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The nonlocal theory of the author for the surface photoeffect produced in metals by p-polarized light is used
to obtain energy and angular electron distributions for a range of low to moderate excitation energies.
Considering only the effects from single-particle excitations, the energy distribution curves have, in general, a
roughly triangular shape with the peak occurring for initial states near the Fermi energy. There is also a high-
energy tail due to damping. Features in the angular distribution curves include confinement to decreasing
angles with increasing light frequency and low-angle structure resulting from damping. Very striking structure
appears in the energy-resolved angular distributions when the light frequency o is such that hew > Ep + P,
where Ep is the Fermi energy and & the work function. A number of significant changes, including a sharp
increase in the total yield, occur in the various distributions when Landau damping sets in, that is, when the
plasmon enters the single-particle-excitation region. Arguments are presented that there is no reason to expect
that the nonlocal surface contributions to the yield should vanish above the plasma frequency.

I. INTRODUCTION

Several photoemission theories based on a non-
local description of the optical absorption have
appeared recently.!™ The need for such a de-
scription arises from the fact that the electric
field in the surface region of a metal subjected
to optical illumination is markedly different from
that given by a local description. Since the escape
length for photoelectrons is short, a proper anal-
ysis of photoemission requires a careful treatment
of the surface-region field. Results available to
this time, both theoretical'™* and experimental,**®
indicate that the nonlocal effects are of major
importance for photoemission resulting from low
or moderate excitation energies.

Nonlocal photoemission theories to this time
have dealt primarily with p-polarized excitation.
The reason for this is that such light has an elec-
tric field component normal to the surface, which
is associated with particularly prominent and
unique nonlocal effects of longitudinal character.
It has been argued?® that these longitudinal effects
are a prime cause of the singular effectiveness
of p-polarized light in producing photoelectrons.

The incorporation of nonlocal effects imparts
a striking spatial dependence to the electric field
near the surface. In the nonlocal theory of the
author,'*? attention was drawn to the consequent
oscillatory character of the spatial distribution
of the absorbed energy. It was shown that these
oscillations result from plasmons and single-
particle excitations; which type of excitation is
dominant depends on the light frequency. In Sec.
II of this paper, we expand on our previous work
by demonstrating the quantitative connection be-
tween the spatial distribution of the absorbed
energy and the elementary excitation spectrum.

This spectrum is then converted to energy and
angular photoelectron distributions using the three-
step photoemission model. However, the escape
length is essentially irrelevant for the surface
process of interest here. Again, attention is
focused on effects associated with the electric
field component normal to the surface. Results
for a wide range of light frequencies are pre-
sented and discussed in Sec. III; included here is
a discussion of the photoemission role of the
plasmon. Conclusions are given in Sec. IV.

II. EXCITATION SPECTRUM AND THE PHOTOELECTRON
DISTRIBUTIONS

The starting point for the present discussion
is given in Ref. 2; essential elements will be re-
viewed here very briefly. We take as a model
for the metallic photoemitter an electron gas
filling the half space 2> 0, with the region z<0
vacuum. The surface of the electron gas is as-
sumed to scatter the internal electrons specularly.
P-polarized light of angular frequency w is in-
cident upon the photoemitter in the x-z plane at
angle 6, measured from the surface normal. With
A, the absorptance of the metal, the distribution
of absorbed energy

% xRe[J (2): E*(2)],

where f(z) is the z-dependent part of the current
resulting from the electric field ﬁ(z) within the
photoemitter. We calculate both Jand E nonlocally
thereby obtaining the nonlocal dA/dz. Although
dA /dz includes two terms, Re[J, (z)E ¥(z)] and
Re[J, (2)E*(2)), we will here concern ourselves
largely with the latter. Indeed, unless otherwise
stated, when we speak below of dA /dz we will
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FIG. 1. Distribution of absorbed energy dA/dz for
©=0.75, y=10"2, and 6, =45°.

be referring to the contribution from the z com-
ponents. In so doing, we are not implying that
the contribution from the x components is of no
consequence. Rather, our interest here is in
effects peculiar to p-polarized light and, thus,
effects associated with the normal component of
the electric field.

Calculations have been made with the electron
gas density that of sodium. This means a Fermi
velocity vp=1.07x10% cm/sec, a Fermi energy
E.=3.26 eV, and a plasma frequency w, such
that Zw, =6.07 eV. We define @ =w/w, and use
as a measure of damping y =(w, 7)”!, where 7
is the mean electron lifetime.

To provide a specific example for the presenta-
tion of the basic theory, we have chosen the con-
ditions © =0.75, y=10"2, and 6, =45°. The spatial
dependence of dA/dz for these conditions is shown

in Fig. 1. (Keep in mind that this dA /dz includes
only the contribution from the z components of

J and E. ) For comparison we give in Table I

the values of dA/dz [there denoted (dA/dz),] at
z2=0and z=24 A, the absorption coefficient a,
and the contribution from the x components (dA/
dz),, all for the case where the calculation is
local. From these numbers and Fig. 1, itis
apparent that the nonlocal value of dA /dz differs
from the local for 230 zoi, and differs markedly
for small z. As discussed in Ref. 2, these oscil-
lations, or standing absorption waves, result
from interference between elementary excitations
moving toward and away from the surface. Since
we are here below the plasma frequency, the
elementary excitations are the single-particle
excitations.

The question we then ask is, what is the spec-
trum of excited electrons which gives rise to
this dA /dz? To answer this question, we must
remember that the nonlocal field can transfer
the large momenta represented by the oscilla-
tions in Fig. 1 only in the direction normal to
the surface, that is, in the +z directions. This
momentum will be represented by the wave vector
in the z direction, designated g. We then define
the Fourier transform A, of dA/dz by

-0

Because dA /dz is rigorously equal to zero at

TABLE 1. Parameters characterizing the distribution of absorbed energy in the local approx-
imation. The total dA/dz is aAe-xz, where « is the absorption coefficient given by Eq. (2.6) and
A is the total local absorptance. Associated with the z component of the electric field, the dis-
tribution of absorbed energy is (dA/dz),=aA.e-oz, and with the x component (dA/dz), =aA,ez,
A, is given by Eq. (3.4) and A ,=4Qw,e*cosb;|e —sin’6;|/ac|e cosb, + (e — sin 29,1202, W1th the
local dielectric function € =€’ +i€”. The total absorptance A=A,+A4,. All values are in (cm)-!.

