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A derivation is presented of the phonon-phonon scattering relaxation time for metals that takes explicit

account of the Peierls condition, which states that normal phonon-phonon scattering cannot by itself

equilibrate the phonon system. The expression for the phonon-phonon scattering relaxation time depends, in a
complicated way, on the phonon-electron scattering relaxation time because of the coupling between phonon-

electron scattering and phonon-phonon scattering that results from the Peierls condition. Analysis of the

resulting expression shows that at low temperatures, the effect of the Peierls condition is to decrease phonon-

phonon scattering very dramatically. The expression for the phonon-phonon scattering relaxation time is

evaluated numerically for potassium as a function of temperature at a characteristic point in the Brillouin

zone. It is found that at 1 K, the Peierls condition reduces phonon-phonon scattering for potassium by nearly

an order of magnitude. A discussion is presented of the implication of these results for the phonon-drag
contribution to the low-temperature electrical resistivity of the alkali metals. Comparison is made with other
recent work.

I. INTRODUCTION

The phonon scattering relaxation time in solids
has long been a subject of interest. " For pure
insulators, phonon-impurity scattering is neg-
ligible and phonon-electron scattering is absent.
Thus, the phonon system reaches thermal equilib-
rium by means of phonon-phonon scattering. By
contrast, the phonons in pure metals are scattered
both by other phonons and by electrons. The pres-
ence in metals of both phonon-phonon scattering
and phonon-electron scattering leads to interesting
results associated with the interplay between these
two scattering mechanisms.

The calculation of the phonon scattering relaxa-
tion time for transport properties is complicated
by the Peierls condition, ' which states that normal
phonon-phonon scattering cannot by itself
equilibrate the phonon system. This does not
imply that normal phonon-phonon scattering does
not occur. In fact, at low temperatures, normal
phonon-phonon scattering is much stronger than
umklapp phonon-phonon scattering and therefore
cannot simply be ignored. However, the correct
calculation of the phonon-phonon scattering relaxa-
tion time must reduce to an infinite relaxation
time in the absence of phonon scattering processes
other than normal phonon-phonon scattering.

The Peierls condition on phonon-phonon scat-
tering was first included in the calculation of a
transport coefficient by Callaway, ' who calculated
the thermal conductivity of insulators. He in-
corporated the Peierls condition by means of the
formulation given by Klemens. ' According to
Klemens, ' the effect of normal phonon-phonon
scattering is to relax each phonon state to a dis-

tribution function that is in thermal equilibrium
except that the phonons are drifting with a given
drift velocity. We here generalize the calculation
of Callaway' to the case of metals, for which
phonon-electron scattering is also present. It
will be seen that the drift velocity depends strongly
on the phonon-electron scattering time. We obtain
an explicit expression for the phonon-phonon scat-
tering relaxation time that takes full account of
the Peierls condition and includes the important
coupling to phonon-electron scattering. Evaluating
the expression demonstrates that at low tempera-
tures, the effect of including the Peierls condition
is quite dramatic. Indeed, failure to take proper
account of the Peierls condition leads to a serious
overestimate of the importance of phonon-phonon
scattering at low temperatures.

In Sec. II, the phonon-phonon scattering relaxa-
tion time is derived in terms of the drift velocity.
In Sec. III, the drift velocity is calculated, dis-
playing explicitly its dependence on the phonon-
electron scattering relaxation time. The resulting
expression for the phonon-phonon scattering relax-
ation time is analyzed qualitatively. Numerical
results for the phonon-phonon scattering relaxa-
tion time for potassium are presented in Sec. IV.
In Sec. V, the implications of these results are
discussed for the phonon-drag contribution to the
low-temperature electrical resistivity of the
alkali metals. The summary follows in Sec. VI .

II. PHONON-PHONON SCATTERING RELAXATION TIME

The phenomenon of phonon-phonon scattering is
generally analyzed within the relaxation-time
approximation because of the practical impossi-
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bility of solving the full phonon Boltzmann equa-
tion. Within this framework, the temperature-
dependent, phonon-phonon scattering relaxation
time 7,„,„(qX) is defined by

sn(qx) n( qX) —n'( qX)

yh-yh scatt yh-yh( q

where n(qA) and nc(qX) are, respectively, the per-
turbed and thermal equilibrium phonon distribu-
tion functions for the phonon state of wave vector
q and polarization A..

