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Microscopic model for a ferroelectric glass
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This paper explores the concept of a ferroelectric glass and finds no fundamental objection to the concept. The
essential ingredient is a dielectrically soft local atomic configuration which remains identifiable, though

possibly badly distorted, in the glassy matrix. A specific model of such a glassy phase is constructed and a
simple statistical theory developed to determine the necessary conditions favoring a dielectric instability. Since
the essential "destabilizing" forces are of long range (the electric dipolar forces) the required averages can be

performed explicitly even in ignorance of the local microscopic details of the structure. We conclude that a
dielectric instability in a dielectrically soft glass can certainly not be excluded by these arguments, particularly

for systems in which the basic soft unit has a high degree of symmetry in its "prototype" or undistorted form

(such as the 806 unit in the ABD3 crystalline ferroelectrics). The concept of a ferroelectric glass is in no way

related to that of a ferroelectric ceramic, the properties of which are very closely related to those of the parent

single crystal.

I. INTRODUCTION

A fundamental characteristic of the crystalline
ferroelectric phase transition is the existence of
a high-symmetry local crystallographic unit, or
group of atoms, which distorts slightly below the
Curie temperature T~ to create an elementary
electric dipole configuration. Although the local
high symmetry may sometimes only exist in a
statistical or thermally averaged sense (as in the
case of order-disorder ferroelectrics) the basic
atomic displacements involved are small (typically
-0.1 A) and can be switched, or reversed, by
application of an external electric field. Polar
materials with atomic displacements much
larger than this are typically pyroelectric,
not switchable by an applied field and with
no disordering temperature below the melting
point. The essential ingredient of crystalline
ferroelectricity therefore appears to be the exis-
tence of a dielectrically "soft" local configuration
of atoms (e.g. , a BO, group in the ABO, perovskite
and pseudo-perovskite ferroelectrics, the NO,
group in sodium nitrite, etc.) which can become
destabibzed below a certain temperatuxe, T~, by
the influence of long-range electric dipole forces
which energetically prefer a polar structure.

In the microcrystallite model' of the glassy state
it is still possible to locate identifiable local
atomic configurations which are joined by irregular
bonds and atom bridges to each other, but these
units are randomly oriented and most importantly
are in all probability badly distorted in a random
manner from any prototypic "high-symmetry unit. "
In particular, for the case of dielectrically soft
prototypic units such as octahedral BO„ the actual

distorted local units will in general possess spon-
taneous dipole moments of random magnitude and
relative orientation already frozen into the glassy
matrix even though their sum over the macroscopic
sample vanishes. As distinct from the high-tem-
perature phase of a crystalline order-disorder
system very few if any of the local atomic con-
figurations will undergo the thermally activated
reversibility of local dipole moment characteristic
of the order-disorder ferroelectric, and most of
the elementary electric dipoles in the glass must
remain nonzero and essentially constrained at all
temperatures for which the glassy form can be
maintained. Conceptually therefore any possible
dielectric instability in the glassy state must take
place, if at all, with respect to such a "random
antipolar" configuration. It is not difficult to de-
scribe the nature of a possible ferroelectric phase
which might result in this way. Thus, for exam-
ple, let us imagine each basically constrained
elementary electric dipole p,' to be perturbed at a
dielectric instability to p';+p, Since Z; p';= 0 by
definition, it is only necessary to postulate a non-
zero resultant for Z; p; to define a spontaneously
polar glassy phase. Upon switching it is only nec-
essary that 5,.p,. change sign, which does not re-
quire that any specific p, - -p; and certainly does
not imply any changes p,.—-p,'. .

It follows that there is no conceptual difficulty
in perceiving a ferroelectric instability within a
glass despite the presence of large irreversibly
constrained elementary dipoles throughout the
matrix at all temperatures. In this paper we shall
explore the microscopic statistical mechanism
which might give rise to such an instability and
attempt to estimate (a) whether such an instability
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can be justified statistically via a simple model
calculation and (b) whether such instabilities are
likely to occur in practice.