; ()., @)... @
Q Y (in deg.) o 4z ;g0 Az /g| za24 A 42/ |0
0.75 1072 45 5.22x10° 4.81x10° 4.25x10° 1.23x10%
0.99 1072 45 4.39%x10° 8.36x 10° 7.53x10° 8.70x 10°
0.99 10 45 4.39x10° 8.53x10! 7.67 x10! 8.88x 10!
0.999 10 45 4.36x10° 8.68x 10! 7.82x 10! 8.72x10!
1.20 1072 45 3.26x105 1.22x10% 1.13x10% 4.75x10°
1.50 1072 45 5.80x10° 4.89x10% 4.88x10° 5.45x 102
1.50 10! 75 5.66x10° 3.18x10* 2.78x10% 1.28x10*
1.50 102 75 5.67x10° 3.30x10° 2.88x10° 1.34x103
1.50 103 75 5.67x10°% 3.32x10? 2.90%10? 1.34x10°
1.60 10-! 75 5.59%x10° 3.20x10% 2.80x10* 1.11x10*
1.60 1073 75 5.60x10° 3.33x10? 2.91 x10? 1.16x10°
2.00 1072 45 1.54x10% 1.02x10% 1.02x10° 5.12x10?
2.00 107 75 5.27 %105 3.35x10° 2.95x10° 6.58 % 10?
2.50 1072 60 1.64x10° 1.42x10° 1.42x103 1.71x10°
2.50 102 75 4.69x10° 3.38x10° 3.02x10° 3.37x10?
3.00 102 67 1.68x10° 1.49x10° 1.49x10° 7.31x10!
3.00 1072 75 3.88x10° 3.39x10° 3.09x10% 1.60x10?
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z =0 for the electron gas,? and because of the
field symmetries for our specular scattering
model,? we take

dA| __dA
dz|_., dz|,’
Then

__1__. - _d_A -iq%
A= 57 [.., (dz)e d

i (T [(dA) .
=-;JO- <71? sin(gz)dz

=—iA] (2.2)

andA_,=-A,,A_ ,=-A;. For use below, we
note that the absorptance A = ﬁ,m (dA/dz)dz (re-
member that this is only that part due to the z
components of J and E) is given also by

A=2if itdq=2f Agdg (2.3)
o 4 0 q

From this equation it is clear that the transform
of importance is A, and A, for dA/dz of Fig. 1
is given in Fig. 2 as a function of @ =qgc/w, .

To appreciate the content of Fig. 2, we note
that the single-particle excitation region for fixed
w (calculated with no damping) extends from the
small-g parabola (denoted lo-gq)

Qio-q = — R+ (B} + 2mw /R)V2, (2.4)

with % the magnitude of the Fermi wave vector
and m the electron mass, to the large-g parabola
(denoted hi-q)

Gni-q = kp + (R + 2mw /M)V2. (2.5)

For the conditions of Fig. 2, @,_,=¢,,-,¢/w,=164.8
and @, =4,;-,C/w, ="766.0 as indicated in the
figure. Thus, our previous statement that the
oscillations in dA/dz result from single-particle
oscillations is clearly established and it is the
region of g space near the low-g edge which con-
tributes most significantly to the oscillations, a
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FIG. 2. Fourier transform A/, of dA/dz for 2=0.75,
v=10-2%, and 0y =45°. The dimensionless wave vector
Q =gc/w,, with c the speed of light and ¢ the wave
vector in the z direction.
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point noted and discussed previously.?

In Fig. 2, A, reaches a minimum somewhat
below the low-g edge, and then increases, as
q decreases further, to a maximum near g=0
(at g=0,A,=0). Our calculation of dA/dz included
a finite electron lifetime and, thus, a local or
Drude absorption contribution. This is apparent
from Fig. 1 and Table I where we see that the
oscillations for z2 10 A occur about the local
value of dA/dz, which is proportional to e~ %,
where the classical absorption coefficient « is
given by

a =(2w/c)Im[ €(w) - sin%g, ]2 (2.6)
and €(w), the local dielectric function, by
€e=1-[Q@Q+iy)]". (2.7)

That this local part of dA/dz includes contribu-
tions from large g values, even though usually
thought of as a ¢~ 0 effect, can be shown as fol-
lows. The nonlocal surface impedance for the
electron gas model employed here is®

z, - 2w (Tdg
PTme ) 9%

< sin®6, N q? )
€ (qr,w)  (W¥/c*)€, (qp, w)-q%)’
(2.8)

where €; and €, are the nonlocal longitudinal and
transverse dielectric functions and g, =(g2+¢q2)"?
with ¢, =w siné,/c. The total absorptance for the
system goes roughly like Re(Z,). In the local ap-
proximation, this expression for Z, is modified by
making the following replacements:
€ (qp, w)~ lim € (g, w)=€(w)
ar—0

and

€ (gr,w)—= lim € (g7, w)=€(w).

ap—0
Thus
- _ 2iw f" dq (sin’g, q*
pllocal = 0 A q12. e(w) * (w2/02)€(w)—QT2‘>‘

Since ¢, =(w/c)sinf, is small, we see that in the
local case the absorptance includes large-g con-
tributions going like 1/¢2. It is this local con-
tribution which causes A} in Fig. 2 to bend up
again below the low-q edge of the single-particle
region. It should be noted that the local contribu-
tion to A; does not drop off as rapidly as 1/q2.
The argument just given indicates that the local
contribution to the absorptance goes as 1/¢2.
From Eq. (2.3), this means that A, should drop
off as 1/q and this is indeed the case for g below
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the low-¢g single-particle edge and not too near
zero, thatis, ¢,<g<gq_,.

The ¢q;2 factor appearing outside the large pa-
rentheses in Eq. (2.8), resulting from the Fourier
transform of the Coulomb interaction, has an
additional effect. It clearly favors excitations
of smaller g and is to a large extend responsible
for the fact that A} in Fig. 2 is large only near
the low-g edge of the single-particle region.

In addition to generating local effects in the
absorptance and thus in A}, the inclusion of a
finite electron lifetime spreads the edges of the
single-particle-excitation region. This is in-
dicated in Fig. 2 by the fact that A; has a sub-
stantial value at the low-gq edge which was de-
termined above assuming no damping. If there
were no damping, A; would be zero at the edge.
This spread has interesting effects, as we will
see below, and is the principal manifestation of
damping in the realm of single-particle, nonlocal
effects. However, and we emphasize this point,
the basic single-particle, nonlocal character is
affected only to a modest extent by damping. That
is, the oscillations of Fig. 1, although superposed
upon a background which is strongly dependent
upon the damping, are themselves only weakly
dependent.

An additional demonstration that the damped
oscillations of Fig. 1 result from interference
between standing waves with a spread of g values
can be given using standard wave properties.
Since Agaz ~1, we find from Fig. 2 that AQ ~200,
S0 Ag~6x10" cm™, and thus Az ~2 A, Recog-
nizing that we are here dealing with A values de-
termined at points which are roughly half max-
imum, this result is indeed consistent with Fig. 1.

Our task now is to convert the distribution rep-
resented by Fig. 2 into a photoyield, to which
only electrons moving toward the surface con-
tribute. The usual procedure is to introduce an
escape length £ for the electrons at this point.