Our goal' is to calculate r,n,h(qX). It is nec-
essary to treat separately the effects of normal
phonon-phonon scattering and umklapp phonon-
phonon scattering. The heart of the problem is
the treatment of normal phonon-phonon scattering,
for which one must insure that the Peierls condi-
tion is satisfied. Following Callaway, the Peierls
condition is incorporated into the analysis by re-
quiring that in the presence of normal phonon-
phonon scattering only, each phonon state will
relax to a distribution function that is in equilib-
rium except for the fact that the phonons are
drifting with a given velocity. Klemens' has
pointed out that one may express this by writing

(
sn(qX) " n(qX) —n'( qX; v)

St yn-yn scat t 'rar(4&)

where

(2.2)

n'(qA. ; v) =(exp([tfu&„(q) —v q] /ksT[ —1) ' .

(2.3)
Here, v represents the drift velocity measured
in units of S. Although we have not explicitly in-
cluded qX indices for v, the drift velocity in fact
depends on both q and A. However, the exact cal-
culation of the qA. dependence of v for each phonon
state requires an exact solution of the phonon
Boltzmann equation, which we are determined to
avoid. Therefore, some approximation must be
made. This important point will be discussed in
detail in the next section.

In a linear transport theory, the drift velocity
is proportional to the magnitude of the external
field acting on the phonons, be it a thermal gradi-
ent or an electric field. Therefore, we may ex-
pand the right-hand side of (2.3} and retain only the
term linear in v

n'(qX; v) =n'(qX)+ (q v)

x [n0(qk}][nc(qX}+1]/khT . (2.4)

Equations (2.2)-(2.4) constitute the description of
normal phonon-phonon scattering.

U'mklapp phonon-phonon scattering is handled
in the standard way, within the relaxation-time
approximation

Sn(qX) ~ n(qA) —n'(qX)

yh-yh scatt U(q
(2.5)

The relaxation times r„(qX) and v'~(qX} can, in
principle, be calculated for each phonon state
(each qX) as a function of temperature. We again
emphasize that one may not obtain v,nt, h(qX) by
merely adding 7„'(qX) and rv'(qX) because such
a simple addition would lead to the unphysical
result that normal phonon-phonon scattering alone
can equilibrate the phonon system.

The task before us is to determine ~,h. ,n(qX) as
a function of r„(qX) and vv(qX). In order to cal-
culate r,n, n(qX), we turn to the phonon Boltzmann
equation. Let us consider the specific conditions
appropriate to the electrical resistivity, i.e.,
there is an electric field present but no thermal
gradient. The electric field will cause both the
electron distribution function f(K) and the phonon
distribution function n(qX) to deviate from their
thermal equilibrium values f'(K) and nc(qh. ), re-
spectively,

f(K) =f'(K) —4. (K)

0

n( qX) = n'( qX) —y,„(qX)
00k (q

(2.6)

where E(K) is the energy of the electron in state
K and td, (q) is the angular frequency of the qX
phonon. The electron and phonon functions,
P„(K) and y»(q)), represent the deviations from
thermal equilibrium that are caused by the electric
field. The functions p„(K) and P,n(qX) are deter
mined from the coupled electron and phonon
Boltzmann equations. For the conditions under
consideration, electric field present but no
thermal gradient, the relaxation-time-approxi-
mation phonon Boltzm ann equation becomes

(2.7}dKdK~ jf g K~+fhq~ (f y +h y q~ +
'" =0 ~

yh-yh scatt

The second term in (2.7) is the total contribution due to phonon-phonon scattering and is given either by
(2.1) or by the sum of (2.2) and (2.5). The first term of (2.7) is the contribution due to phonon-electron
scattering. We are considering a pure metal for which phonon-impurity scattering is unimportant. The
quantity Pyn „(K„qk;K,) is the probability that the qX-phonon will cause an electron to be scattered from
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the initial electron state K, to the final electron state K, . The explicit expression for Pyh-el(Ktd q~' Kd}

for the case of a spherical Fermi surface is well known. "
Equation (2.7} can be simplified by introducing the phonon-electron scattering relaxation time. The

first term of (2.7), which represents the total change in n(qX) due to phonon-electron scattering, can be

written as the sum of two terms.