II, STATISTICAL MODEL

Consider first a representative basic distorted
local unit (i.e. , configuration of ions} centered at
the ith coordinate site within the glass. This rep-
resentative unit will be formally described later
as a randomly distorted form of the prototypic
unit so that the fundamental assumption of the the-
ory is an ability to define a local prototypic unit
in an unambiguous way. In glasses for which the
equivalent crystalline unit cell dimensions are
smaller than the distance (typically 10-15 A) over
which the local glass environment is recognizable
as a moderately distorted form of the correspond-
ing microcrystalline array (e.g. , perovskite glas-
ses} the prototypic unit can be taken equal to the
equivalent crystalline unit cell. For other cases;
we take to be potentially ferroelectric only those
for which a small group of atoms within the equi-
valent crystalline unit cell is physically recog-
nizable as the origin an actuaQy or potentiall, y
reversible local electric dipole and is still identi-
fiable as a unit in the glass.

With this definition of a "unit" we formally sep-
arate interion forces into two groups; those in-
volving intraunit ions and those involving inter-
unit ions. The former, which basically stabilize
the prototype symmetry of the undistorted unit,
are expressed in terms of configurational coordi-
nates to define local potential functions, and we
retain interest only in those local modes (, „(see
Sec. III) which are optically active and which there-
fore contribute directly to the local electric dipole
moment. Of the interunit forces, which in princi-
ple can now be formally expressed as polynomials
in the interunit configurational coordinates, we
retain only terms bilinear in $; „(&,. These are
made up in general of short-range repulsive forces
and of electric dipolar contributions which are of
both short and long range. Since ferroelectric
transitions almost invariably exhibit mean-field
critical properties, and the latter demonstrate
a dominance of long-range forces in creating the
associated dielectric instability, we shall through-
out this paper approximate the interunit interac-
tions by electric dipolar forces alone.

The formal statistical approximation to be used
will be a neglect of interunit dipole correlations.
However, the effective field formalism to be set
out is actually able to account for possible regions
of correlated motion larger than one unit as define
above. To the extent that the theory is able to
interpret experimental data for any particular

case, the "best fit" values of the relevant effec-
tive Hamiltonian parameters can be calculated.
One can then estimate at least in principle what
fraction of the dipolar energy is contained in the
random-phase (effective field) term and what frac-
tion should therefore be attributed to the corre-
lated atoms. In this manner a "correlation vol-
ume" can be deduced which may include several
units as defined above. In this paper, however,
we shall not dwell on such parameter interpreta-
tional matters or on the physically most accurate
interpretation of the displacement coordination
$, , for any supposed specific microscopic struc-
tural situation. We shall simply assume a proto-
typic unit as defined above and formally define a
statistical (mean-field) approximation which re-
places interunit bilinear interactions by a mean-
field.

We suppose initially that we are in a macro-
scopically nonpolar phase. Let us describe the
static dielectric response of the representative
ith unit to a small uniform perturbing electric
field E in two separate circumstances; firstly in
the supposed absence of any electric dipolar
forces between the constituent units and second in
the actual physical situation with the dipolar forces
present. In the first case we define a so-called
"single-unit" response, ' denoted by superscripts
s, in the form

p) =X~'Eg (2 1)

where the single-unit zero-field dielectric suscep-
tibility g; describes the static response of the
equilibrium constrained dipole moment p', to the
field. We shall take E to be an internal Maxwell
field rather than an external applied field thereby
setting aside any questions relating to macroscopic
boundary conditions. In the second case, with di-
polar forces included, we define the actual physical
ith-unit response in the analogous form

pg=X]'E (2.2)

The simplest statistical approximation we can
make is the mean-field approximation in which
we now replace all local unit ionic configurations

j by their thermal averages. In this approxima-
tion the dipole-dipole interations between unit i
and all the others can be replaced by an effective
internal field E';f' so that the actual response p;
to applied (uniform) field E becomes equivalent
to the single-unit response p, to the effective field,
l.e. y