Let us do so also and then comment immediately
below on the significance of £&. The internal photo-
yield Y, that is, the yield of electrons reaching
the surface, is

)

Y’ = f dze"“Re(ﬂ
(]

dz
® Aq
= —_
Jc; dq E24q? " (2.9)

As £~=, Y’ is just half the absorptance [see
Eq. (2.3)], as expected, since only half of the
absorbed energy is associated with electrons
moving toward the surface.

If we think of the wave vector ¢ in Eq. (2.9) as
complex due to finite lifetime effects, g=g¢, +iq,,

the role of £ is just that of g,. In an analysis where
the uncertainty in momentum transfer associated
with the finite lifetime is properly included, the
physical effects represented by the introduction

of ¢ would appear automatically. For the non-
locally excited electrons, £ is essentially ir-
relevant. The g values for these electrons are
such that g§>1 for £= 2 A so for all but the small-
est escape lengths, £ can be taken to be infinite

in Eq. (2.9), thatis, Y’ is independent of £. This
indicates that the nonlocal yield is a genuine sur-
face effect and is so because the nonlocally ex-
cited electrons are concentrated near the sur-
face.

To avoid a plethora of negative signs in the next
series of arguments, we reverse 2 so +2z is to-
ward the surface. Electrons moving toward the
surface are then associated with positive values
of the wave vector in the z direction. We also
consider henceforth only nonlocal contributions
to the yield.

For simplicity, we take the damping to be zero
for the moment. In Fig. 3(b) is sketched the ex-
citation spectrum of the electron gas and in Fig.
3(a) the Fermi sphere which represents the ini-
tial states of the excited electrons. For a fixed
excitation frequency w (denoted w’ in Fig, 3 and
such that Zw> E for reasons which will be clear
below) the low-g edge of the single particle region,
point P, in Fig. 3(b), corresponds to point P, on
the Fermi sphere in Fig. 3(a). Similarly, the
large-q edge of the single-particle region, point
P, in Fig. 3(b), corresponds to the point P, on the

(a)

VACUUM
SURFACE
METAL

/" SINGLE-
/" PARTICLE
REGION

2k, p

FIG. 3. (a) Initial states for the electron gas with the
notation to be used indicated. The wave vector ¢ points
toward the surface. (b) Excitation spectrum w vs g for
the electron gas. Points P, in the two parts of the figure
are equivalent as are points P,.
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Fermi surface. This can be seen from the stan-
dard excitation expression

hw=(72/2m)k: -k32), (2.10)

where k, and k; represent, respectively, a final
state outside the Fermi surface and an initial

state within. With ¢ in the z direction and k, =k,
+4Z,Z a unit vector directed toward the surface,

Aw=(72%/m)k,q+(E%/2m)q?, (2.11)

where k, is the z component of E, . When &,
=kp, 4 =q,y-q Of Eq. (2.4); when k,==Fk;,q=¢,;_,
of Eq. (2.5). As we progress from P, to P, in
Fig. 3(b), we move through the Fermi sphere

in Fig. 3(a). Each slab of initial state electrons
described by a given %, is then associated with
a unique value of ¢ along the line P -P, in Fig.
3(b). This means that the value of A of Fig. 2,
in the single-particle region, describes the ex-
tent of the optical excitation of that slab of elec-
trons with &, given by (2.11) and such that the
excited electrons are moving in the +2z direction.
The contribution of this slab of electrons to the
internal photoyield'Y’ is, from Eq. (2.9),
Agq/(E72+q3).

To find the energy distribution of Y’, we note
that the density of electron states per unit energy
interval in a plane of fixed k,, dn/dE, is a con-
stant which we call K. (K=m/n%? but its value
is unimportant here.) The number of initial-state
electrons in such a plane N, is then

N,=K[Ep-E_,(q)], (2.12)
where
E nld) =2k% /2m. (2.13)

Since all of these electrons will have equal prob-
ability of excitation under the influence of the
z-directed electric field being considered here,

J

[1+G/w)[€(q,w +i/T)=1]

ENERGY AND... 3763

that is, all have the same matrix element, we
can rewrite Y’ as

Uhi-q q Ep dE
Y'= f dqA} 5 f —_—
o -q ¢ g 2+q2 Emin(q) EF-Emin(q)’

(2.14)

where we have written Y’ in terms of initial states.
To find Y’ in terms of final states, we need only
let E~E +hw. The contribution to dY’/dE from

a given value of g is constant for E between £
and Eg, and zero otherwise. The total dY’/dE

is just a sum over a group of such rectangular
contributions.

Inclusion of damping complicates this picture
considerably. As mentioned above, the boundaries
of the single-particle region spread outward since
each of the excited single-particle states has a
finite width. As a result the range of g values
in the g integral of Eq. (2.14) expands. In ad-
dition, since the single-particle region spreads
while the number of electrons is fixed, the energy
denominators in Y’ of (2.14) must also change.

We thus must quantify these effects.

The nonlocal effects we are here considering
are due almost entirely to the longitudinal field
and, hence, characterized by the longitudinal
dielectric function €;. By inserting a finite life-
time 7 into €;, the resulting excitations of fre-
quency w will be characterized by an effective
lifetime 7.4 (w) and these states will have an energy
spread AE such that (AE)T.,~%. In our simple
electron gas model the energy of a state of wave
vector k is of course E =i2k2/2m so AE =kkAk/m.
A spread in energy is coupled to a spread in mo-
mentum. Is this inconsistent with the filled and
sharp Fermi sphere we used as our initial-state
configuration? Interestingly, the answer is no.
The dielectric function which describes the longi-
tudinal response of the system is ’

€,(q,w,‘r)=1 +

with € the original Lindhard function. As w-0,
€,(q,w, 7)~ € (g, 0), which is just the function
obtained if we let 7— = in (2.15) before taking
the w - 0 limit. Thus 7(w)~~ as w-0 and there
is no energy spread. Since we want to refer our
broadened excited-state spectrum back to the
sharp initial states through real values of g and
w, we must modify the initial state description
from that of the simple Fermi sphere. This is,
in fact, what the spread of the single-particle
region in Fig. 2 indicates. We emphasize again
that the apparent distortion of the initial-state
spectrum reflects final-state effects.

1+(/wT)[€) (g, w+i/T)=1]/[€?(q,0)-1] ’ (2.15)

r

To describe this distortion we note that

. 3w? \ [Tk w q\?

