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The nonlocal theory of the author for the surface photoeffect produced in metals by p-polarized light is used

to obtain energy and angular electron distributions for a range of low to moderate excitation energies.

Considering only the effects from single-particle excitations, the energy distribution curves have, in general, a
roughly triangular shape with the peak occurring for initial states near the Fermi energy. There is also a high-

energy tail due to damping. Features in the angular distribution curves include confinement to decreasing

angles with increasing light frequency and low-angle structure resulting from damping. Very striking structure

appears in the energy-resolved angular distributions when the light frequency eo is such that has & E++4,
where EF is the Fermi energy and 4 the work function. A number of significant changes, including a sharp
increase in the total yield, occur in the various distributions when Landau damping sets in, that is, when the
plasmon enters the single-particle-excitation region. Arguments are presented that there is no reason to expect
that the nonlocal surface contributions to the yield should vanish above the plasnia frequency.

I. INTRODUCTION

Several photoemission theories based on a non-
local description of the optical absorption have
appeared recently. ' ' The need for such a de-
scription arises from the fact that the electric
field in the surface region of a metal subjected
to optical illumination is markedly different from
that given by a local description. Since the escape
length for photoelectrons is short, a proper anal. -
ysis of photoemission requires a careful treatment
of the surface-region field. Results available to
this time, both theoretical' ' and experimental, "
indicate that the nonlocal effects are of major
importance for photoemission resulting from low
or moderate excitation energies.

Nonlocal photoemission theories to this time
have dealt primarily with P-polarized excitation.
The reason for this is that such l.ight has an elec-
tric field component normal. to the surface, which
is associated with particularly prominent and
unique nonlocal effects of longitudinal character.
It has been argued2 that these longitudinal effects
are a prime cause of the singular effectiveness
of P-polarized light in producing photoel. ectrons.

The incorporation of nonlocal effects imparts
a striking spatial dependence to the el.ectric field
near the surface. In the nonlocal theory of the
author, "attention was drawn to the consequent
oscillatory character of the spatial distribution
of the absorbed energy. It was shown that these
oscillations result from plasmons and single-
particle excitations; which type of excitation is
dominant depends on the light frequency. In Sec.
II of this paper, we expand on our previous work
by demonstrating the quantitative connection be-
tween the spatial distribution of the absorbed
energy and the elementary excitation spectrum.

This spectrum is then converted to energy and
angular photoelectron distributions using the three-
step photoemission model. However, the escape
length is essentially irrelevant for the surface
process of interest here. Again, attention is
focused on effects associated with the electric
field component normal to the surface. Results
for a wide range of light frequencies are pre-
sented and discussed in Sec. III; included here is
a discussion of the photoemission role of the
plasmon. Conclusions are given in Sec. IV.

II. EXC1TATION SPECTRUM AND THE PHOTOELECTRON

DISTRIBUTIONS

The starting point for the present discussion
is given in Ref. 2; essential elements wQi be re-
viewed here very briefly. We take as a model
for the metallic photoemitter an electron gas
filling the half space z& 0, with the region z& 0
vacuum. The surface of the electron gas is as-
sumed to scatter the internal electrons specularly.
P-polarized l.ight of angular frequency u is in-
cident upon the photoemitter in the x-z plane at
angle 8, measured from the surface normal. With
A, the absorptance of the metal, the distribution
of absorbed energy

~ Re[J (z) ~ E*(z)],

where J (z) is the z-dependent part of the current
resulting from the electric field E(z) within the
photoemitter. We calculate both J and E nonlocally
thereby obtaining the nonlocal dA/dz. Although
dA/dz includes two terms, Re[J, (z)E,*(z)] and
Re[J, (z)E*,(z)], we will here concern ourselves
l.argely with the latter. Indeed, unl. ess otherwise
stated, when we speak below of dA/dz we will
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FIG. 1. Distribution of absorbed energy dA/Cz for
0 =0.75, /=10 and el 45

be referring to the contribution from the z com-
ponents. In so doing, we are not implying that
the contribution from the x components is of no

consequence. Rather, our interest here is in

effects peculiar to p-polarized light and, thus,
effects associated with the normal component of
the el.ectric field.

Calculations have been made with the electron
gas density that of sodium. This means a Fermi
velocity vs= 1.07x10 cm/sec, a Fermi energy
E~=3.26 eV, and a plasma frequency ~~ such
that in~ =6.07 eV. We define 0 =u&/&u~ and use
as a measure of damping y = (a&~ r) ', where r
is the mean electron lifetime.

To provide a specific example for the presenta-
tion of the basic theory, we have chosen the con-
ditions 0 =0.75, y =10, and 6)1 =45'. The spatial
dependence of dA/dz for these conditions is shown

dA
dqA, e'"

dz

Because dA jdz is rigorously equal to zero at

(2.1)

in Fig. 1. (Keep in mind that this dA/dz includes
only the contribution from the z components of
J and E.) For comparison we give in Table I
the values of dA/dz [there denoted (dA/dz), ] at
z = 0 and z = 24 A, the absorption coefficient a,
and the contribution from the x components (dA/
dz)„, all for the case where the calculation is
local. From these numbers and Fig. 1, it is
apparent that the nonlocal value of dA/dz differs
from the local for z&30 A, and differs markedly
for small z. As discussed in Ref. 2, these oscil-
lations, or standing absorption waves, result
from interf er ence between elementary excitations
moving toward and away from the surface. Since
we are here below the plasma frequency, the
elementary excitations are the single-particle
excitations.

