ,K. (3)

0 b is the bulk scaling function; e and 4 are bulk
critical exponents. However, in the surface free
energy, h, is a, relevant variable (although D is
not), so f, s ca les as""

(4)

The surface specific-heat exponent o,, is related
by a scaling argument to bulk exponents, n, = a+ v,
so the only new thermodynamic surface exponent'
is 6,.

Derivatives of f,(K, D, h, h, ) define a. host of sur-
face properties. " In particular we distinguish the
"surface magnetization" m, = Bf,/Bh, the "layer
magnetization" m, = Bf,/Bh„and the corresponding
susceptibilities y, = Bm, /Bh and X, , = Bm, /Bh, .
Critical behavior follows from (4). For example,
at t-0 with h=h, , =0, rn, -t~~, with p, =2 —o., —4;
X,-t '~, with y, =2~+@,—2; m, -t~', with P, =2
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TABLE I. Exact and mean-field (MFA) exponents for
the d = 2 Ising model.

~s &l &t &a &I q

MFA 0

Exact b

d=2 0 (ln) 1 1 1 c —c 1 c
2 8

' References 1-5.
Exact results, B,efs. 13, 14, and 36.' Obtained by scaling.

Values of these exponents from the mean-field ap-
proximation and for the 0 =2 Ising model are given
in Table I. E expansions about d =4 were derived
by Lubensky and Rubin. " Series evaluations are
available3'4' 6'8' 9

Henormalization-group (HG) calculations of bulk
properties have been extremely successful. ' ' So
far the only analogous work for surface properties
is the series of papers by Lubensky and Rubin, "
who treat the Landau-Wilson model by E expansion
(h-space HG). Direct position-space, Niemeijer-
van Leeuwen"'" (NvL) surface calculations are
also possible. It is our purpose in this paper to
demonstrate the feasibility of such calculations.
The NvL methods are applied directly to the Ising
model in d dimensions (d = 2 in our calculation).
This has the advantages that the vagaries of e ex-
pansion are avoided and that one can calculate
nonuniversal (and even noncritical) quantities in
addition to exponents and critical scaling func-
tions. "" The disadvantage of the NvL method is,
of course, that there is no explicit small param-
eter, so all approximations are to some extent ad
hoc. This has not prevented very accurate cal-
culations on bulk systems.

In Sec. II we sketch the machinery necessary for
extending NvL methods to surface properties. Be-
cause the couplings depend on z, it is necessary to
develop spatially inkomogeneous recursion rela-
tions for the couplings. As a consequence the
critical fixed-point couplings become z dependent,
K*(z), and the eigenvalue problem associated with
linearization about the fixed point becomes in-
finite dimensional. " The added technical diffi-
culties are not great, however, and one can ex-
tract exponents (eigenvalues) and scaling fields
(eigenvectors) in close parallel with the bulk prob-
lem.

To illustrate this we carry out in Sec. III a sim-
ple calculation of the surface properties of the d
= 2 Ising model, based on an exceedingly crude
NvL recursion relation. This approximation lends
itself to essentially analytic calculation and, de-
spite its crudeness, captures the essential phys-

ical content of the surface critical behavior: The
layer field k, [Eq. (2)] is a relevant variable, while
the surface enhancement D is not. Calculated
critical exponents (y's) differ from the exact re-
sults shown in Table I by (10-30)%. It is our in-
tention in subsequent work to use better approxi-
mate recursion relations to carry out more quan-
titative (but necessarily more complicated) cal-
culations of surface properties of two- and three-
dimensional samples. The general method can
handle the surface phases which occur for d&2,
D large and positive (there is a new, surface fixed
point). It also appears applicable to the calcula-
tion of interfacial free energies. "

II. POSITION-SPACE APPROACH TO SURFACE CRITICAL
BEHAVIOR

The principle of the RG method"" is the evalua-
tion of the free energy by iterative elimination of
short-wavelength degrees of freedom. The NvL ' '
technique for performing this elimination is to
divide the lattice into cells, each containing b"
spine (degrees of freedom) {pj. b is the (length)
scale factor. A single collective (spin) variable
p, '= +1 is projected out for each cell via a projec-
tion operator P„»(p' ~{ijj) [with Z,,P„»(IJ,' ~{p])
=1] and the remaining b —1 degrees of freedom
are summed out.