&s, Eefus (2 2)

We now consider a thermally averaged local unit
configuration of ions centered at site j4 i in the
presence of an applied Maxwell field E in the di-
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rection Z. The local unperturbed dipole moment
at j is, by definition, p&, and the local dielectric
susceptibility X&. It follows that the resultant di-
pole moment at j is pl+ X E. Now the local zero-
field susceptibility g& can quite generally be dia-
gonalized with respect to local coordinate axes
x, ,y&, z& which are peculiar to the jth site. Let
the local axes xz, yJ, z~ make polar angles 8, , Q&

with field direction Z: the induced dipole moment
can then be expressed in the form

p, = (X*,.s sin8J cosP;, XP sin8& sing&, X&J cos 8&)E,

(2.4)

where y~&&, yz~, and yz~ are the principle zero-field
local susceptibility tensor elements.

Now the important property of dipole forces in
the static mean-field approximation is that they
are of long range. In particular, for lattices of
sufficiently high symmetry (e.g. , simple cubic)
the short-range contributions cancel exactly and
the resulting effective field consists only of con-
tributions of essentially infinite range. Within a
glassy matrix local correlations are typically
maintained over only a few nanometers, so that
a very efficient, while not perfect, cancellation
of short-range contributions will hold for this case
also. It is therefore valid, within the mean-field
scheme, to assume the dipolar interactions to be
dominated by the long-range contributions. Let us
write the dipolar interaction between the ith and
jth units, now taken to be very remote from one
another, as p,"v;;'p,' where p,'. =p,'. +p, is the total
electric dipole moment at site j, and were v, &

de-
fines a dipole energy matrix. Because of the
long-range condition it is a good approximation to
replace each of the dipoles p,. by its configuration-
al average value (p„')„=(p;), . Since the local prin-
cipal susceptibility components and the local angu-
lar coordinates are independent random variables
(at least in the zero-field limit) the configuration-
ally averaged moment at the jth site is in the di-
rection Z of the applied field and of magnitude

given by

(p';)„= (&X",.i&„&sin'8; cos'0,&„

between them (such could, of course, be easily
given, e.g. , by defining p",& ~ y~» ~ X',.&, but only
complicates the formalism).

It follows immediately from (2.5) that the effec-
tive field E',"of (2.3) can now be expressed in the
form

E,'"= v y E+E.
j

(2.7)

Expanding the local effective field into its compo-
nents along the local axes x;,yi, z,. which diagonal-
ize the isolated unit response X,

' we have

E ~
' i= 'Uig s ci+ 5.

g s s ~ + 'v.
g c ~ g~ +s.c E,

(2.8)

in which

s; = sin8;, c;= cos~;,

s,'= sing, , c', = cosy, ,
(2.9)

Finally, we configurationally average over the
possible sites i noting again that for infinitesimal
fields E and E;."the local principal susceptibility
components and local angular coordinates are in-
dependent random variables. It follows that (p',)„
= (p,.)„where

&p,.&.„=—,'[v" (o)(x', "
&,„+v "(o)(x,""&„

+ v "(0)(X ')„]X,„E

with 6, , (t), defining the polar orientation of the field
direction Z with respect to the local axes x, , y, ,z, ,
and where the v;, superscripts label the tensor
components of dipole energy also in the local co-
ordinate reference frame. The resulting ith unit
response, from (2.3), follows immediately as