The question we then ask is, what is the spec-
trum of excited electrons which gives rise to
this dA/dz? To answer this question, we must
remember that the nonlocal field can transfer
the large momenta represented by the oscilla-
tions in Fig. 1 only in the direction normal to
the surface, that is, in the az directions. This
momentum will be represented by the wave vector
in the z direction, designated q. Ne then define
the Fourier transform A, of dA/dz by

TABLE I. Parameters characterizing the distribution of absorbed energy in the local approx-
imation. The total dA/dz is O.Ae~~, where n is the absorption coefficient given by Eq. (2.6) and
A is the total local absorptance. Associated with the z component of the electric field, the dis-
tribution of absorbed energy is (dA//dz)~ =nA~~g, and with the x component {dA/dz)

is given by Eq. (3.4) and A =40m&&cossqls —sin 8~1/nels cosset+ (s —sin 81)~~tl2, w&th the
local dielectric function q = e'+ jd'. The total absorptance A =A~+A». All values are in (cm)-&

(in deg. )

0.75
0.99
0.99
0.999
1.20
f.50
1.50
1.50
1.50
1 .60
1 .60
2.00
2.00
2.50
2.50
3 ~ 00
3.00

10
10
fp~
10"
10
10
10-'
10
f0~
fp-'
10 3

10
10~2

10
10-2

1peag

10

45
45
45
45
45
45
75
75
75
75
75
45
75
60
75
67
75

5.22x 10
4.39 x 10
4.39x 105
4.36 x 105

3.26 x f 05

5.80x 103

5.66X fp'
5.67x 10'
5.67x 105
5.59x fp~

5.60x f05
1.54x10
5.27 x 105
1.64 x ips
4.69 x ip
1.68x 10'
3.88x fp

4.81 x 103

8.36X 10'
8.53x 10
8.68 x 10'
1.22 x 104

4.89x f03
3.f Sx104
3.30x 10
3.32X 10
3.20 X 104

3.33 x 10
1.02 x 103

3.35x fp
1.42 x 10
3.38 x 10
f.49x fp
3.39x 103

4.25 x ip
7.53x f 03

7.67 x f Oi

7.82x fp'
1.13x 10
4.88x 103

2.78x 10
2.88x 103

2.90 x 10
2.80 x 10
2.91 x 1O~

1.p2x 10
2.95x fp
f.42 x 103

3.02 x 10
1.49 x 103
3.09 x 103

1.23x 10
8.70x 10'
8.88x 10
8.72 x 10
4.75x 103

5.45 x 102

1.28x 10
1.34x fp3

1.34x fp'
1.11x 104

1.16x ip
5.12x fp
6.58x 102

f.7f x 102

3.37 x 10
7.3f x fp~

1.60x fp
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dA
dz

Then

dA'
dz g

i "" dA
sin(qz) dz

lT &0 dz

z = 0 for the electron gas, ' and because of the
field symmetries for our specular scattering
model, ' we take

point noted and discussed previously. '
In Fig. 2, A,' reaches a minimum somewhat

below the low-q edge, and then increases, as
q decreases further, to a maximum near q=0
(at q=O, A,'=0). Our calculation of dA/dz included
a finite electron lifetime and, thus, a local or
Drude absorption contribution. This is apparent
from Fig, 1 and Table I where we see that the

O

oscillations for z ~ 10 A occur about the local
value of dA/dz, which is proportional to e
where the classical absorption coefficient n is
given by

=- —iA,' (2.2) n =(2(u/c) im[e(u)} —sin'8, ]' ' (2.6)

and A, = -A, ,A', = -A,'. For use below, we
note that the absorptance A = f~ (dA/dz) dz (re-
member that this is only that part due to the z
components of J and E) is given also by

A =2i ' dq=2
q q, q

(2.3)

From this equation it is clear that the transform
of importance is A,' and A,' for dA/dz of Fig. 1

is given in Fig. 2 as a function of Q =qc/u&~.
To appreciate the content of Fig. 2, we note

that the single-particle excitation region for fixed
&u (calculated with no damping) extends from the
small-q parabola (denoted lo-q)

and e(~), the local dielectric function, by

e = 1 —[ft (fI + i 7)] (2. I)

szn 6)1 q
~, (q„) ( '/c*) (e„)-q*,)'

That this local part of dA/dz includes contribu-
tions from large q values, even though usually
thought of as a q-0 effect, can be shown as fol-
lows. The nonlocal surface impedance for the
electron gas model employed here is'

2$(d dq
vc g qz

q„,= —kz+ (k~z+ 2mcu/k)'/', (2.4) (2.8)

with k'~ the magnitude of the Fermi wave vector
and m the electron mass, to the large-q parabola
(denoted hi-q)

q„, , = k„+(k~z+ 2m(u/5)'/'. (2.5)
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FIG. 2. Fourier transform A' of dA/dz for 0 =0.75,
y =10, and 0~ =45'. The dimensionless wave vector
Q =qual~&, with c the speed of light and q the wave
vector in the z direction.