(t(ll) ff d'K, d K, P „(K,t(k;K)
yh-el scatt

+ d Kid K2 f, 4' ~y yh-eg yyq~i (2.8)

In the first term of the right-hand side of (2.8},
the electron system is in equilibrium [ p„(K)=0]
and the phonon system is not in equilibrium

[Qyh(qk) OO], whereas in the second term, the
phonon system is in equilibrium and the electron
system is not in equilibrium. To define a phonon-
electron scattering relaxation time, one imagines
the case where the electron system is in equilib-
rium. This leads to the following equation for
the phonon- electron scattering relaxation time
r,h l(|IX):

S&(qy} yh-el scatt

et 0 h(qX) 4 0; e i(K) =0

n( qX) —nc(qX)

V,h .,(qX}

= —e, (ex) Jf d'K ' dK(kP„ z;K ) t).

(2.9)

where the integral, and hence v, h „(qX), is in-
dependent of temperature. Combining (2.12) and

(2.11) with (2.7) leads to

c
y,h( qx) nc( qx) [nc( qx}+ 1]

stt(qx)
( = 0, (2.13)

where we have introduced the notation

(9)=sff d'K, d'K [e„(K ) —e„(K))

where the "normalized" probability C,h „(K„qk;K,)
is essentially the phonon-electron scattering
probability per phonon. Inserting (2.11}into (2.10}
yields

)
--ff d'K, d'K, C„.,(K„t(X;K,),

~&h-eiR q~

(2.12)

By means of the second equation of (2.6), one ob-
tains

x C h „(Kt,qX;K) . (2.14)

1 k~T
T h (liP) nc(qA}[nc(qX)+ 1]

d Ki d K2 P h,i, qX;

(2.10)

We now show that r,h „(qX) is independent of
temperature by examining the temperature depen-
dence of the integral in (2.10). The energy integra-
tion of the 5 function in energy contained in
P,h „(K„qX;K,) introduces a factor [n'(qA)+ 1]/
ksT. Moreover, P» „(K„qh.; K,}contains' an ex-
plicit factor of n'(qX). These factors exactly
cancel the coefficient multiplying the integral in
(2.10}. To emphasize this point, it is convenient
to introduce a "normalized" phonon-electron scat-
tering probability

C,h „(K„qk;Ka}=P,h „(K„qA;K,)k~T/

x [nc( qX)) [nc( q).)+ 1],
(2.11)

It is clear that D(qX) is independent of tempera-
ture by the same analysis that led to the conclusion
that ~,h „(qX) is independent of temperature.

Having cast the phonon Boltzmann equation into
the convenient form (2.13), we proceed to the cal-
culation of 7',h, h(qX). Inserting (2.1) into (2.13)
and combining with the second equation of (2.6)
yields the expression for the phonon function

y»(qy)=D(qp)/[7-, ,'„(qx)+r,-„'»(qx)] . (2.15)

Equivalently, we may insert (2.2) and (2.5) into
(2.13) to obtain an alternative expression for the
phonon function

y h(qx) = v (qx„)D(alt)+ (v q)v„(ql)r t(qx„),

(2.16)
where we have introduced the "combined" phonon
scattering relaxation time

v,,' (qX) =~„'(qX)+ r~'(qX)+ r,h' „(qX) . (2.17)

Equating these two equivalent expressions for
p,h(qX), (2.15) and (2.16), yields the desired result
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~,,' „(q»= v,-.' (q»[1+ (v q)v„-'(q))D '(q»]-' tering is expressed' as follows:

—v, „' „(q» . (2.18) (3.2)

Equation (2.18}does not complete the calculation
of r„,„(q» because there remains to determine
the drift velocity v by application of the Peierls
condition. This is the subject of Sec. III.