+ &X',.&&„&sin'8,. sin'Q~&„+ &X',&&„&cos'8,&„)E

= -'(&x,"').„+&x,'~&„+&x,'~&.„)E in which

+ 3[&X,""*&.,+ &X,". "&.,+ &X,""&,]E, (2.11)

where

=X„E, (2 5) v(0) = g v... (2.12)

x,„=(x"; &., = (x&'&.,= &x,'~&.„ (2.6)

the equality of the configurationally averaged sus-
ceptibility components following since we have
implied no systematic scheme for differentiating

and we have recognized the fact that for long-range
dominated forces with a glass v"(0), v"(0), and
v"(0) are independent of local reference frame.
They must, therefore, also be equal [say = v~«, (0)]
so that (2.11) can be contracted to
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&p;)„=-'K[&x,"".').„+&x,"").,+ &x,
"*).,]

x [v„„(0)X.,+ 1].
Defining

&xl **)., =&xl')., =&x',")., =x'.,

(2.13)

where, using (3.3),

s, ), =0,(s)

s2', ~ =2Q~+6A~(t,', O'=-'Q» & (say),

s3')~. = 4A (3.5)

and using (2.2) we are now able to define the con-
figurationally averaged (i.e. , bulk) dielectric sus-
ceptibility per unit in the form

X~
(i)

s&') =0;

X,„=&P;&., /E = X'.,[1+v~ (0)X.,],
from which we find the explicit form

X,„=X,'„/[1 —v„„(o)X'.„].

(2.14)

(2.15)

Thus, expanding each potential function about its
minimum value, we may now consider the response
to an applied field E (components E~) by examin-
ing the Hamiltonian

It is clear that a divergence, representing a ferro-
electric instability, will occur when

K» ~ y( y) —2wy+ 2Q» gnat+ s3

+ s ~' q Ag- Sq&), 4q. (3.6)

v~. , (0)x',„=1. (2.16)

In order to examine the detailed temperature de-
pendence of X,„and to discuss the possibility of
achieving the condition (2.16) it is necessary to
consider more explicitly the form, and particularly
the temperature dependence, of X'„.

III. "SINGLE-UNIT" RESPONSE

We shall consider the representative "isolated"
local configurational unit of ions at site i to be a
prototype high-syrnrnetry cluster distorted, pos-
sibly very significantly, by a random local strain
field E,'.»'. Suppose, for simplicity, that the Pro
totype unit has just three orthogonal local dis-
placive modes of vibration $ z, A, = 1, 2, 3 governed
by a local potential U($) which is separable in the
form

1'(5) = p 1' ( 5 &). (3.1)

Representing each component potential Vz of the
prototype unit by an even-order anharmonic oscil-
lator form, the representative local configuration-
al unit has a motion described by the local Hamil-
tonian

36» x($ x) = 27»x+ 2 Qz) x+Ag$ g- S~t ~E,'."~, (3.2)

X» „($~) —36» ~(&,'. ~) = Q s„'~a~, (3.4)

in which E',. '~ is the component of local strain field
in the direction X, S~ is an effective charge pa-
rameter for the Xth local vibrational mode, and

p„ is the momentum coordinate conjugate to $ „.The
equilibrium value of $~, given by BK, ~/8$& =0, is
therefore $,'. z where

Q4,', ~+ 4A~«', ~)'=S~E ", x (3.3)

Writing $~ =$, z+ n~ and substituting into (3.2)
gives

Contracting the notation we rewrite this in the form

where

w. =Q. a (kT) ' ' a" =s"((kT)' '/Q'

a,' = s~»'qkT/Q, '. ~, g~ =S~Eq(kT) '~'/Q» q.
(3.8)

The free-energy per mode X of the ensemble of
systems i can now be expressed classically as

and evaluated analytically to give
(3 9)

i"» = —kT[ln(kT/kQ, . ~)+-,'g,'. —a»»' &(3+ 6g2»+g»')

—a"(3Z;+g»)], (3.10)

correct to first order in a, and a4. The "single-
unit" response y,

'
z now follows directly as

' = - %(Q', ,.kT) ', .
in the form

X'; q
= (Sq/Q»' q) [1—6a,»

g»
—12a,' (1+g»')]. (3.11)

Using (3.5) we can now express (3.11) explicitly to
first order in small quantities in the form

X,
'