For the conditions of Fig. 2, Q„,=q„,c/+~=164. 8
and Q„, , =q„, , c/&u~ = 766.0 as indicated in the
figure. Thus, our previous statement that the
oscillations in dA/dz result from single-particle
oscillations is clearly established and it is the
region of q space near the low-q edge which con-
tributes most significantly to the oscillations, a

where &, and e, are the nonlocal longitudinal and
transverse dielectric functions and qr = (q'+q,')'
with q, = ~ sin8z/c. The total absorptance for the
system goes roughly like Re(Z~). In the local ap-
proximation, this expression for Z~ is modified by
making the following replacements:

e((qr &d) lim e, (qr, (()}= ( e)(()

and

e, (qr, &u) —lim e, (qr, a) = e(&u).

Thus

&t ) ( */ *l~( ) —e,*)'
Since q, = (~/c) sin8, is small, we see that in the
local case the absorptance includes large-q con-
tributions going like 1/q . It is this local con-
tribution which causes A', in Fig. 2 to bend up
again below the low-q edge of the single-particle
region. It should be noted that the local contribu-
tion to A,' does not drop off as rapidly as 1/q'.
The argument just given indicates that the local
contribution to the absorptance goes as 1/q'.
From E(I. (2.3), this means that A,' should drop
off as 1/q and this is indeed the case for q below
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the low-q single-particle edge and not too near
zero, that is, q„&q&q„, .

The q~' factor appearing outside the large pa-
rentheses in Eq. (2.8), resulting from the Fourier
transform of the Coulomb interaction, has an
additional effect. It clearly favors excitations
of smaller q and is to a large extend responsible
for the fact thatA, ' in Fig. 2 is large only near
the low-q edge of the single-particle region.

In addition to generating Local effects in the
absorptance and thus in A,', the inclusion of a
finite electron Lifetime spreads the edges of the
single-particle-excitation region. This is in-
dicated in Fig. 2 by the fact that A,' has a sub-
stantial value at the low-q edge which was de-
termined above assuming no damping. If there
were no damping, A,' would be zero at the edge.
This spread has interesting effects, as we will
see below, and is the principal manifestation of
damping in the realm of single-particle, nonlocal
effects. However, and we emphasize this point,
the basic single-particle, nonlocal character is
affected only to a modest extent by damping. That
is, the oscillations of Fig. 1, although superposed
upon a background which is strongly dependent
upon the damping, are themselves only weakly
dependent.

An additional demonstration that the damped
oscillations of Fig. 1 result from interference
between standing waves with a spread of q values
can be given using standard wave properties.
Since 4q4z-1, we find from Fig. 2 that ~Q-200,
po 4q-6&10' cm ', and thus b,z-2 A. Recog-
nizing that we are here dealing with ~ values de-
termined at points which are roughLy half max-
imum, this result is indeed consistent with Fig. 1.

Our task now is to convert the distribution rep-
resented by Fig. 2 into a photoyield, to which
only electrons moving toward the surface con-
tribute. The usual procedure is to introduce an
escape Length $ for the electrons at this point.
I.et us do so also and then comment immediately
below on the significance of $. The internal photo-
yield Y', that is, the yield of electrons reaching
the surface, is

CO

dz e-'~'Re
0 AZ qgp

(a)
VACUUM

SURFACE
ME TAL

k, q z

(b)

the role of $ is just that of q, . In an analysis where
the uncertainty in momentum transfer associated
with the finite lifetime is properly included, the
physical effects represented by the introduction
of E would appear automaticaLLy. For the non-
Locally excited electrons, $ is essentially ir-
relevant. The q values for these electrons are
such that q$& 1 for E & 2 A so for all but the smaLL-
est escape Lengths, $ can be taken to be infinite
in Eq. (2.9), that is, y' is independent of g. This
indicates that the nonlocal yield is a genuine sur-
face effect and is so because the nonlocally ex-
cited electrons are concentrated near the sur-
face.

To avoid a pl.ethora of negative signs in the next
series of arguments, we reverse z so +z is to-
ward the surface. Electrons moving toward the
surface are then associated with positive values
of the wave vector in the z direction. We also
consider henceforth only nonlocaL contributions
to the yield.

For simplicity, we take the damping to be zero
for the moment. In Fig. 3(b) is sketched the ex-
citation spectrum of the electron gas and in Fig.
3(a) the Fermi sphere which represents the ini-
tial states of the excited electrons. For a fixed
excitation frequency ~ (denoted ~' in Fig. 3 and
such that S(d&EF for reasons which will be clear
below) the low-q edge of the single particle region,
point P, in Fig. 3(b), corresponds to point P, on
the Fermi sphere in Fig. 3(a). Similarly, the
large-q edge of the single-particle region, point
P, in Fig. 3(b), corresponds to the point P, on the

A,'q
dq (2.9)

As f, -~, y' is just half the absorptance [see
Eq. (2.3)], as expected, since only half of the
absorbed energy is associated with electrons
moving toward the surface.