III. DRIFT VELOCITY

Even without a detailed calculation of the drift
velocity, one may already draw important con-
clusions from Eq. (2.18). First, consider the
assumption of zero drift velocity. Such an assump-
tion corresponds to ignoring entirely the Peierls
condition. This can be seen from the fact that
if one assumes (incorrectly) that normal phonon-
phonon scattering could equilibrate the phonon sys-
tem, then Eq. (2.2) should describe the relaxation
of the phonon system to true thermal equilibrium.
In other words, in Eq. (2.2) we should replace
n'(qX; v) by n'(qX), which is equivalent to setting
v= 0. Assuming that v= 0 and combining (2.18)
and (2.17) yield immediately that ~,„,„(q) is just
the sum of r„'(q» and 7'„'(q».

To examine the effect of taking into account the
fact that the drift velocity is actually not zero, it
is convenient to rewrite Eq. (2.18) into the form

r,h', „(q» = 7~'( qX)+ 7'„'(q»

(v'q}D '(q»r. ' (q»
1+ v qD' qA. 7'„' qA.

Since v ~ q will be shown to be positive, one sees
immediately from (3.1) that the effect of a nonzero
drift velocity is to reduce 7'&,„(q» by multiplying
r„'(q» by a factor smaller than unity. This is
exactly what is expected on physical grounds. The
Peierls condition reduces the effectiveness of
normal phonon-phonon scattering as a mechanism
for equilibrating the phonons, thus leading to an
over-all reduction in r,„',h(qA). However, the mag-
nitude of the reduction in v,h,h(q» is very diffi-
cult to estimate from (3.1). When scattering
mechanisms are present other than normal phonon-
phonon scattering (in the present case, these
include umklapp phonon-phonon scattering and
phonon-electron scattering), then r, h „(q»
depends on v„(q» and on r~(q» in a quite com-
plicated way. It is this dependence that we now
calculate.

The drift velocity is determined by explicit
application of the Peierls condition. The require-
ment that there be no net change in the total crys-
tal momentum due to normal phonon-phonon scat-

where the integral is taken over the entire Bril-
louin zone. The dependence of [ Sn(q»/
sf],"h,„„,«on v is given by Eqs. (2.2)-(2.4).

Strictly speaking, the drift velocity depends
on q and X. But, since v is to be determined from
the single condition (3.2), one must in some way
average over this qX dependence. In other words,
one is to view v as a weighted average over q and
X of the true qX-dependent drift velocity v(q».
However, it is important how the averaging pro-
cess is carried out. For example, one may cer-
tainly not just treat v(q» as a constant in evalu-
ating (3.2).

The optimal procedure for performing the
averaging of v(q» can be seen by studying the
simpler case of the lattice thermal conductivity
of insulators. Callaway4 has shown that q. v must
be proportional to the driving field, in that case,
the thermal gradient. In the present case, in the
absence of a thermal gradient, the phonon system
is driven from thermal equilibrium by an effective
field. The phonon function P,„(qX) must of course
be proportional to this effective driving field, since
it is the effective driving field that causes the
phonon system to deviate from thermal equilib-
rium. Examination of Eq. (2.15) for p,h(q»
leads one to identify D(q» with the effective field
that drives the phonon system from thermal
equilibrium. Thus, according to Eq. (2.16), we
must have

q v(q» ~D(q» . (3.3)

q v(q»=aD(q», (3.4)

where our approximation consists of assuming

The result is not unexpected if one recalls that
D(q» depends linearly on p„(K) from Eq. (2.14}
and notes that p„(K) is proportional to the applied
electric field. Thus, (3.3} implies that v(q» is
proportional to the electric field. This is required
on physical grounds because it is the electric field
that drives the electron system from thermal
equilibrium and the nonequilibrium electron sys-
tem in turn drives the phonon system from thermal
equilibrium via the electron-phonon interaction.

Having established the proportionality between
q v(q» and D(q», we return to the problem of
averaging v(q». The simplest approximation is
to assume a qX-independent constant of propor-
tionality in (3.3}. Thus, we write
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that the true function n(qX) depends sufficiently
weakly on qX that it may be replaced by a constant.
The constant n is to be determined from the
Peierls condition, as given by (3.2).