1 0_ (—2_|(—E - —— = —— .

jm Ime <42v%><4q>[1 (qu sz>]
(2.16)

Using Egs. (2.11) and (2.13), the factor in the
parentheses is just [Ex - E_, (q)]/Ef, indicating
that this factor for given g is proportional to the
area of the slab of electrons associated with that
z, that is, proportional to the number of electrons
in the slab. This suggests the following procedure
for finding the energy denominators in Eq. (2.14)
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when there is modest damping. Evaluate €] with
damping by letting w -~ w +iw,y. The energy de-

nominator E,  will then be

By =Im[ € (g, w +1w, Y Ep/ (3w} /q v %) (ks /49),
(2.17)

and this does indeed describe the “spread” single-
particle region seen in Fig. 2. Having now a
prescription for finding the total number of elec-
trons in a slab of given k,, we have to describe
how these electrons are distributed in transverse
momentum. This we do simply by saying that
the density of electrons in a slab of given &, is
the same as without damping over the energy
range from E_; to E, +E_ ;. thereby defining

a q—dependent effectwe Fermi energy E’(q)
=E;.(q)+E_;(q). The energy integral in Eq.
(2.14) will then extend from E_;, to E’. This pro-
cedure gives rise to less electron spreading than
actually occurs as we have eliminated the tails
of the spread states. It represents, in some
sense, a one-dimensional damping. What we have
done is move electrons around in the k2, direction
(the only direction in which momentum transfer
occurs) without adding any broadening in the di-
rections perpendicular to 2,. Our Fermi sphere
has become a “Fermi lemon.” The consequences
of our model will be very apparent below and the
conclusions drawn therefrom can be modified

to reflect a better physical description.

Having now a model for the energy distribution,
the remaining question relating to damping is,
what is the appropriate range of integration for
¢q? From Fig. 2, it is clear that there is not a
unique delineation between the local ~1/q¢ tail and
the nonlocal region. Our procedure is to integrate
from the g value ¢q,, corresponding roughly to the
minimum in the Fourier transform A, to q,;_,.
The large-q part of the single-particle region
contributes so little to the yield that the result
is insensitive to the exact value of the upper limit.
Perhaps a preferable procedure would be to sub-
tract a roughly 1/q¢ local contribution from A}
and call the remainder the nonlocal part. How-
ever, a natural question arises: How can a “local”
electron in the single-particle region tell it is
not a “nonlocal” electron? Thus, we feel justified
in our approach. The effect of this procedure
will be apparent below and further comments
relating to damping will be made then.

Our final expression for the yield Y’ including
damping then is

ve [Pt [0 5
£-2+q E hin (@) Eden(q) ’

What is of more interest is the external yield

’

(2.18)

Y. We use the standard specular requirement

that all electrons having energy associated with
the direction normal to the surface sufficient to
overcome the surface barrier, while retaining

the energy parallel to the surface, will escape.
Since for a given ¢, Emin(q) is the energy associated
with the 2 direction, we must have E,; (q) +%w
>Ep+®, with & the work function. From Eqgs.
(2.11) and (2.13), we can write this as

E .=m/2q%)(w -Hq?/2m)
>Ep+® -niw.

So, in terms again of initial states,

0, fw<d;
ia A Alg (W 4
(f f ) *+q° fsmi,,(a) Eien
P<AW<Ep+®;

Y', Fiw>Eg+®; (2.19)

/2 /2
qa}=<%';l(EF+¢)) (—iﬁw e h’w))l .

(2.20)

The energy distributions dY’/dE and dY /dE for
the dA/dz of Fig. 1 are given in Fig. 4. These

105 (dY/dE) (ev')

FIG. 4. Nonlocal energy distributions dY//dE, de-

noted IN, and d Y/dE, denoted OUT, for =0.75,
¥=10"%, 6, =45°, and & =2.30 eV. These calculations
were made using an escape length £=10 & but the re-
sults are insensitive to this value (see text).
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curves have been referred to the initial states

so the peaks occur essentially at the Fermi ener-
gy. The high-energy tail resulting from damping
is clearly evident.

We turn now to the angular distribution. Equa-
tion (2.18) can be converted to an angular dis-
tribution by recalling that the energy integral
is over a plane of electrons of fixed &,. If &,
is the wave vector in this plane [see Fig. 3(a)],
the energy associated with this wave vector is
E% =1i%k% /2m and dE, [ which is just dE in Eq.
(2.18)] is %k dk,/m. The angle 6,, (measured

J
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from the surface normal) at which an excited
electron from this plane is moving within the
photoemitter is

tan6, =k,/(k,+q), (2.21)

with k2, again the wave-vector component of the
initial state. So,

dE , =1i%(k,+q) tan6, sec?6, dé, /m (2.22)

and, since the distribution has azimuthal sym-
metry,

ax
n? J‘“hi-ﬂ Alqg  (k,+q) J‘ﬂ (@ J‘” sinb;,
fm —= e A de; dp——8-, 2.23
Y= omm e da £72+q% Ey,(q) % n ¢ cos?6,, (2.23)
where k, is to be considered a function of g and
tano0™(q) ={ (2m /K *)[ E'(q) - E, (@)} /2/[ R, (9) + q]. (2.24)
To find the angular distribution outside the metal we must modify Eq. (2.21) to
tan6,, =k, /[(k,+q) - (2m/B?)(Ep+@)V2 =k, /[ R2+ (2m /K?)(iw - E - ®))V/2, (2.25)
so
0, 7Zw<®,
out
Y={ n? fq" rm—a Alg  (k,+q)P —2m(Eg+®)/h? ff’max J'” sind,,,
deé dp——=2L P<AWw<E,+3;
2mm < Q * ey >dq €-2+q2 Eden(q) (] out ¢ cosaeout ’ © o
(2.26)
with
2m[E’'(q)-E m(q)]/fiz)"2
»aq) = n 2.217
tanf5ii{a) ((k,+q)2—2m(EF+<I>)/ﬁ2 (2.27

For iw>EL +®, Y is the same as for ®<Aw< Eg
+® except the ¢ integral is from ¢, to ¢,;_,.
Several angular distribution curves for the con-
ditions used in this section are given in Fig. 5.
The curve labeled dY /d6|,, is dY’/d6, obtained
from Eq. (2.23) after integrating over dg¢ and
represents the angular distribution of excited
electrons within the metal; specifically, (dY/
dé6|,,) dé,, is the yield into a ring of polar angle
spread d6 (d6 in degrees). The curve dY/dQ|,
is dY’/dQ,, from Eq. (2.23), the distribution in-
side the metal per unit solid angle with d¢ in
radians and d6; in degrees. These quantities are
related by dY/dé|,_ =2msin8(dY /dQ|,). For small
angles we see the interesting effects of damping.
The primary role of damping is to push a small
bulge of electrons out from the neighborhood of
the point P, in Fig. 3(a), the lemon effect alluded
to earlier. This is just another way of expressing
the spreading of the single-particle region and,
for the last time, we emphasize that this is a
final-state effect which appears here as a Fermi-

r
surface distortion only because we are referring
the final states back to the initial states. The
electrons in the bulge are all moving essentially
normal to the surface and contribute the striking
small-angle structure. The fact that dY/dQ|,,