If we think of the wave vector q in Eq. (2.9) as
complex due to finite lifetime effects, q=q, +iq„

2k~

FIG. 3. (a) Initial states for the electron gas with the
notation to be used indicated. The wave vector q points
toward the surface. (b) Excitation spectrum v vs q for
the electron gas. Points P& in the two parts of the figure
are equivalent as are points I'2.
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Fermi surface. This can be seen from the stan-
dard excitation expression

g~ = (k'/2m)(k~2 —%', ), (2.10)

where%& and k, represent, respectively, a final
state outside the Fermi surface and an initial
state within. With q in the z direction and%& ——k,
+ qz, z a unit vector directed toward the surface,

K&u = (I'/m)k, q+ (g'/2m)q', (2.11)

fi, =ff[E, -E . (q)],

where

E (q) =8'k', /2m. .

(2.12)

(2.13)

Since all of these electrons will have equal prob-
ability of excitation under the influence of the
z-directed electric field being considered here,

where k, is the z component of %, . When k,
=k~, q =q„, of Eq. (2.4); when k, = —kz, q=q„;,
of Eq. (2.5). As we progress from P, to P, in

Fig. 3(b), we move through the Fermi sphere
in Fig. 3(a). Each slab of initial state electrons
described by a given k, is then associated with
a unique value of q along the line P,-P, in Fig.
3(b). This means that the value of A,' of Fig. 2,
in the single-particle region, describes the ex-
tent of the optical excitation of that slab of el.ec-
trons with k, given by (2.11) and such that the
excited electrons are moving in the +z direction.
The contribution of this slab of electrons to the
internal photoyield'Y' is, from Eq. (2.9),
A', qi($ '+q').

To find the energy distribution of Y', we note
that the density of electron states per unit energy
interval in a plane of fixed k„dn/dE, is a con-
stant which we call K (E=m/«}I' but its value
is unimportant here. ) The number of initial-state
electrons in such a plane N, is then

that is, all have the same matrix element, we
can rewrite Y' as

q dE

(2.14)

where we have written Y' in terms of initial states.
To find Y' in terms of final states, we need only
let E-E +km. The contribution to dY'/dE from
a given value of q is constant for E between E .
and Er, and zero otherwise. The total dY'/dE
is just a sum over a group of such rectangular
contributions.

Inclusion of damping complicates this picture
considerably. As mentioned above, the boundaries
of the single-particle region spread outward since
each of the excited single-particle states has a
finite width. As a result the range of q values
in the q integral of Eq. (2.14}expands. In ad-
dition, since the single-particle region spreads
while the number of electrons is fixed, the energy
denominators in Y' of (2.14) must also change.
We thus must quantify these effects.

The nonlocal effects we are here considering
are due almost entirely to the longitudinal field
and, hence, characterized by the longitudinal
dielectric function e, . By inserting a finite life-
time ~ into e, , the resulting excitations of fre-
quency co will be characterized by an effective
lifetime r, («~) and these states will have an energy
spread bE such that (bE)r,«-k. In our simple
electron gas model the energy of a state of wave
vector k is of course E =8'k2/2m so bE =Kkbk/m.
A spread in energy is coupled to a spread in mo-
mentum. Is this inconsistent with the filled and
sharp Fermi sphere we used as our initial-state
configurations Interestingly, the answer is no.
The dielectric function which describes the longi-
tudinal response of the system is '

[1+(i/cur)] [ e', (q, cu i/+r) —1]
1+ (i/(ur) [e;(q, &a+i/T) —1]/[e', (q, 0) —1]

' (2.15)

with &', the original I indhard function. As ~-0,
e, (q, &u, r)- e', (q, 0}, which is just the function
obtained if we let r- ~ in (2.15) before taking
the ~-0 limit. Thus 7',«(&u}- ~ as ~-0 and there
is no energy spread. Since we want to refer our
broadened excited-state spectrum back to the
sharp initial states through real values of q and
cu, we must modify the initial state description
from that of the simple Fermi sphere. This is,
in fact, what the spread of the single-particle
region in Fig. 2 indicates. We emphasize again
that the apparent distortion of the initial-state
spectrum reflects final-state effects.