&
= (S&/Q&)[1 —12a»(l+g'+y', &)

—6a~~' ~g], (3.12)

in which

a» = AgkT/Q~, g = S~E),(kT) '~'/Qq,
(3.13)

Thus, y',. involves deviations from the prototype
. configuration only in the a,y' and a,g terms. How-
ever, in forming a configurational average over
the random local strain field (i.e. , over g, z) the
final term in (3.12) vanishes and we are left with
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Xx, av =&Xdav

=(C/C)[1 —12' (I+g'+&y~&., )l,

where

(3.14) =(p&&,„=X,'. „(E"")E'",defining the field-dependent
response

X„(E ) = [(X,", &(E sycy)sgcy ),v

(3.15)

provides the only remaining measure of contribu-
tions from local deformations in this approxima-
tion. Written explicitly in terms of the original
parameters of (3.2), this result is

~S 124),k T 12AgS), E~
Xg~gy 2 1 —

~4

(3 .16)

The average X',„of Ec(. (2.16) is now defined as

S 1 S
Xav 3 P Xkvavv (3.17)

or more specifically its zero-field value.
We shall consider below some interesting special

cases but, for the moment, we note a particular
simplification which has resulted from the assump-
tion that V($) is separable as shown in (3.1). For
this situation (but not in general) the principal
axis directions are not perturbed by the strain
field or by any other finite effective field. In such
a case it is very simple to extend the statistical
theory of Sec. II into the "ordered" polar phase.

+ (X',„' (E""s,s,')s,'s,"),„
+ (X'„"~(E""c,)c,'),„], (4.3)

gut since (p,.),„=X',„(E")E"'by definition, it fol-
lows that E" in the polar phase is determined by
the equation

in which X'„'& denotes a configurational average of
J with 8~ and P~ fixed, and ( ~ ~ ~ ),„ is an

dependent average over 8~ and P&. It is these
averages which, for a more general prototype po-
tential, can be coupled and field dependent even in
the absence (which we assume throughout) of any
physical rotation of the basic units in the field.

Proceeding as in Sec. II we now calculate the ef-
fective field at site i, the associated response from
(4.1), and finally the configurationally averaged
response

( p,.),„=[zF'(0)(X,'. ;"a(E'"s,.c,.') s,'. c,."),„
"(0)&X"'(E'";s )s,'s;"&-

+ v "(0)(X',„'& (E'" c,)c', ),„]X',„(E'"")E'"" .
(4.4)

gl~eff x ~ effP. —
Xg(K (4.1)

defining a "single-unit" field dePendent response
X',.(E), the principal diagonal components of which,
for our model, are given by (3.12). In analogy with
(2.4) a finite response at site j can be written

p&
= (X&' &(E,(, )s&c,', X&'&(E'(, )s~s&, g~"a(E'J, )c~)E",

(4.2)

where E,*/ signifies the component of E'"' in the
direction of the x,.th principal axis of the field-de-
pendent susceptibility tensor at the site j, etc.
Since, with the restriction (3.1), these principal
axes are not field dependent, the local angular co-
ordinates and susceptibility components can again
be taken as independent random variables in es-
timating the configurationally averaged moment at
the jth site. In analogy with (2.5) we find (p&),„

IV. POLAR PHASE

Below a ferroelectric instability, the effective
field E"" of (2.3) takes on finite values. In the ab-
sence of an applied field we shall write below T~
a finite response at the representative site j in
the form

P (X~,„(E'"'cos8) cos'8) e = I/v~„, (0), (4.6)

where ( ~ ~ ) e implies a spherical average over the

polar angle 19. The susceptibility Xz „, „within our
model is given by (3.16), and the spontaneous po-
larization P follows as N(p, &.,„, where

&p;)., =x'.,(E'"')E""=E'""/~d (0), (4.7)

and N is the number of elementary cluster units
per unit volume. We see that P 0 when I''" 0
which, from (4.6), is when

P a Xx,„(0)= X,'„=1/V~„, (0),
X

in agreement with (2.16). The model therefore in-
dicates a second-order instability.