is essentially constant for 6= 2° is a consequence
of using the minimum in A (Fig. 2) as the lower
limit of the g integration, that is, A} is finite

at the lower limit. If we had treated the damping-
induced transverse spread of the electrons more
carefully, we would expect the small-angle peak
to be reduced somewhat in size and broadened.
Since k,+q can also be written

k,+q=(k%+2mw/R?)Y?, (2.28)

we see from Eq. (2.24) that the maximum internal

angle for an excited electron results from an

initial state on the Fermi surface with k2,=0. Fcr

such an electron, k,=(2mEg/i*Y? and q=(2mw/

7)Y2. Thus the maximum internal angle is

tan "} (E/fw)"? = 40.2° consistent with Fig. 5.
External to the metal, the angular distribution
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FIG. 5. Nonlocal angular distributions for 2=0.75,
y=10"2, and 6, =45°. d¥/d8|;, is the internal distribu-
tion per unit polar angle, dY/dQ|;, the internal distribu-
tion per unit solid angle, and dY/dQl,,, the external dis-
tribution per unit solid angle.

is obtained from Eq. (2.26) and is shown as the
curve labeled dY/dQ|,, in Fig. 5. As a result
of the diffraction at the surface, the low-angle
peak due to the damping has spread out. Since
Hw<Ep+®, the total external yield is well below
the internal and the external angular distribution
extends to 90°.

Another distribution of interest is the energy-
analyzed angular distribution. Think of an energy-
analyzing ring detector with the axis normal to
the surface and having a polar-angle width A 6.
For the internal electrons, the corresponding
distribution can be found from Eq. (2.23) by doing
the ¢ integral and integrating d6 over the desired
range A6 while recognizing that for a given ¢
there is a unique relation between the energy of
an electron and the polar angle describing its
direction of motion. The internal energy dis-
tribution curves for a ring with A6 =1° situated
at various polar angles is shown in Fig. 6, again
referred to initial states. We see here some re-
markable curves. For a given angle, there is
a low-energy cutoff followed by a very sharp peak
and then a tailing off. The fact that damping ef-
fects in our model are concentrated near small
angles is indicated by the fact that the curves
labeled 1 and 7 (corresponding to 6 from 0 to 1°
and 6 to 7°, respectively) extend beyond the Fermi
energy while curves for larger angles drop off
near the Fermi energy. The occurrence of the
peaks can be understood by examining the special
group of electrons which appears at a given angle.
Using Egs. (2.21) and (2.28), the relationship
between 6, and the wave vector components of
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FIG. 6. Energy distribution curves for the internal
yield into a ring of polar-angle width 1° for € =0.75,
v=10"%, and 6, =45°. If the number shown on a curve
is s, the angular range is (s —1) to s°.

the initial state, &, and %, is

tan6, =k,/(k%+2mw/i)Y2. (2.29)

By taking 6,, as fixed, this expression yields a
“trajectory” in the k,-k, plane, and it is the
electrons along this trajectory which contribute
to the yield at 6,. Examples of these hyperbolic
trajectories for the conditions of the present sec-
tion are shown in Fig. 7(b). Taking the 24°-25°
range as an example, the low-energy cutoff would
occur at k£,=0 and 6=24°, or 0.903 eV. The large
peaks occur at the large density of states where
the trajectories go vertically through the k, axis.
For the 24°-25° case, the peak will then occur
for £,=0 and 6= 25° or an energy of about 0.99
eV. These features are confirmed in Fig. 6.

It should be noted that damping is not properly
represented in Fig. 6. Our damping model was
designed to provide a description of the rearrange-
ment of the outer Fermi-sphere electrons due
to damping, but did not entail the assignment
of a width to the individual states. These two
possibilities are essentially equivalent for the
outer electrons, but the former leaves the inner
states unbroadened as they were without damping,
Since the peaks in Fig. 6 come from initial elec-
trons far from the Fermi surface, they have not
been broadened so the peaks should be somewhat
wider than shown and the low-energy cutoff will
not be abrupt.

Suppose we now go outside the metal. Interest-
ingly, the large peaks in Fig. 6 vanish since we
have here the condition Zw< Eg +®. This means
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that those initial states which cannot contribute
external electrons include the k2, range

| B < [2m(Ep+® —hw)/H2]Y2,

and it is the region near k,=0 which gives rise

to the peaks in Fig. 6. This remarkable difference
in the character of the fixed-angle distributions,
inside and outside, when Zw< E +® appears in

the equations determining the trajectories:

k% /tan’6, — k%=2mw/k (inside),

k2 - k2 /tan?0_ =(2m /F3)Ep+® —Tw)
2 P out

with &, and k, those of the initial states. Inside,
the axis of the hyperbola is the &, axis while out-
side it is the &k, axis. Inside, the hyperbola cross-
es the &, axis at k3 = (2mw /) tan®6,, while out-
side the hyperbola crosses the k, axis at k%=(2m/
7%)(Ef + ® — Aw) which is independent of §,,,. If

ds is the length element along the trajectories,

the density of initial energy states on a trajectory,
dn/dE <ds/dE. Since the geometrical figure which
determines the yield involves rotation about the

k, axis, the relevant quantity is G =k,(ds/dE).
Inside, we have

(outside),

E 24 29 _ «in2f. Ve
Ginfxtané)in( c0s®6;, + Ew(cos?6;, — sin 9&) ‘

E - hw tan®6,,
(2.30)

Since G, must be real, E =Jwtan®6,. The sharp
peaks in Fig. 6 are associated with this lower
limit where G;,~=. We also find: outside and
Rw<Ep+@

Gout =Gin’
with (2.31)
hwo-hw-E;-% and E>E +® -7w.

For all external angles, these distributions will

be approximately triangular and extend from E
=Ep+® —iw to roughly the Fermi energy or some-
what beyond, if 6, is small, because of damping.
In addition: outside and Zw>E + &

Gou=G,

in?
with (2.32)
Fw-=hAw—-E, -2,

Thus, sharp peaks like those in Fig. 6 will ap-
pear in the external yield when 7Zw>E, +®. Equa-
tions (2.30)—(2.32) should only be used in a qual-
itative way. These trajectories involve a range

of ¢ values and in the photoyield the various parts
of the trajectory will be weighted by the appropri-
ate A;. This has not been included; to do so would
entail multiplying the G’s by nonsingular functions
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of g and 6.

We conclude this section with a few comments
about the final states even though we will con-
tinue to refer the yield to the initial states. A
sketch of the nonlocal excited states for the di-
rection of ¢ indicated and Zw =2E is given in
Fig. 7(a). The plane underlying the spherical
segment of excited states results from excitation
of the initial-state, 2,=0 electron plane. All
other initial states, - kz< k< k, give rise to
excited states with larger final state &,’s.