To describe this distortion we note that

v p 4q qvp 2k'

(2.16)

Using Eqs. (2.11) and (2.13), the factor in the
parentheses is just [Ez —E . (q}]/Er, indicating
that this factor for given q is proportional to the
area of the slab of electrons associated with that
z, that is, proportional. to the number of electrons
in the slab. This suggests the following procedure
for finding the energy denominators in Eq. (2.14)
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A 'qY' = dq
$ '+q' z, (,) E„„(q) (2.18)

What is of more interest is the external yield

when there is modest damping. Evaluate &, with

damping by letting ~ -v+ i~py. The energy de-
nominator E~,„will then be

E„„=1m[ e', (q, ru+iu&, y)]Er/(3(up'/q'v ~)(vk~/4q),

(2.1 f)

and this does indeed describe the "spread" single-
particle region seen in Fig. 2. Having now a
prescription for finding the total number of elec-
trons in a slab of given k„we have to describe
how these electrons are distributed in transverse
momentum. This we do simply by saying that
the density of electrons in a slab of given k, is
the same as without damping over the energy
range from E„. to Ed,„+E . , thereby defining
a q-dependent effective Fermi energy E'(q)
=E„„(q)+E(q) :Th.e energy integral in Eq.
(2.14) will then extend from E to E' Thi.s pro-
cedure gives rise to less electron spreading than
actually occurs as we have eliminated the tails
of the spread states. It represents, in some
sense, a one-dimensional damping. What we have
done is move el.ectrons around in the k, direction
(the only direction in which momentum transfer
occurs) without adding any broadening in the di-
rections perpendicular to k, . Our Fermi sphere
has become a "Fermi lemon. " The consequences
of our model will be very apparent below and the
conclusions drawn therefrom can be modified
to reflect a better physical description.

Having now a model for the energy distribution,
the remaining question relating to damping is,
what is the appropriate range of integration for
q? From Fig. 2, it is clear that there is not a
unique delineation between the local -1/q tail and
the nonlocal region. Our procedure is to integrate
from the q value q„corresponding roughly to the
minimum in the Fourier transform A,', to q„, ,
The large-q part of the singl. e-particle region
contributes so little to the yield that the result
is insensitive to the exact value of the upper limit.
Perhaps a preferable procedure would be to sub-
tract a roughly 1/q local contribution from A,'

and call the remainder the nonlocal part. How-
ever, a natural question arises: How can a "local"
electron in the single-particle region tell it is
not a "nonlocal'* electron? Thus, we feel justified
in our approach. The effect of this procedure
will. be apparent below and further comments
relating to damping will be made then.

Our final expression for the yield Y' including
damping then is

So, in terms again of initial states,

0 Ace& 4.

4&wc@& Ez+4;
Y', S+&E~+ 4'

+ q 8 (a) Eden

(2.19)

q 2m '~' 2m, (Ez+4) v 2 (Ez+@—)fu)
q~

(2.20)

The energy distributions dY'/dE and dY/dE for
the dA/dz of Fig. 1 are given in Fig. 4. These

4
4l

0
(.0 2.0

E (eV)
3.0 4.0

FIG. 4. Nonlocal energy distributions dY'/dE, de-
noted IN, and d Y/dE, denoted OUT, for 0 =0.75,
y=10, eg =45', and 4 =2.30 eV. These calculations
were made using an escape length ( =10 A but the re-
sults are insensitive to this value (see text).

Y. We use the standard specular requirement
that all. electrons having energy associated with
the direction normal to the surface sufficient to
overcome the surface barrier, while retaining
the energy parallel to the surface, will escape.
Since for a given q, E (q) is . the energy associated
with the z direction, we must have E (q)+R.u
&E„+4, with 4 the work function. From Eqs.
(2.11) and (2.13), we can write this as

E =(m/. 2q')(ur - hq '/2m)'

& Ez+ 4 -g~.
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curves have been referred to the initial states
so the peaks occur essentially at the Fermi ener-
gy. The high-energy tail resulting from damping
is clearly evident.

We turn now to the angular distribution. Equa-
tion (2.18) can be converted to an angular dis-
tribution by recalling that the energy integral
is over a plane of electrons of fixed k, . If k~
is the wave vector in this plane [see Fig. 3(a)],
the energy associated with this wave vector is
E2~ =k'k2&/2m and dE

p [which is just dE in Eq.
(2.18)] is K kzdkz/m. The angle 8~ (measured

from the surface normal) at which an excited
electron from this plane is moving within the
photoemitter is

tan 8 =. k, /(k, + q), (2.21)

dE~ =5'(k, + q)' tan8, .„sec'8. d8. /m (2.22)

and, since the distribution has azimuthal sym-
metry,

with 0, again the wave-vector component of the
initial state. So,

"'hi-a A' q (k, +q)' &'& " sing.
2 wm g '+q' E„„(q) dp cos 8'

where k, is to be considered a function of q and

tan8 '"(q) =[(2m/@')[E'(q) —E (q)B"'/[k. (q)+ q].
To find the angular distribution outside the metal we must modify Eq. (2.21) to

tan 8,„,= kz/[(k, + q}' —(2m/I')(Ez+ 4 )]'~' = k /[ k', + (2m/k ')(k&u —Ez —4 }]'~',

so

(2.23)

(2.24)

(2.25)

0, Rcu& 4;
gOUt

++@

with

tan8 ' q) = 2m[E'(q) —E (q)]/k'
(k, + q}' —2m(Er + 4)/k '

(2.26)

(2.2'1)

For Scu&E~+4, Y is the same as for 4 ««+
+4 except the q integral is from q, to g„, , ~