We briefly sketch the RG development for the
homogeneous bulk system for subsequent corn-
parison with the layered system (1): The original
bulk partition function is

Z[K K h ] Tr eHtrp& K&&, &&0&& (&&) 1
OP QP nJ

where H = —P X is the bulk Hamiltonian, which de-
pends on the values of the generic bulk couplings"
K (even) and k, (odd). The constant K, multiplies
the spin-independent part of H [Eqs. (1) and (2)]
and is usually taken to vanish initially. The pro-
jection operation defines a new reduced Hamilto-
nian (for the cell variables p') of the same func-
tional form H but with new, renormalized cou-
plings

e H[KO& K&&& &'&I& {&& ) j Tr II P (p&
~ {p})

cells

X H[KO~Ee~ ~et {y']1

The projection property of P„» guarantees that

Z[KO&&K~& h~&] = Z[KO, K~& h„].
The number of cells is b " of the original number
of spins N, so, invoking the thermodynamic limit

f, =-limN 'lnZ[K„K„,k, ],
one finds the important bulk free energy relation

f~[K,&K~& h ] = b f&[KO&K~& h,'].
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Equation (6) defines" "recursion relations" con-
necting the old and new couplings

K. =K.[K„a,], a.=a„[K„h,],

K, =b'K, +f1[K„h,]. (10)

f [K,»K, h, ] = limK, '"' =K, +Q b """'R[K»I"',h»I"']
ftf ~ 00

n=O

{12)

Generalization of (5)-(12) to the semi-infinite
sample (1) is quite straightforward: Eqs. (5)-(7)
continue to hold, subject to the reminder that cou-
plings are no longer spatially homogeneous but now

depend on distance from the z =0 surface, i.e.,
Kn(z), K (z), h (z). Under the reasonable proviso
that all couplings go to uniform bulk values at
distances from the surface greater than some fi-
nite" z, [i.e., for z & z„K,(z) =K„K (z) =K, h (z)
=h, ], the bulk thermodynamic limit goes through
unchanged and fn is strictly independent of the sur-
face collpllllgs (z &z ). Tllel'e 1'elllalns llowevel'

a surface free energy, which is picked out by the
limit"

f,[K,(z),K.(z), a. (z)]

= llm S-'{inZ[K,(z), K.(z), h. (z)]

-Nf [K„K,h ]] (13)

(8 is the number of surface spins) and depends on
both surface and bulk couplings. Because the num-
ber of surface cells is b '~ "of the number of sur-
face sPins, the surface analog of (6) is

Once recursion relations are known, the calcula-
tion proceeds in a now-eanonieal manner: Fixed
points are defined by K*=K' [Kz, h»n], h*

=h„'[K~, h~]. The ordinary critical fixed point oc-
curs at 8*=0, so the linear recursion matrix de-
fined by linearization about the fixed point splits
into even and odd parts

8K' M'
Teven -. e Todd — @

~K8 E,h 8 Jt', It

The eigenvalues of T are written A=b'. At the
ordinary critical fixed point 7"""and P' each
have a single "relevant" eigenva, lue (y &0), which
we denote y» ("thermal" ) and y„("magnetic"),
respectively. Corresponding eigenvectors are
predominantly along the nearest-neighbor-cou-
pling and magnetic field axes. This information in
conjunction with (6) leads"'" to the bulk scaling
relation (3) with 2 —c» =d/y» and 6 =y„/y». Finally,
the bulk free energy (not restricted to the critical
region} may be calculated" n' by direct iteration of
(S)-(1o),

K.(z') =K.[z', K,(z), a, (z)],
h' {z')=h'[z', K,(z), h, (z)],

(15)

b-l
K, (z ) = b &"-'& g K, (bz +n)+ it[z', K,(z), a,(z)].

(16)

Because of the spatial locality, the renormalized
couplings at z' depend appreciably only on original
couplings with ~z —bz' ~~ z, . When bz'»z, (deep
in the bulk), the form of this dependence is in-
dependent of z'; however, for bz'~ zo the proximi-
ty of the surface modifies the recursion relations
and leads to exPHcit z' dependence, as indicated in
(15) and (16}. A simple example of such recursion
relations is given in Sec. III.