To evaluate (3.2}, and thus determine o., we
rewrite the expression for normal phonon-phonon
scattering, given by Eq. (2.2), by means of Eqs.
(2.4), (2.6), (2.17), and (3.4). A short calculation
yields

(
sn(q][) " D(q][)n'(qX)[n'(q][. )+ I]

p])-))]) scat t corn( «q~) B

x f 1+ o[ ru'(qX) +r,„' „(q][.)]j.
(3.5)

Multiplying (3.2) by the applied electric field F
and inserting (3.5) leads to the explicit expres-
sion for Q.

A' S(C')')&(l&) '(il&)[ '(9)+(] „(ql) „'(ia)[ '(qa) ~ „'„(qZ)])

x J q q ~ F D qXpP qA. pP qX+1 7' q&7& q& (3.6)

(A) = (Ef d'qA(ix)R(il))

X d qR qA. (3.8)

In terms of such averages, one sees from (3.6}
that

n '=(7~'}+(r,„' „) . (3.9)

Inserting (3.4) and (3.9) into (3.1) yields, after a
short calculation,

ri~~ n(q]].) = W'(q]].) + r„'(q][)

(3.10)
Equation (3.10) is particularly useful for gen-

eral discussion. We first note that the factor in
the large parentheses multiplying r„'(qX) results

Note that n is independent of the magnitude of F.
From the fact that D(q]].) ~ F, it follows that for
metals having cubic symmetry, n is also in-
dependent of the direction of F.

Equations (2.18), (3.4), and (3.6) provide an ex-
plicit expression for r,„,„(q]])as a function of tem-
perature and hence constitute the central result of
this paper. Before turning to the numerical cal-
culation of r,~,~( q]].) for a particular metal, it is
instructive to examine the general expression in
some detail. To this end, it is convenient to de-
fine certain weighted averages. We introduce the
weight factor R(qX), given by

R( qX) —= (q F)D(q][)no(qX)

x [no(q][)+ I]&„(q]))&„'(q]]), (3 &)

and denote normalized weighted averages over q
and X as follows:

from the Peierls condition. This factor makes
clear the strong interplay between the various
scattering processes. Both phonon- electron scat-
tering and umklapp phonon-phonon scattering are
seen to play an important role in determining by
how much the contribution of normal phonon-
phonon scattering is reduced by the Peierls con-
dition. Also, it is immediately clear from (3.10)
that if only normal phonon-phonon scattering is
present, then r,'„~(q][) vanishes.

One should note the particular importance of the
q][ dependence of 7,~„(qX) and r~'(qX). If these
phonon scattering processes were independent of
qX, then r,], „(qX)= (r,~„}and 7~ (qX) = (r~'} Thus, .
the second term of (3.10) would vanish identically,
regardless of the relative strengths of the differ-
ent phonon scattering processes. It is the qX de-
pendence of the various phonon scattering process-
es that leads to the complex interdependence of
r„'(qX), r~ (q][), and 7,'„„(qX) in determining
r, ', „(q]].).

There is an important special circumstance which
merits discussion. Consider the case for which nor-
mal phonon-phonon scattering is much stronger
than the other phonon scattering processes. For
this case, the second term in the large parenthe-
ses of (3.10) is nearly unity, and therefore, the
contribution of 7„'(q][) to r",~,„(qX) is greatly re-
duced. This is precisely what happens for metals
at low temperatures. For certain ranges of q and
for a specific polarization, r,~ „(qX) can be very
small. Moreover, 7~ (qX) decays exponentially' '
with temperature at low temperatures, leaving
r„'(qX) as the dominant of the three scattering
processes. However, because of the Peierls con-
dition, the resulting 7,~,~(qX) is much smaller
than r„'(qX). Under these circumstances, the ef-
fect of the Peierls condition is particularly dra-
matic.
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1V. NUMERICAL CALCULATIONS

In Sec. III, a d tailed qualitative discussion was

given of the effect of the Peierls condition on the

values of r,~,„(qX). We now complete the analysis

by presenting the results of a quantitative calcu-
lation of T,'„,h(qX) for a particular metal. For our
illustrative metal we choose potassium, both for
its intrinsic interest as the characteristic alkali
metal, as well as for the more prosaic reason
that the required input data for the calculation are
available for potassium.