Several angular distribution curves for the con-
ditions used in this section are given in Fig. 5.
The curve labeled dY/d8(, „ is dY'/d8 obtained
from Eq. (2.23) after integrating over d@ and
represents the angular distribution of excited
electrons within the metal; specifically, (dY'/

d8~,.„) d8. is the yield into a ring of polar angle
spread d8 (d8 in degrees). The curve dY/dQ(.
is dY'/dQ. from Kq. (2.23), the distribution in-
side the metal per unit sol.id angle with d~I} in
radians and d8. in degrees. These quantities are
related by dY/d8(. =2vstn8(dY/dQ(. ). For smaLL
angles we see the interesting effects of damping.
The primary role of damping is to push a small
bulge of e1ectrons out from the neighborhood of
the point P, in Fig. 3(a), the lemon effect aLLuded
to earlier. This is just another way of expressing
the spreading of the single-particle region and,
for the last time, we emphasize that this is a
final-state effect which appears here as a Fermi-

kg+ q =(kg+ 2m(d/k')' ' (2.28)

we see from Eq. (2.24) that the maximum internal
angle for an excited electron results from an
initial state on the Fermi surface with 0, = 0. For
such an electron, k~ =(2mEz/k~)'~' and q=(2m&v/
k)'~'. Thus the maximum internal angle is
tan '(Ez/&u}' ' = 40.2' consistent with Fig. 5.

External to the metal, the angular distribution

surface distortion only because we are referring
the final states back to the initial states. The
electrons in the bulge are all moving essentially
normal to the surface and contribute the striking
small-angle structure. The fact that dY/dQ~.
is essentially constant for 8~ 2' is a consequence
of using the minimum in A,' (Fig. 2) as the lower
limit of the q integration, that is, A.,' is finite
at the l.ower limit. If we had treated the damping-
induced transverse spread of the electrons more
carefully, we would expect the smal. l-angl. e peak
to be reduced somewhat in size and broadened.
Since k, + q can also be written
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ield in

gy distr&but&on curves for th ' t lr e in ernal
y into a ring of polar-angle width 1' for 0 =0.75

I =
~ the number shown on a curve

is s, the angular range is (s —1) to s'.

is obtained from Eq. (2.26) and is shown as the
curve labeled dY/dOI in Fi . 5 A,„, in ig. . As a result

e ow-angleof the diffraction at the surface th l

peak due to the damping has spread out S'u . ince
~+, the total external yield is well. below

the internmal. and the external angular distribution
extends to 90'.

Another distribution of inte t thres is e energy-
analyz ed angular distribution Th ki n. in of an energy-
analyzing ring detector with the axis normal to
the surface and hand having a polar-angle width 48.

e correspondingFor the internal electrons th
istribution can be found from E . (2.22)
e Q integral and integrating d8 over the desired

range ~8 while recognizing that for a given q
there is a unique relation b tw th
an electron

e een e energy of
and the polar angle describing its

direction of mototion. The internal ener d
tribu

gy

atv
bution curves for a ring with b, 8 = 1'i = situated

a various polar angles is sho Fwn in ig. 6, again
referred to initial states. We see
markabl. e curv

e see here some re-
mar a e curves. For a given angle, there is
a low-energy cutoff followed by a very h

n then a tailing off. The fact that dampin ef-
very s arp peak

fects in our model
e a amping ef-

e are concentrated near small
angles is indicated by the fact that the curves
labeled 1 and 7 ~ce an corresponding to 8 from 0 to 1'

specttvely) extend beyond the Fermi

nea th F er
energy while curves for larger an l der ang es drop off
near e Fermi enernea F ergy. The occurrence of the
peaks can be understood by examinin th
grou ofp electrons which appears at a given angle.
Using Eqs. (2.21) and (2.28), the relationshi

„an e wave vector components of

(2.29)

the initial. state k and k, an z, is

tan8. = k~/(k', + 2m&v/g)'~'

By takin 8.g . as fixed, this expression ields a

electrons alonalong this trajectory which contribute
to the yield at 8. . Exa . . Examples of these hyperbolic
trajectories for the conditions of the r
ion are shown in Fig. 7(b). Taking the 24 -25

range as an exam
occur at k =

ample, the low-energy cutoff lda, =D and 8=24', or 0.903 eV. Th l.

0 wou

p curat the large density of stateseaks oc
e arge

the tra ect
s a es where

jectories go vertically throu h the k
For the 24'-25 ccase, the peak wil. l then occn occur

and 8- 25 or an energy of about 0.99
eV. These features are confirmed in Fig.