Fixed-point f»»nctions are defined from (15),
K*(z') =K' [z' K*(z) h*(z)] h*(z')
=h,'[z', K~n(z), h~n(z)]. The ordinary critical fixed
point has h (z) =0; however, K*(z) will in general
be z dependent, going to K* (bulk) for large z but
differing noticeably from its bulk value when z is
less than the localization length zo. The linear re-
cursion matrix

Teven(z. z }
Kcn (z ')
6KB(z) z*.n*'

gI s (+s)
Tot»d(z I z) — N

»8(z) z*,n*

now depends on z and z'. When z and bz' are both
much greater than z„ then T depends only on (z
—bz'); otherwise, there may be separate depen-
dence on z and z'. Furthermore, when ~z —bz'~
»z» then T =0. The schematic form of T (topo-
logical indices o., P will henceforth be suppressed)

f,[K,(z),K (z), h, (z)]

=b " "f,[K,'(z), K'(z), h'(z)]. (14)

We now consider the inhomogeneous analog of
the recursion relations (9) and (10). The key phys-
ical point here is that [despite the global appear-
ance of (6)] the renorma. lized couplings are de-
termined in a spatially local way, e.g. , the re-
normalized magnetic field (h,'p, ,') belonging to a
sPecific cell a depends appreciably only on the
original couplings (K, h) within some mic»'oscopic
distance z„ i,e. , only on couplings associated with
the cell a and its nearby neighbors. We shall re-
fer to zo as the "localization length. " Its existence
is attested to by the striking success of Nvt cal-
culations" "'"based on small-cell clusters. This
locality property is a feature of the recursion re-
lations and in no way depends, for example, on the
physical coherence length being small. Thus,
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f (t h h ) =b " "f (b't t, b'~h, b'~ih, ), (18)

is shown in Fig. 1.
Denote by e(z) the right eigenvectors of T(z', z).

Because the nonzero" elements of T(z', z) are
above the diagonal for sufficiently large z, there
are a finite number n, -z,/(b —1) of eigenvectors
which vanish in the bulk [e(z) = 0 for z &n,]. We
shall refer to these as "surface" eigenvectors.
They are associated with "surface" eigenvalues.
The remaining eigenvectors (and eigenvalues) are
not normalizable to unity and belong to the bulk.
At the ordinary critical fixed point" T'"'" and T'
each have one relevant (y &0) bulk eigenvector with
eigenvalue Jtt"'"=b'~ and A' =b'I, respectively,
agreeing precisely with the exponents defined after
(11) for the corresponding Pure bulk problem.
These eigenvectors have the generic form" e(z)
=1 for z&n„e(z) =finite for z &n, . Since these
relevant bulk eigenvectors are not normalizable,
the couplings in any finite number of surface layers
(e.g. , z, ) do not contribute finitely to the bulk
scaling fields and so disappear from the bulk free
energy (3), (8), and (12). Any relevant surface
eigenvectors will contribute to the surface free
energy (4) and (14). It is consistent with present
evidence that T' has exactly one relevant surface
eigenvector and T"'" has none. We denote this
relevant odd surface eigenvalue exponent y„. The

1
corresponding scaling field couples finitely to odd
surface layer interactions [e.g. , h, in Eq. (2)].
Combining this information with (14), one obtains

z

Zl

FIG. 1. Schematic form of the linear recursion matrix
T(z', z). T is infinite dimensional but is essentially zero
outside of the diagonal region ~z —bz'~-zo. At the upper
left T depends separately on z and z' because of the
changed form of near-surface recursion relations. For
z»zo (the localization length) T depends only on

(z -bz'). The fact that nonzero elements are above the
diagonal for z &n, divides the spectrum into surface and
bulk parts.

where we follow the usual convention in denoting
the even bulk, odd bulk, and odd surface scaling
fields by t, h, and h„respectively. The scaling
relation (4) follows from (18), with 2 —n, =(d —1)/
y, (n, =n+v) and d, =y„/y, . An explicit repre-
sentation for the surface free energy (not restric-
ted to the critical region) follows from (12)-(14)
a,nd (18):

f,[K,(z),K.(z), h. (z)] =g [K,(z) —K,]+g b "-"'""'g (-R[z', K,'"'(z), h,'"'(z)] A[K,'"',—h,'"']]
z=o n=o 8-0

Equation (18) is the surface analog of (12). All
couplings go to bulk values for large z; therefore,
the layer sums converge and the free energy per
surface spin is well defined.

III. SURFACE PROPERTIES FROM THE TKO-CELL CLUSTER

APPROXIMATION

We describe in this section an exceedingly crude
pos ition- space renormalization- group calculation
of some surface critical properties of the d=2
Ising model on the simple quadratic lattice. The
lattice is divided into cells of four spins each (b

=2), as pictured in Fig. 2. We assign the cell spin
p,

' according to "majority rule" by the projection

Pi
I

2 A

(4', '3)

5 6

(»'

8 B 9

g /Qy

IO

z=O

0)
O
U

D

V)

z'= O

2 5 4 5

$F

F x

1, x&0,

sgnx= 0, x=0,
—1, x&0,

(20) (a)
FIG. 2. Spin groupings for the two-ce11 cluster calcu-

lation on the simple quadratic Ising model. (a) The basic
two-cell cluster for the transformations (21) and (22).
(b) Spin cells for- the semi-infinite lattice.
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AB fK(Klt ' ' ' 1 K10t hit ' ' ' t h8) (21)

which allocates to p,
' =+ 1(- 1) all site-spin con-

figurations with net positive (negative) moment and
splits the configurations with net zero moment
evenly between p.