Values for 7,~ „(qA) as a function of temperature
are obtained from Eqs. (2.18), (3.4), and (3.6). As
input data, one requires the values' of r„'(qX) and

rv'(qA). Also, one needs to know the electron
function P„(K) in order to calculate D(qX), as
given by Eq. (2.14). First, consider the function

P„(K). For the low-temperature regime, say up
to about 5 K for potassium, impurity scattering is
the dominant scattering process for the electrons
even for the purest available samples of potassium.
This implies' that p„(K)= K F, where P is a unit

vector in the direction of the applied electric field.
This form for Q„(K) is exact for low temperatures.
However, explicit calculations for the alkali met-
als' " show that using this form for P„(K) for
higher temperatures introduces an error of only
a few percent which decreases rapidly with in-
creasing temperature. Therefore, for our illus-
trative purposes, it is certainly adequate to use
P„(K}= K F for all temperatures.

The other required input data are the values for
r„'(qX) and ra'(qX). Albers, Bohlin, Roy, and
Wilkinss (ABRW} have recently carried out a first-
principle calculation of r„'(qX) and 7~'(qX) for po-
tassium as a, function of q and X for several differ-
ent temperatures. Unfortunately, the accuracy of
the ABRW values of r„'(qh) and Ta'(qX) is limited.
ABRW' have called attention to the difficulties in-
herent in a first-principle calculation and they
conclude that their values of 7'„'(qA.) and rv'(qX)
should be viewed as a first estimate only. This
limited accuracy presents no problem for our pur-
poses, since we are primarily interested in illus-
trating the effect of the Peierls condition, rather
than in obtaining definitive values for T,„,„(qX).
Thus, we may view the ABRW values for r„'(qX)
and ~a'(qX) as exact for a hypothetical metal and
we shall calculate the corresponding values of
Tyh-yh(q~)

ABRW' present results for r„'(qX) and rU'(qX) in
detail (for all three polarizations over a range of
temperatures) only for the

I 110] direction, where-
as, according to Eq. (3.6), the calculation of the
drift velocity requires values for all directions of
q. We overcome this difficulty by relying on the

Polarization
p. )

f -1
7& T ph-ph

(10~ rad/sec)

«f
ph-ph

&~'+ & v'

Longitudinal

Higher trans-
verse (T~)

Lower trans-
verse (T2)

9 0.8
30 2

1 0.06
9 0.1

30 4

0.04
9 1

30 12

7
26

2
4

22

0.4
9

64

0.1
2

16

0.09
3

30

0,4
0.5
0.05
0.5
0.6

0,2
0,3
0,4

finding of ABRW' that there is only a weak depen-
dence of ~„'(qX) and r~'(qX) on the direction of q.
This suggests that one may neglect this weak de-
pendence altogether. We have tested this approxi-
mation by expl. icit calculation and find that a fac-
tor-of-2 variation in r„'(qA) and r~'(gX) with direc-
tion of q only changes the values of r,~,„(qX) by a
few percent. This result is not unexpected in view
of the fact that, according to (3.6), the angular in-
tegrations over q of W'(qX) and rv'(qX) appear in
both numerator and denominator and therefore
tend to cancel. Alternatively, one may approach
the matter by reverting to our hypothetical metal,
which is now imagined to have angular-independent
values of r„'(qh) and 7'~'(qX).

To summarize, we take the values of r„'(qX) and
ra'(qX) directly from ABRW. ' We note that the
data, are presented in terms of half widths I'„(q),
which are defined by 2I'„(q) = r '(qA. ). Moreover,
the quantity I'„"(q) of ABRW is defined as sum of
I'„"(q) and 1"~aQq. The values are assumed inde-
pendent of the direction of q and the values for in-
termediate ~q ~

are obtained by quadratic interpo-
lation. This approximation is certainly consistent
with the accuracy of the calculated values of
r„-'(qX) and Ta'(qX).