It should be noted that damping
'

not rois no properly
in ig. 6. Our damping model was

designed to provide a description of the rearran e-e rearrange-

to dam ino damping, but did not entail the assi nment
i o the individual states. These two

possibilities aree essentially equivalent for th
outer elecectrons, but the former leaves the inner

or e

states unbroadened as the w
inee the peaks in Fig. 6 come from '

trons far from
m ini ia el.ec-

r rom the Fermi surface, they have not
been broadened so the eso e peaks should be somewhat
wider than shown andand the low-energy cutoff will
not be abrupt.

in l
Suppose we now go outside the' e e metal. Interest-

ing y, the large peaks in Fig. 6ig. vanish since we
ave here the condition Su & E 4~+ . This means
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that those initial states which cannot contribute
external electrons include the k, range

I k, I& [2m(E~+C -k(u)/k']'~'

and it is the r egion near k, = 0 which gives r is e
to the peaks in Fig. 6. This remarkable difference
in the character of the fixed-angle distributions,
inside and outside, when S~& E~+4 appears in
the equations determining the trajectories:

k z/tan'8. —k', = 2m'/5 (inside),

k', —k z/tan'8, „,= (2m/k ')(Ez+ 4-Ka) (outside),

with k, and kp those of the initial. states. Inside,
the axis of the hyperbola is the kz axis while out-
side it is the k, axis. Inside, the hyperbola cross-
es the k, axis at k

~
= (2m&v/k) tan'8. , while out-

side the hyperbola crosses the k~ axis at k', = (2m/
82)(Ez+4 -«u) which is independent of 8,„,. If
ds is the length element along the trajectories,
the density of initial energy states on a trajectory,
ds/dE ~ds/dE. Since the geometrical figure which
determines the yield involves rotation about the
k, axis, the relevant quantity is 6=k~(ds/dE)
Inside, we have

of q and 8.
We conclude this section with a few comments

about the final. states even though we will con-
tinue to refer the yield to the initial states. A
sketch of the nonlocal excited states for the di-
rection of q indicated and h(d =2E~ is given in
Fig. 1(a). The plane underlying the spherical
segment of excited states results from excitation
of the initial-state, k, =0 electron pl.ane. All
other initial states, —k~& k, & k~, give rise to
excited states with larger final state k, 's.

Figure I(a) also indicates why our treatment
above must be modified when h(d«~. Under
this condition, the excited-state spectrum has a
spherical segment cut out of the bottom due to
the Pauli principle. This means that only some
of the initial. states of the Fermi sphere can con-
tribute to the yield and, for example, E . (q) as
well as E„„(q) in Eg. (2.18) differ from those
used above. In practice, this makes very little
difference since it only affects the theory for
4& S~& E~, and then only for initial states with
E ~Ez-k(d, states whereA, ' is well below its
maximum.

Ecos'8. +S~ cos'8. -sin'8. )G. ~tan8.
lll Ill E -@(d tan'8-

(2.30)

(a)

,
k,

I x k I

Since G. must be real, E ~ Sco tan'8. . The sharp
peaks in Fig. 6 are associated with this lower
limit where G. —~. We also find: outside and
hru& Ez+ 4

G,„,=G,
with

0 —E —4 and E&E +4-5u.
(2.31)

For all external angles, these distributions will
be approximately triangular and extend from E
=E~+4-S~ to roughly the Fermi energy or some-
what beyond, if 8,„,is small, because of damping.
In addition: outside and S~ & E~+ 4

Gout

(b)
kg /kF 8

~—o-Llp gp 5 p 5l ~~p

with (2.32)

Sa -he@ —E~ —4.
Thus, sharp peaks like those in Fig. 6 will ap-
pear in the external yield when S(d & E„+4. Equa-
tions (2.30)-(2.32) should only be used in a qual-
itative way. These trajectories involve a range
of q values and in the photoyield the various parts
of the trajectory will. be weighted by the appropri-
ate A,'. This has not been included; to do so would
entail multiplying the G's by nonsingular functions

FIG. 7. (a) Nonlocal excited-state spectrum for +(d
=2EF and no damping. The excited states for momentum
transfer q in the k» direction is the crosshatched re-
gion which is the cross section of a spherical segment.
(b) "Trajectories" of initial states contributing to the
internal yield for 0 =0.75 with momentum transfer in
the k» direction. The curves shown are for an arbitrary
plane containing the k, axis so in three dimensions the tra-
jectories become hyperboloids of revolution. Solid line:
8~=13', dashed line: 8 =25 .
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the nonlocal. curves in Fig. 8. It is necessary
to use expression (3.1) to describe the local part
of dA/dz for 0.9& Q s 1.0. For frequencies below
0.9, q,

" becomes large and the local part of dA/
n~ is, except for very small z, the usual local.
value (see Fig. 1).

For frequencies above the plasma frequency,
an additional nonlocal contribution to dA/dz ap-
pears, that due to the plasmon. This is clearly
indicated in Eq. (3.1) since, as Q increases be-
yond 1, q, changes from essentially imaginary
to essentially real and q,' is just the wave vector
of the plasmon in the low-q approximation. The
second term in (3.1) is then the oscillatory term
due to the plasmon. Since the plasmon damping
represented by q,

" will usually be considerably
larger than n, it is appropriate to view (3.1) as
the plasmon oscillations superposed upon the
s lowly decaying local contribution. Thus for
0 ~ 1+y, it is a reasonable approximation to take
for the local contribution the usual local expres-
sion which is just the first term of Eq. (3.1).