+(X ' '(E c;)c,'&,„=1/c (0), (4.5)

where we have again used the relation v" (0) = v" (0)
= v"(0) = vd. (0) for the bulk spherical symmetry of
the glass structure. This may be written more
succinctly using (4.3) in the form X,'. „(E"")vd (0).
=1, or as
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(5.i)

The local "soft" axis is therefore the z axis for
which we have

x.*,.„(z,) = n, —12A,S.'ur/n. '-12A, s,'z,'/n, ',
in which

o', = (S',/n,')(1 —12A, ((k',)'}„/n',) .

lt follows, from (3.17), that

(5.2)

(5.3)

X'„=—g X,
' „(E=0) = (o'/3) -4A,S',kr/n'„

(5.4)

where n'=n„+o. ,+n„ from which, using (2.16),
we calculate a Curie temperature

nr J- =(n'./12Ap2)[n 3/v„„(O)]. (5.5)

Our model will therefore exhibit a glassy ferro-
electric phase provided that o'& 3v/«(0). In this
case, using (2.15), we find a divergence of uniform
static susceptibility as T- T~ of the form

V. STRONGLY UNIAXIAL PROTOTYPE UNIT

We consider as our first specific example the
case for which the prototype unit in the glass is
strongly uniaxial such that g„',v = X„',„«y,',„. If we
take the x and y susceptibilities to be of the first
order of smallness then we may define, from
(3.16),

although such a simple form is expected to be valid
only for the model (3.2) of a quasiharmonic dis-
placive unit stabilized by quartic anharmonicity.

Within this simple model, however, it is now.
interesting to compare the equivalent findings for
a crystalline lattice made up from these same
strongly uniaxial constituent units. In the crystal.
all the units are relatively aligned and dielectric
instability will occur, if at all, along the local z
axis of each unit, which is now the g axis of the
crystal. The defining equations for crystalline
ferroelectricity corresponding to (2.15) and (4.6)
are X( = &(/[I —v;((0)&g], f =x, y,

x.=x./[1-...(o)x.], »T, (5.11)

X', (Z'")=1/v„(o), T & T, (5.i2)

where v„(0) is the diagonal component of the di-
polar interaction tensor for displacements along
the crystalline z axis and will depend on the de-
tailed crystal structure and, in particular, will
differ in general from v«„(0). The susceptibility
x', in these equations differs from x,' „of (5.2) only
in having n, replaced by n', =S',/n', . The crystalline
equations for Curie temperature, susceptibility,
and spontaneous polarization, now follow immedi-
ately as

or;""= (n;/i2A, S',)[~;—(1/v„(0)], (5.»)
X"""=[n'/12v'„(0)A, S',I ](r r)-' r ——r'

X'.,"-=[n,'/4v'„. ,(O)A, S.'a](r r, )-', r - r;,
(5.6)

S'(T) =iV[n', u(r, —T)/S', v'„(0)]'~',

(5.14)

(5.i5)

E,~~
= 5n', 0 (Tc —T)/3S g, (5.6)

from which the spontaneous polarization follows as
P Nz, ff/v«~ (0), viz. ,

f (r) =iy[5n', a(r, r)/3S', v'„„(O)]'". (5.9)

We note in particular that

P(r)/~(0) =[(r, T)/T, ]'~', (5.10)

i.e., a Curie-Weiss law.
Below the Curie point, when one exists, the

polar phase develops with a spontaneous local ef-
fective field given by (4.6). Substituting (5.1) and
(5.2) into (4.6) we find the explicit form for the
uniaxial prototype unit

(~'- 12A.S',urn-. ')(cos'8},

—12A,S,E'„,n, '(cos 8}~= I/v««(0) . (5.7)

Evaluating the spherical averages {cos'8)8= 3 and
{cos'8),=5, and using (5.5), this equation simpli-
fies to