In Table I, we present our calculated values of
v.,'„,„(qX) for all three polarizations X for a speci-
fic value of q for three temperatures (1, 9, and
30 K) for which values for 7N (qX) and rv'(qX) are
given. We choose q=0. 2(2v/a}(1, 1,0) as a char-
acteristic point in the Brillouin zone. We have
verified that other choices of q lead to quite simi-
lar results. The values for T"„'(qX) and ~U'(qX) are
taken from Table III of Ref. 8.

The last column of our Table I relates the cal-
culated values of ~,~h.,h(qX), which include the

TABLE I. Temperature dependence of the normal, um-

klapp, and phonon-phonon scattering relaxation times for
potassium for the point q=0.2(2x/a) (1, 1,0). The last col-
umn gives the ratio of the phonon-phonon scattering re-
laxation time that includes the Peierls condition to that
obtained upon ignoring the Peierls condition.
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V. LOVE-TEMPERATURE ELECTRICAL RESISTIVITY

The role played by r,~,„(qX} in the calculation of
the electrical resistivity of the alkali metals was
discussed by Bailyn" many years ago. The cen-
tral result of Bailyn is an exact expression for the
phonon-drag contribution to the electrical resis-
tivity p(T). We may write

p(T) = p...&)(T) —p, (T), (5.1)

where p „«(T) is the resistivity for the case
where the phonon system is in thermal equilibrium
and p (T) gives the reduction in the resistivity due
to phonon drag. Recast into our notation, the
Bailyn expression" for p, (T) is

d (T) = A Q ff f d'K, d qq, d q [d, (qX) ]

&& [P.,(K,) —$„(K,)]P„»(K„qX;K,}, (5.2)

where A is a known constant. The term p (T) de-
pends on phonon scattering through its dependence
on the phonon function Q»(qX), which in turn de-
pends on 7",'„»(qA), as given by Eq. (2.15) which
we repeat here for convenience

(j)»(q%) = D(qz)/[r, ~., (q)(.) + r-,~»(qX) ] . (2.15)

Recall that 7",~„(qX) is independent of tempera-
ture, whereas 7,~h.»(qX) is strongly temperature
dependent. At very low temperatures, 7",h»(qX)
«7,~„(qX), implying that (t)»(qX), and hence
p~(T), is large and independent of phonon-phonon
scattering. This may be called the "drag limit. "
At high temperatures, phonon-phonon scattering
is so strong that r,~~ h(qX) -~, implying that
(j) h(qX) -0. In this limit, according to (5.2),
p~(T) becomes negligible and one obtains the
usual high-temperature result that p(T} does not

Peierls condition, with the values which would be
obtained if one were to ignore the Peierls condi-
tion. Recall that without the restriction of the
Peierls condition, r,~»(qX) would be given by just
the sum of r» (qA) and rU'(qX). Thus, the last col-
umn of the table gives a quantitative measure of
the effect of the Peierls condition expressed as
the ratio of the true 7,~»(qX) to that obtained by
ignoring the Peierls condition. One sees that the
effect of the Peierls condition is quite dramatic
at very low temperatures, leading to nearly an
order-of-magnitude decrease in Y,d~»(qk) at 1 K.
Therefore, we may conclude that it is imperative
to include the Peierls condition in the calculation
of r~b. »(q)(.}. Failure to do so at low temperatures
will lead to values for r,'„»(qX) that are very much
larger than the true values.

contain any contribution due to phonon drag.
The important question is: Below what temper-

ature does one enter the drag limit in which one
may ignore phonon-phonon scattering in the cal-
culation of p(T)? ABRW recently addressed them-
selves ' to this question, basing their answer on
their calculated values of r,~,„(qX). However,
ABRW calculated r,~,„(qX) without including the
Peierls condition and thus obtained unphysically
large values for r,~»(qX). Therefore, one cannot
accept the ABRW conclusion'" that, for potas-
sium "the drag limit may not be reached until
temperatures at least as low as 1 K."