' = + 1. Our recursion relations
will be built from the recursion relations for the
isolated two-cell cluster" shown in Fig. 2(a). Only
magnetic fields and nearest-neighbor interactions
can be generated in such a cluster, so there is no
proliferation of further-neighbor and many-site
interactions. The Hamiltonian for the two-cell
cluster of Fig. 2(a) involves 26 independent vari-
ables: ten nearest-neighbor bonds (K, j,'0r„eight
magnetic fields {k,. j',. „and eight constant terms
JK0;]';,. Application of (6) yields a, new coupling
K„'~, two new magnetic fields h„' and h~, and a new
constant term (K,'„+K,'B), a.ccording to cumber-
some but straightforward formulas of the form

a = K =0.0228
Bf
BX,

a = K =0.1421BfK

ez,

a 3
=—= 0.2096Bf

3 BK4

a =~ =0.4108Bf
BZ,

ci = —= 0.7472Bfh

Bhl

c2 = —=0.6748fh
Bh4

c3 = —=0.2112Bfh

Bh5

c4 =—=-0.0015Bfh

Bh8

even K 2al+4a2+2a+2a
K*,h*

TABLE II. Independent fixed-point derivatives of the
transformations fK and fh I (21) and (22)t. Subscripts
refer to labeling of Fig. 2(a). All derivatives are eval-
uated at the fixed point (23).

hA ftt( lt'''110t lt'''th8)' (22)

= ~'""= b't = 1.8549bulk

dd Bh
K, h

(24)

K* = fK((K*);(0}), giving K„*„»——0.5689, (23)

some 29% higher than Onsager's exact value"

g 0 440 69 . Th e linear r ecu r s ion m a
trices T'"'" and T' [Eq. (11)] reduce to single
entries

In dealing with the bulk system, ""one would at
this point set K, =K, i =1, . . . , 10;h,. =h, i =1, . . . , 8.
The bulk critical fixed point is at h =0 and

Ab„",k = b~h = 3.2634 (25)

Table II defines notation for the derivatives. The
corresponding bulk exponents, y, = 0.8913,yh
= 1.7064, are to be compared with the exact values
in Table I.

Inhomogeneous recursion relations for the pair
couplings in the surface problem can be derived
directly from (21):

K'„(z') = fK(K,(2z')tK8(2z'), K„(2z' + 1)tK,(2z'), K8(2z'), K„(2z' + 1),K,(2z'), K8(2z'), K„(2z' + 1),K,(2z');

k(2z '), h(2z'+ 1),k(2z'+ 1),h(2z'), h(2z '), h(2z'+ 1),h(2z'+ 1),h(2z')),
(26)

K,'(z') = fK(K„(2z'), K,(2z')t K,(2z'), K„(2z'+1),K,(2z'+ 1),K,(2z'+1),K„(2z'+ 2), K,(2z'+ 2), K (2z'+ 2),

K„(2z ' i 3);h(2z '), h(2z '), k(2z '+ 1),h(2z '+ 1),h(2z '+ 2), h(2z '+ 2), h(2z '+ 3), h(2z '+ 3)).

Note that the form differs for parallel orientation
[e.g. , EH in Fig. 2(b)] and perpendicular orienta-
tion [e.g. , EF in Fig. 2(b)]. It is less clear how

to formulate a recursion relation for the mag-
netic fields: The cell field at E in Fig. 2(b) may
with equal logic be determined by applying (22) to
the four two-cell clusters, ED, EF, EI3, and EH.
We make the symmetrical but ad ho(." choice of
averaging these four possibilities and write for the
magnetic recursion relation

h'(z') = —,'[f„(-z)+ f„(+z)+f„( x)+ f„(+x)], z' &0-

(27)

in which the notation gives the direction of the ap-
propriate two-cell axis. Equation (27) determines
h'(z') in terms of K„(z) and k(z), 2z' —2 & z & 2z'

+3, and K,(z), 2z' —2 &z &2z'+2. Equation (27)
must be modified at the surface z' = 0, because
the two-cell cluster in the —z direction is trunca-
ted. To allow for this, we simply set K, =K, =O

[Fig. 2(a)] in (22) and call the result" f0

f„(.. . , K, =O, K, =O, . . —.). Then,

k'(z') = ,'[f„'(-z)+f„(+z)+-f„( x)+ f„(+x)], z'=-0.