P(r)/&(0) =[(T, -T)/T ]"' (5.16)

Comparing T~""of (5.5) and Tc""of (5.13) we
see that unless v„(0) is much less than v«„(0)
then T~"88 is likely to be very much smaller than
Tc""for the case of strongly uniaxial units. It
suggests that displacive crystalline ferroelectrics
with a strongly uniaxial basic unit will probably
not give rise to any ferroelectric instability in the
glassy matrix (i.e., T~J"'&0). On the other hand
it also suggest that a dielectrically unstable glass
might be found in systems for which the equivalent
crystalline phase is pyroelectric (Tc""' higher than
the melting point).

One should not confuse the idea of a glassy ferro-
electric with the well established concepts of fer-
roelectric ceramics. The latter are aggregates of
crystallites with sharp boundaries and with dimen-
sions measured in microns (which is typically
several orders of magnitude larger than the possi-
ble local structural integrity of the glass). Ex-
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cept for problems concerning domain clamping by
spontaneous anisotropic strains at the grain boun-
daries and a broadening of the phase transition
region by the inhomogeneous distribution of
stresses and electric fields, most ceramics ap-
proach a powder averaged bulk ferroelectric be-
havior. Thus, for example, we would anticipate
a bulk ceramic susceptibility

ltcClam ()(cyst + y
cd/st + )(elf st)

in which

X„""= n, /[I —~„„(0)&„],

n,"= ~,/[I -~„(0)~,],

(5.iv)

(5.18)

and )t,&'" is given by (5.14) on approach to the
Curie temperature. Thus, the ceramic suscepti-
bility diverges at T~"" in the simplest model and
is quite different from the concept of the glassy
instability. The extent to which the glass transi-
tion might also be expected to be broadened by
inhomogeneity depends upon the characteristic di-
mensions of these inhomogeneities within the
glass. It is certainly not the case that a "frozen-
in" random disorder necessarily precipitates a
diffuse phase transition.

VI. HIGHLY SYMMETRIC PROTOTYPE UNIT

where

= n 12/ts9 T/n' —les'z'/n', (6.1)

o = (S'/n') [i —13m(((')'),„/n'],
then we find for the glass

(6.2)

u T",'"= (n'/12&s')[n —I/~.,(o)], (6.3)

X~a" = [n'/12nd~(0)AS'k](T —Tc) ', T —Tc,
(6.4)

I (T) =A[5n'a(T, —T)/3s'~,'- (o)]"'. (6.5)

The equivalent findings for the crystalline form
are

I T,""= (n'/»&s')[~' I/~„„(0)], -
q~ ~ = [n'/13&'„„(0)xs'a] (T T,)-', —

(6.6)

(6.7)

with no =S'/n'. In the latter two equations, r de-
notes the crystalline direction for which the dielec-
tric instability occurs —it will be decided by the
symmetry of the crystalline lattice. We have not

The analogous equations for the case of sym-
metric prototype units can be obtained in an exact-
ly equivalent manner and will be given here without
detailed discussion. If we define the high-symme-
try unit by
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given results for the ordered phase since these
will depend in a more intricate manner on the
particular parameters of the crystalline model;
in fact there might possibly be more than one
ordered phase with a suitable choice of model pa-
rameters.

In the simplest effective field scheme, neglecting
all correlation effects, one would expect vd z(0) in

ihe glassy matrix to have essentially the Lorentz
value 4v/3. On the other hand, the crystalline
structure will take advantage of any anisotropy in
v to polarize along a direction for which v„„(0)
is a maximum; it follows that e„„(0)~ 4v/3. Also,
since

n = n'-13xs'((~0)') /n' (6.8)

VII. SUMMARY

%'e have established that there is no conceptual
difficulty in perceiving a state of matter which is
both glassy and ferroelectric and we have con-
structed a simple model of such a system. Using
the effective-field theory of statistical mechanics
we have also described the physical mechanism
whereby a dielectric instability might be produced
in a glass. The essential ingredient is a high-

we know that, within the. present model at least,
n is less than &'. It now follows from a compari-
son of (6.3) and (6.6) that, once again, we antici-
pate T~~" to be less than T~, though perhaps not
so dramatically so as for the case with strongly
uniaxial prototype units.