One may estimate roughly the temperature
marking the onset of the drag limit from the fol-
lowing considerations. It has been shown" that
the phonons which dominate the low- temperature
resistivity lie on the lower transverse (T,) branch
in the vicinity of the [110]direction. For low q,
the T, phonons that lie exactly in the [110]direc-
tion do not, of course, contribute to p(T) at all
because of the polarization-vector factor, "but
nevertheless, because of their low frequency, the
T, phonons in the vicinity of the [110]direction
dominate p(T). The precise dominant direction is
a function of temperature; the lower the tempera-
ture, the closer the dominant direction is to the
[110]direction. Therefore, it is sufficient for the
low-temperature calculation of p(T) to calculate
7,'„»(qX) for the T, phonon branch for directions
near the [110]direction.

We obtain the values of 7„'(qA) and r»'(qX) for
intermediate temperatures, between 1 and 9 K,
by interpolating the ABRW results, which are
quoted in our Table I. The accuracy of the inter-
polation can be verified at T = 4 K from the curve
given by APRW' in their Fig. 9(c). One may use
the results that refer to the [110]direction, since
r„'(qX) and r~'(qX) depend only weakly' on the
direction of q. This by no means implies that
7,~»(qX) is nearly isotropic. According to Eq.
(3.10), r,'„»(qX) depends on r,t „(qX), which has
a very marked dependence on the direction of q.
It follows, therefore, that r, '„(»qX) also depends
significantly on direction. Thus, we must calcu-
late r,'„»(q%} for directions near, but not parallel
to, the [110]direction. For each temperature,
we calculate 7,~»(qX) for the T, phonons for the
direction that dominates p(T) Carrying out thi.s
calculation leads to the value of about 5 K for the
temperature marking the onset of the drag limit
for potassium. We emphasize that this tempera-
ture is only a rough estimate because of the lim-
ited accuracy of the ABRW values for ~'(qX) and
rJ(qX), to say nothing of the interpolation we have
made between 1 and 9 K.

This resulting temperature of about 5 K, may
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be compared with experiment in the following

way. One calculates p(T) without 7',~,h(jX), call
it po„,(T), and compares with the p„,(T) data.
For very low temperatures, well within the drag
limit, p'„„(T) is in excellent agreement" with

p,„„(T). As the temperature increases, one be
gine to observe deviations between p'„„(T) and

p„„(T),which are well accounted for by inserting
into the calculation an appropriate expression for
r,~,„(jX). Carrying out such an analysis in de-
tail" leads to a temperature of 6 K for the onset
of the drag limit, in close agreement (fortuitously
close, in fact) with the rough estimate of about 5

K given above. Thus, for T&6 K, one may safely
ignore v",~,„(qX) in the calculation of p(T) for
potassium. Above 6 K, one must include phonon-

phonon scattering in the calculated phonon-drag
contribution to the electrical resistivity.

VI. SUMMARY

In this paper, we derive an expression for the
phonon-phonon scattering relaxation time for met-
als that takes explicit account of the Peierls con-
dition, which states that normal phonon-phonon
scattering cannot by itself equilibrate the phonon
system. Analysis of the resulting expression
shows that the Peierls condition reduces the ef-

feet of the normal phonon-phonon scattering relax-
ation time by a factor that depends on certain
weighted averages of the umklapp phonon-phonon
scattering relaxation time and the phonon- electron
scattering relaxation time. At very low tempera-
tures, normal phonon-phonon scattering is very
much reduced, leading to a dramatic reduction in
the phonon-phonon scattering relaxation time. A
quantitative calculation was carried out for potas-
sium. The numerical values obtained for the pho-
non-phonon scattering relaxation time confirm the
results of the qualitative discussion.

The implications of these results are discussed
for the low-temperature electrical resistivity of
the alkali metals. It is shown that the Peierls
condition increases by about a factor of five the
temperature below which one need not include
phonon-phonon scattering in the calculation of the
phonon-drag contribution to the electrical resis-
tivity. In particular, these results justify the ne-
glect of phonon-phonon scattering in resistivity
calculations for potassium below 6 K.
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