Figure 7(a) also indicates why our treatment
above must be modified when Zw< E,. Under
this condition, the excited-state spectrum has a
spherical segment cut out of the bottom due to
the Pauli principle. This means that only some
of the initial states of the Fermi sphere can con-
tribute to the yield and, for example, E _, (q) as
well as E,, (q) in Eq. (2.18) differ from those
used above. In practice, this makes very little
difference since it only affects the theory for
¢<hw<Epg, and then only for initial states with
E<Ep-hw, states where A is well below its
maximum.

FIG. 7. (a) Nonlocal excited-state spectrum for Aw
=2 Ep and no damping. The excited states for momentum
transfer ¢ in the k&, direction is the crosshatched re-
gion which is the cross section of a spherical segment.
(b) “Trajectories” of initial states contributing to the
internal yield for 2 =0.75 with momentum transfer in
the k£, direction. The curves shown are for an arbitrary
plane containing the &, axis so in three dimensions the tra-
jectories become hyperboloids of revolution. Solid line:
0, =13°; dashed line: 6, =25°.
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III. RESULTS AND DISCUSSION

We now wish to expand the discussion of Sec.

II to include a wide frequency range. Before doing
this, we point out that the theory above for the
nonlocal yield bears a striking resemblance to

the theory for the photoyield resulting from inter-
band transitions as developed by Mahan.® If we
consider a single slab of initial-state electrons

of given k,, the associated g plays much the same
role in the present theory as the reciprocal-lattice
vactor G plays in the “primary cone” contribution
to the yield in Mahan’s theory. The principal
differences are that here we have a continuous
range of ¢ values that must be considered and

our q is always normal to the surface.

Since we have taken the work function to be
2.30 eV, the photoemission cutoff occurs at Q
=0.379. For frequencies from this low-energy
cutoff to Zw =E; + $,2 =0.916, the results are
qualitatively as described above for £ =0.75. De-
tails depend upon Q, y, and 6,, but not £ since
¢ is probably =20 A in this energy range. There
will occur a maximum in the yield for given 6,
in the range 0.6 s < 0.8, the exact value depending
upon 6,. Peaks in the energy-resolved angular
distributions such as those in Fig. 6 will not ap-
pear in the external yield until 2>0.916 as dis-
cussed above.

As the frequency increases toward the plasma
frequency, the nonlocal yield is strongly reduced
because the total electric field is strongly sup-
pressed in the surface region.?'* We illustrate
the significant extent of this suppression in Fig.
8. For £=0.99 and ¥ =1072%, the nonlocal dA /dz
is an apparently smooth curve starting, of course,
from zero at z=0. Note that the nonlocal dA /dz
does not reach the level of the local result until
z~28 A. Not only is there no evidence of the
nonlocal oscillations, but the local yield will also
be strongly suppressed for £ <20 A. To show
that there remains a small nonlocal contribution
hidden in dA /dz, we calculated dA /dz with y
reduced to 107*. This result, multiplied by 100,
is shown in Fig. 8 and exhibits the nonlocal oscil-
lations, though they are small by comparison with
those of Fig. 1. A calculation of A, gives a curve
which looks much like that of Fig. 2 but the max-
imum A; in the single-particle region is, on the
same scale used in Fig. 2, only 0.15 or more than
100 times smaller than the maximum value in
Fig. 2. Keeping y at 107* but increasing Q to
0.999, we see in Fig. 8 that the suppression of
the surface-region electric field keeps the non-
local dA/dz below that given by the local expres-
sion to a distance of about 60 A into the metal
and the nonlocal oscillations are barely visible.

LOCAL (xI00;2=099,,=104 = ' '
8H -LOCAL (x100); 2=0.999,y=10% -
= -7 “NONLOCAL;2-099,y <102 7 —=====3
E 6] , LOCAL;2:099,y=102
= / NONLOCAL (x100);@2=0.99,y=10"% 4
Q /
% 4 / h
" / \ _4
© / NONLOCAL (xI00);2=0999,y=10"%
2t .
!
B 7
c ? 1 1 1 1 1 1 1 1 1
0 |/ 10 15 20 25 3Q 35 40 45 50 55 60

z(A)

FIG. 8, Distribution of absorbed energy dA/dz for
2=0.99, y=10"2, 6, =45°, for 2=0.99, y=10~, 6, =45°
(shown multiplied by 100), and for £ =0.999, y=10~,
6y =45° (shown multiplied by 100). Local values calcu-
lated as described in Table I are also given.

It is important to understand the nature of the
nonlocal dA/dz in Fig. 8. The nonlocal oscil-
lations, due to the single-particle excitations
and involving large g, are superposed upon a
local or small-q curve, but this local curve is
vastly different from the local curve resulting
from a purely local theory. An expression for
the local part of the nonlocal curves of Fig. 8 can
be obtained using the procedure given in Ref. 2.
This procedure involves using the small-g ap-
proximation to the longitudinal dielectric function,
appropriate for the local part. This approxima-
tion leads to the “local” expression for the elec-
tric field component E, given as Eq. (3.6) in Ref.
2. Evaluating J,(g) in the same approximation and
then forming

dA 4

— T —— *
dz ccosb, Re(,£1)
yields
ﬂ =aA [e—zu_e—qé'te-g”:
z
dz local
ef
x(cos(q; -tz +or sin(q; —§')Z)],
3.1)
where o is given by (2.6), €=¢€'+i€” by (2.7),
g:g’+z’g"=% (€ - sin®6, )V?, (3.2)

q3=(q5+iq))? =(5/3v3) { W2 Q[ Q(Q +iv) - 1]}, (3.3)

and A,, that part of the local absorptance as-
sociated with the z direction, by

_ 4w, Qe” sin®6, cosé,

A .
: ca | €cosb, +(e-sin?g, )/

(3.4)

This function describes well the local parts of
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the nonlocal curves in Fig. 8. It is necessary

to use expression (3.1) to describe the local part
of dA/dz for 0.9sQ=1.0. For frequencies below
0.9, g% becomes large and the local part of dA/
dz is, except for very small z, the usual local
value (see Fig. 1).

For frequencies above the plasma frequency,
an additional nonlocal contribution to dA /dz ap-
pears, that due to the plasmon. This is clearly
indicated in Eq. (3.1) since, as  increases be-
yond 1, ¢, changes from essentially imaginary
to essentially real and g; is just the wave vector
of the plasmon in the low-g approximation. The
second term in (3.1) is then the oscillatory term
due to the plasmon. Since the plasmon damping
represented by g, will usually be considerably
larger than ¢, it is appropriate to view (3.1) as
the plasmon oscillations superposed upon the
slowly decaying local contribution. Thus for
Q= 1+y, it is a reasonable approximation to take
for the local contribution the usual local expres-
sion which is just the first term of Eq. (3.1).