(28)

Equations (26)-(28) are our realization of the
general recursion relations (15). The difference
between (27) and (28) is an example of the explicit
z' dependence discussed after (16). The absence
of a. similar explicit z' dependence in (26) is a
failure of our crude two-cell approximation. From
the calculational point of view, however, this fail-
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TABLE III. Surface and near-surface entries in the linear recursion matrices defined by
(17) and (26)-{28). (a) T'"'"', (b) 7." . s =cf+ c2+ c3+ c4, co 0.7409 and i4 explained in the
text. Otherwise, notation follows Table II. The upper-left-Rand mat&"ix elements determine
surface eigenvalues and ei,genvectors (see text).

(a) Z
even (zi z)

Z' (0)

K~ (0)

z' (x)
II

E~ (1)

+ l(0)

2a2+ a4

af 2a2 a3

K, (0) EI (1)

2(af + a3) 2a2+ a4

2a4 a3 2a2

2u2+ a4 2(af + a3)

af 2a2

E~ (1) E (2) K~ (2) KI (3)

0 0 0 0

yodd (ZI, Z

h(0) h(i) h(3) h(4) h(5)

h' (0) 3 (co+ cf + s) 2 (co+ c2+ s) 1
2C3 p C4

1

h' (1) ~ c4 re31 (Cf+ c2+ s) ~~ (cf + c2+ s) 1
2C3 2c41

h' (2) 0

h' (3) 0

yC4 2 C3
1

2C4
1

2 C3
1

3 (Cf + cg+ s) 2 (cf + C2+ s)

ure has the great merit that it makes trivial the
determination of the critical fixed point: The re-
cursion relations (26) feel no explicit surface;
h*(z) = 0 solves (27) and (28) by symmetry. So,
there is a critical fixed point" of the full recursion
relations (26)-(28) at [see (23)],

K,*, (z) =K,*(z)=K„*„,„, a*(z) =O. (29)

codd (z) (belonging to y„) (30)

[y, and y„are given in (24) and (25)]. The upper

The fact that K,*, (z}, K,*(z)-K»„,„, as z -~ is quite
general; the lack of z dependence near the surface
is a consequence of the artificial simplicity of (26).

Linear recursion matrices for the recursion
relations (26)-(28) at the fixed point (29) are de-
fined by (17). The first few elements of these in-
finite matrices are shown in Table III. Notation
follows Table II, with the addition that , =c( f„'sj
sh;)„+ „+=0.7409 enters the top row of 7"~ be-
cause of the special form (28) of the magnetic re-
cursion relation at the surface [h'(0)]. With this
exception the rows belonging to each K,', (z'), K,'(z'),
and h'(z') look the same for z'=0, 1, 2, . . . , only
translated successively to the right. Note that the
rows of T"'"all sum to Ab„"» (24), while (except
again for z' = 0) those of T'~" sum to Ab„'» (25). One
easily verifies that the relevant bulk eigenvectors
are

eb'„»(z) = 1, z ~ 0 (belonging to y, ),

0.956, z = 0

y„=0.6408, e„= -5.16x10 4, z =1

0, z&1.

(31)

Our calculated magnetic surface exponent y„, is
28% above the exact value (Table I}; however, our
very crude approximation has proved adequate to
reproduce correctly the qualitative features dis-
cussed in Secs. I and II. Better recursion rela-
tions for E„and E, would lead to fixed-poi. nt cou-
plings K,", (z) and K,*(z) somewhat weaker at the
surface than in the bulk. Such a change reduces
the entries in the first few rows of 7" and mould
certainly improve the accuracy of yh
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left-hand 2 x 2 submatrix [K„(0),K,(0)] of 7""'"and
the corresponding 3 x 3 submatrix [h(0), h(1), h(2)]
of 7""d (see Table III) determine surface eigen-
values and surface eigenvectors (normalizable).
Both the even (thermal) surface eigenvalues turn
out to be irrelevant (y =-0.4751, -1.9442). Of the
three odd (magnetic) surface eigenvalues two are
irrelevant but one is releva, nt and has an eigen-
vector which couples very strongly into the sur-
face field" h(z =0):

1.00, z =0
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