Even such qualitative predictions as these, how-
ever, must be tempered with some caution. For
example, it is possible (though not necessary) to
have n & o' if the local Hamiltonian (3.2) has a
negative quartic anharmonicity, the local motion
being stabilized by higher-order terms. The nega-
tive sign of A~ has been well established for some
ABO3 ferroelectrics ' and is suspected for many
others. More particularly, our model is so far
restricted to a quasiharmonic prototype potential
and we have used a simple statistical approxima-
tion neglecting all effects from correlated neighbor
motion, effects which are known to be very im-
portant in crystalline ferroelectrics' ' and which
may well be changed in a rather drastic manner
in passing to the glassy form. Finally, since n
and I/v(0) in the equations for Tc -may well be
large compared to their difference, relatively
small percentage changes in either can result in
a large variation of Curie temperature, even to
completely removing the dielectric instability from
that temperature range 0&To & T, (where T, is the
melting temperature for a crystal or the crystalli-
zation temperature for a glass) of experimental
significance.
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symmetry dielectrically soft "prototype" local
atomic configuration which remains identifiable,
though in a randomly distorted form, in the glassy
matrix. Essentially all the actual local units then
possess "frozen-in" electric dipoles of random
magnitude and orientation but which cancel when
summed over the macroscopic sample. The polar
phase is then defined as a small "polar" perturba-
tion from this frozen random configuration of di-
poles and is therefore really no more than an ex-
tension of the concept of the "dirty ferroelectric"'
to the stage where even an average translational
invariance is lost.

A detailed local field theory has been set out for
a displacive prototype unit and shows that a dielec-
tric instability will occur, if at all, from a can-
cellation of the short-range forces which "stabi-
lize" (in the metastable glassy sense) the frozen-
in antipolar configuration and the long-range elec-
tric dipole forces which prefer a configuration with
a macroscopic dipole moment. An enormous sim-
plification of theory results from the fact that the
temperature-dependent "destabilizing" part of the
local field is dominated in the effective field ap-
proximation by the long-range dipolar contribution
for which "glass" averages can be carried out ex-
plicitly even in complete ignorance of the detailed
structure of the glass on a microscopic scale.
The theory suggests that ferroelectric crystals
with a strongly uniaxial prototype unit will prob-

ably not be ferroelectric in the glassy form be-
cause the dipolar effective field is drastically re-
duced for this case by the orientational averaging.
Strongly pyroelectric crystals may therefore be
better candidates for glassy ferroelectrics in this
category.

For ferroelectric crystals with a highly symme-
tric prototypic unit (e.g. , the BO, octahedral unit
in many ABO, ferroelectri cs) the "isolated unit"
susceptibility is quasi-isotropic so that the effec-
tive field at one unit due to an induced polarization
in a second unit is little affected by the relative
orientation of the two. In this case the long-range
dipolar properties are accordingly less affected
by the configurational averaging procedure and the
chances of finding a ferroelectric crystal of this
type which remains ferroelectric in the glassy
form seems higher. Nevertheless even here the
dielectric changes wrought by forming the glass
may still be very large, reflecting the change of
"lattice symmetry" (i.e., Lorentz parameter), the
effects of averaged local distortions from the pro-
totype, and the change in the nature of the dynam-
ics. Finally we note that in view of the ubiquitous
presence of the frozen-in dipoles, these dielec-
trically soft glasses, whether ferroelectric or not,
will show a strong dielectric anomaly at the crys-
tallization temperature due to the decreasingly
"frozen" character of the local dipoles as the crys-
tallization instability is approached from below.
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