Below the plasma frequency, it is the single-
particle excitations, not included in (3.1), which
give rise to the nonlocal photoyield. When the
frequency is above the plasma frequency, these
single-particle excitations do not change their
character in any important way. Thus, independent
of the plasmon, we expect a nonlocal yield for
©>1 and can see no reason for the claim of Feibel-
man® that the nonlocal yield should die out above
Q@ =1. Indeed, we find results in marked contrast
to his.

Consider now Q =1.2 with y=1072 and 6, =45°.
The curve of dA /dz for these conditions is much
like that of the curve labeled Q =1.155, §=30° in
Fig. 2 of Ref. 1, that is, a sinusoid exhibiting
essentially no decay with increasing distance.®
That this should be the case is clear from Fig.

9 which shows the Fourier transform A; dominated
by the large narrow plasmon peak. Since we are
at a frequency below that at which Landau damping
sets in, that is, the frequency £; where the plas-
mon dispersion curve enters the single-particle
region (2, =1.48 for the electron density used
here), the width of the plasmon is due essentially
only to the finite value of y and thus the standing
plasmon wave in dA /dz extends hundreds of ang-
stroms into the metal. Above the plasmon peak

in Fig. 9 is the contribution from the single-par-
ticle region, which, because of the large plasmon
peak, appears small but is in fact considerably
larger than that of Fig. 2.

As we discussed at length in Ref. 2, the plasmon
can contribute to the photoyield only to the extent
that it decays into single-particle excitations,

a process which is in detail unique for each metal
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FIG. 9. Fourier transform A of dA/dz for 2=1.2,
v=10"2, and 6; =45°. The units of A{ are arbitrary but
the same as those in Fig. 2.

since it depends upon the details of the band struc-
ture. Let us here consider only the yield due

to the single-particle region; we will return to
this point below.

From Fig. 9 we see that there is no clear di-
vision between the upper-g part of the plasmon
peak and the single-particle region. This means,
of course, that the plasmon extends into the sin-
gle-particle region and so, even in this case where
Q<Q;, the plasmon contributes to the yield from
the single-particle region.!'° The single-particle
yield has here been calculated using the minimum
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FIG. 10. Nonlocal energy distribution dY/dE for
2=1.2, y=10"%, and 6, =45°. Since Q> (Ep+&)=0.92,
this curve is the same within and without the metal.
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FIG. 11. Nonlocal angular distributions for  =1.2,
v=10-2, 6;,=45°, and $=2.30 eV. See caption of Fig. 5
for definitions.

in A, below the low-g edge as ¢,. The resulting
energy distribution is shown in Fig. 10. As a
result of the plasmon contribution coming in at
the low-g edge of the single-particle region, the
contribution to dY /dE at high energies is enhanced
and dY /dE is concave upwards. It is the fact of
cutting off the g integration abruptly that gives
the strange high-energy cutoff in dY /dE. In the
angular distribution (Fig. 11) the cutoff in the g
integral gives rise to the extended, roughly flat-
topped regions at low angles. If we had extended
the ¢ integral to lower values with a smooth ex-
trapolation of A; to zero, the high-energy tail
in Fig. 10 would be extended and the low-angle
peaks in Fig. 11 would extend upward and not be
flat topped. We note that both internal and ex-
ternal angular distributions have contracted sig-
nificantly in angular spread from those of Fig. 5.
Internal energy-resolved yields for a 1° polar
angle spread are qualitatively like those of Fig. 6
and now these peaks also occur in the external
yield. In addition, the peaks in the 1° yields near
the Fermi energy are more prominent for small
angles because of the larger A, values near the
low-g edge of the single-particle region.

As was indicated above, the frequency 2, at
which Landau damping sets in is , =1.48 for the
present conditions. For frequencies larger than
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FIG. 12. Distribution of absorbed energy dA/dz for
2=1.50, 6; =75°, and various values of y. Local values
are given in Table I.
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Q, the plasmon will be situated more or less
completely within the single-particle region and
thus can decay into single-particle excitations.
For Q =1.50, dA/dz is given in Fig. 12, Damping
of the oscillations is considerable, even for y
=1073, consistent with the location of the plasmon.
The Fourier transform A; is shown in Fig. 13
and, as expected, the plasmon peak is sharply
reduced in magnitude from that of Fig. 9. Be-
cause the plasmon is located just inside the low-

2400

2200

T
Il

2000 || 0 ememmeeee- y=10"2 .

T
|

1800

1600

T
|

1400 L .
1200 - i
1000 |- .

800 - -
HI-Q (886.2)

600

FOURIER TRANSFORM(ARBITRARY UNITS)

LO-Q(284.9)

250 350 450 550 650

FIG. 13. Fourier transform A/ of dA/dz for 2=1.50,
6y =75°, and various values of y. The units of A/ are
arbitrary but the same as those in Figs. 2 and 9.
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¥=10"2 is shown by the circles.

q edge of the single-particle region, dY/dE will
be strongly peaked near the Fermi energy if the
damping is not too large; this is shown in Fig.
14. When vy is as large as 107!, our treatment
of damping leads to a large high-energy tail due
to the now markedly spread single-particle region
and the location of the plasmon. Angular dis-
tributions for ¥y =10"2 are given in Fig. 15. In-
creasing y reduces in magnitude and broadens
the low-angle structure while decreasing y com-
presses the peaks and increases their magnitude
sharply. The concentration of the angular yield
to small angles influences strongly the 1° yields
as indicated in Fig. 16. For low angles, the com-
bination of the damping and the plasmon near the
low-gq edge enhances the “lemon effect” and this
shows up clearly in the 1° yields for 6<13°. Keep
in mind that the energies at which the low-energy
peaks appear will differ outside the metal.
Increasing Q to 1.6, thereby moving the plasmon
more firmly into the single-particle region and
enhancing its decay into single-particle excitations,
produces only expected changes in the various
yields for £ =1.5. The plasmon peak in the Fourier
transform A; is broadened and reduced (by ~2
from that of Fig. 13 for y=107%). As a result,
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FIG. 15. Nonlocal angular distributions for 2 =1.5,
v=10~2, 6, =75°, and ® =2.30 eV. See caption of Fig. 5
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the peaks in dY/dE near E, are reduced but, for
low damping, the curves remain strongly con-

cave upwards. Also, the low-angle peaks in the
angular yields are reduced in magnitude and the
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FIG. 16. Energy distribution curves for the internal
yield into a ring of polar-angle width 1° for 2 =1.5,
¥=1072%, and §; =75°. If the number shown on a curve is
s, the angular range is (s —1) to s°.
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60° and 75°, The parameters describing the local expres-
sion are given in Table I.

contributions to the 1° yields near the Fermi ener-
gy for small angles is reduced.

As Q increases further the plasmon continues
to recede into the single-particle region and be-
comes essentially an indistinguishable part there-
of. As this happens, the picture returns to a form
qualitatively much like that for £ =0.75. We il-
lustrate for £ =2.5 and Yy =1072, Curves of dA/dz
shown in Fig. 17 exhibit rapid damping of the
oscillations and the resulting Fourier transforms
(Fig. 18) possess the same features as that of
Fig. 2. The energy distributions dY /dE are again
roughly triangular (Fig. 19) and both the angular
distributions (Fig. 20) and the 1° yields (Fig. 21)
look much as they did for 2 =0.75 (Figs. 5 and 6).
Note, however, that the magnitudes of all the
yields are much greater than they were at  =0.75.

We now wish to make some addition comments
on the total nonlocal yield and the role of the
plasmon, referring to Fig. 22 which shows the
frequency dependence of the yield. Consider 6,
=45° and keep in mind that we are here considering
only the nonlocal part of the yield associated with
the z components of J and E, For Qs 0.92, the
internal yield is reduced externally by the sur-
face barrier. As -1 from below, the reduction
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FIG. 18. Fourier transform A}, ofdA/dz for 2 =2.5,
¥=10"2, and two angles of incidence, 0; equals 60° and
75°. The units of A} are arbitrary, but the same as
those in Figs. 2, 9, and 13.
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FIG. 19. Nonlocal energy distributions dY/dE for
©=2.5, y=10"%, and two angles of incidence, 6, =60°
and 75°.

of the surface-region electric field essentially
eliminates the yield. As @ increases beyond one,
the plasmon enters the picture. Above we con-
sidered only the yield associated with the single-

105 (ANGULAR YIELD) (DEGREE™)

[¢] 10 30

20
8(DEGREE)

FIG. 20. Nonlocal angular distributions for 2 =2.5,
vy=1072, 6y =75°, and ® =2.30 eV. See caption of Fig. 5
for definitions.
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FIG. 21. Energy distribution curves for the internal
yield into a ring of polar-angle width 1° for £ =2.5,
¥=10"%, and 6, =75°. If the number shown on a curve
is s, the angular range is (s —1) to s°.

particle region, which means, of course, that
the plasmon contributes substantially only for
Q= Q;=1.48. The curve underlying the 6, =45°
crosshatched region is the single-particle-region
yield. If we simply include the plasmon in the
total yield by extending the ¢ integration in Eq.
(2.19) to include the plasmon peak in A, (without
specifying a mechanism by which the plasmon
can produce photoelectrons) we obtain the yield
curve given by the upper boundary of the cross-
hatched region. Depending upon the system, that
is, the extent to which the plasmon decays into
excited electrons which can escape, the yield
could then range throughout the crosshatched
region.

Yields versus frequency curves for the case
where the plasmon is included have been given
in Ref. 2. It should be noted that our electron
gas model does not provide a mechanism for
plasmon decay when  sQ,. So, while we can
formally incorporate the plasmon into the total
yield, we cannot describe the effects of the plas-
mon on the energy and angular distributions.

Let us examine the limit where the plasmon
contributes essentially no photoelectrons for
2 s9Q;. The character of the photoyield can then
be rather complicated. The peak in the 45° yield
of Fig. 22, with the plasmon included, is an op-
tical effect? and occurs when the local dielectric
function €(w)= sin®g, or, for the electron gas,
Q= (cos6,)™. So, when 6, < 30°, the single-par-
ticle photoyield would have a small maximum
for £=1.15 and would then decrease until 2 ~Q,
where it would increase sharply. For 30°s 6,

102 LN IR SN BN S NN S N S B S |

FIG. 22. Total yields as a function of frequency
Q for y=10"%, The angle of incidence is given on the
curves. For 6, =45°, both the internal and external
yields are shown for the entire frequency range of the
figure. The curve underlying the crosshatched region
is the yield from only the single-particle excitations
and the curve defining the top of the crosshatched region
is the yield with the plasmon included for 1< @ < 1.48.
Yields for 6, =75° are given only for € >1 with the
borders of the crosshatched region defined as for 6;
=45°. Two points for 6, =60° and 67° are also shown.
These curves are essentially independent of the escape
length ¢ if £23 & except in the range 1< <1.48 when
the plasmon is included. Then we used £ =10 A.

< 47.5° [47.5°=cos ™} (1/Q,)], these peaks would
merge with the sharp rise at @, dominating; this
is the case for 6, =45° in Fig. 22. For 6, > 47.5°,
the single-particle yield would increase from
=1 and then increase sharply for @ ~Q,. This
is shown for 6, =75° in Fig. 22 where the top of
the crosshatched region is again the yield with
the plasmon included and the bottom, that due
only to the single-particle region. The extent

of the yield increase for  ~Q, is better indicated
by the 6, =75° curve as the obscuring effects of
the optics are removed. So, the most dramatic
manifestation of the plasmon when it is weakly
damped and contributes but little to the yield for
Q<Q, (probably the normal case) is to increase
the yield strikingly for Q ~,.

IV. SUMMARY AND CONCLUSIONS

A detailed description has been given of the
nonlocal surface photoyield resulting from the
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normal component of the electric field for an
electron gas excited by p-polarized light. These
yields are not insignificant, indicating that the
basic physical fact leading to their existence, a
strong dependence of the electric field (or the
vector potential) on distance from the surface
must be allowed for in general.

For an actual metal, our detailed description
will of course be modified by the addition of bulk
contributions such as those from interband tran-
sitions. However, within the total photoyield,
comprised of the bulk contribution and the non-
local or surface yield, features of the latter, as
described by the present theory, should be mani-
fested. These include: (i) surface contributions
to the energy distribution curves strongly peaked
near the Fermi energy; (ii) surface contributions
to the angular distributions of the yield, which
are confined to a decreasing angular range with
increasing light frequency; (iii) unique and un-
expected structure in the energy-resolved angular
distributions; (iv) a reduction of the total p-polar-

ized yield for £ 1 [ more generally, €(w)=s0];
and (v) structure due to the plasmons. For £ ~2-3,
the electron escape lengths ¢ are very small.!*'?
Under these conditions, the surface yield, es-
sentially independent of £, might dominate the
total yield.

The photoemission discussion presented herein
does not represent a complete description within
the model used. We have not included yield con-
tributions associated with the electric field com-
ponent parallel to the surface nor contributions
resulting from local effects associated with the
normal component of the electric field. In our
previous work we have implied that the former
can be considered local, but we now know this
to be not the case.'® A proper treatment of the
photoyield resulting from the local part of the
optical absorption means, in our model, a theory
for the photoyield due to the Drude absorption.
This is of general interest for photoemission due
to moderate-energy light and will be reported
shortly.**

*Work performed for the U. S. Energy Research and
Development Administration under Contract No.
W-7405-eng-82.
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