Below the plasma frequency, it is the single-
particle excitations, not included in (3.1), which
give rise to the nonlocal photoyield. %hen the
frequency is above the plasma frequency, these
single-particle excitations do not change their
character in any important way. Thus, independent
of the plasmon, we expect a nonlocal yield for
0& 1 and can see no reason for the claim of Feibel-
man' that the nonlocal yield should die out above
0 =1. Indeed, we find results in marked contrast
to his.

Consider now 0 =1.2 with y=10 and 81 =45'.
The curve of dA/dz for these conditions is much
like that of the curve labeled Q = 1.155, 8 =30 in
Fig. 2 of Ref. 1, that is, a sinusoid exhibiting
essentially no decay with increasing distance. '
That this should be the case is clear from Fig.
9 which shows the Fourier transform A,' dominated
by the large narrow plasmon peak. Since we are
at a frequency below that at which Landau damping
sets in, that is, the frequency Q~ where the plas-
mon dispersion curve enters the singl. e-particle
region (Q~ =1.48 for the electron density used
here), the width of the plasmon is due essentially
only to the finite value of y and thus the standing
plasmon wave in dA/dz extends hundreds of ang-
stroms into the metal. Above the pl.asmon peak
in Fig. 9 is the contribution from the singl. e-par-
ticle region, which, because of the large plasmon
peak, appears small but is in fact considerably
larger than that of Fig. 2.

As we discussed at length in Ref. 2, the plasmon
can contribute to the photoyield only to the extent
that it decays into single-particle excitations,
a process which is in detail unique for each metal

1200
~ .PEAK MAXIMUM—

8400 AT Q=205.8

(g) IOOO

800
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& 600

400
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200

0 I I

0 200 400 600
Q
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FIG. 9. Fourier transform A' of dA/dz for Q =1.2,
y=10, and 81 =45'. The units of A', are arbitrary but
the same as those in Fig. 2.
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FIG. 10. Nonlocal energy distribution dF/dE for
0 =1.2, y=10, and 81 =45 . Since Q&(Ez+4) =—0.92,
this curve is the same within and without the metal.

since it depends upon the details of the band struc-
ture. Let us here consider only the yield due
to the singLe-particle region; we will return to
this point below.

From Fig. 9 we see that there is no clear di-
vision between the upper-q part of the plasmon
peak and the single-particle region. This means,
of course, that the plasmon extends into the sin-
gle-par tic Le region and so, even in this case where
0& QL, , the plasmon contributes to the yield from
the single-particle region. ' The single-particle
yield has here been cal.culated using the minimum
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FIG. 11. Nonlocal angular distributions for 0 =1.2,
8 = 45' and 4 = 2.30 eV. See caption of Fig. 510-, er =

for definitions.

Q~ the plasmon will be situated more or less
completely within the single-particle region and
thus can ecay ind

' to single-particle excitations.
For 0 =1.50, dA/dz is given in Fig. 12. Damping
of the oscillations is considerable, even for y
=10 ', consistent with the location of the plasmon.
The Fourier transform A,' is shown in Fig. 13

d xpected the plasmon peak is sharply
reduced in magnitude from that of Fig. . e-
cause the plasmon is located just inside the low-

inA,' below the low-q edge as q, . TThe resulting
energy distribution is shown in Fig. 10. As a
resu o elt f th plasmon contribution coming in at

re ion thethe low-q edge of the single-particle region, e
contribution to dY/dE at high energies is enhanced
and dY/dE is concave upwards. It is th f t fIt is the fact of

tt' ff the q integration abruptl. y that gives
the strange high-energy cutoff in dY/ . n e
angular is ri u id t b tion (Fig. 11) the cutoff in the q

rou hl fl.at-inte ral gives rise to the extended, roughly a-
topped regions at low angles. If we ha ehad extended
the q integral to lower values with a smooth ex-
trapolation of A,' to zero, the high-energy tail
in Fig. 10 would be extended and the low-angle

eaks in Fig. 11 would extend upward and not be
flat topped. We note that both internal and ex-
t 1 angular distributions have contracted sig-erna an
ni ican y if ntl in angular spread from those o ig.

for a 1' ol.arInternal energy-resolved yields for a po ar
n le spread are qual. itatively like those of Fig. 6

and now these peaks also occur in the exte
ield. In addition, the peaks in the 1' yields nearyiel . n a i '

the Fermi energy are more promineinent for small
angles because of the larger A,' values near the
low-q edge of the single-particle region.

As was indicated above, the frequency Q~ at
which Landau damping sets in is ..L,

=Q =1.48 for the
present cond'tions. For frequencies larger than
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edge of the single-particle region, dY/dE we'll

be strongly peaked near the Fermi energy if the
damping is not too large; this is shown in Fig.
14. When y is as large as 10 ', our treatment
of damping leads to a large high-energy tail due
to the now markedly spread single-particle region
and the location of the plasmon. Angular dis-
tributions for y =10 ' are given in Fig. 15. In-
creasing y reduces in magnitude and broadens
the low-angle structure while decreasing y com-
press esses the peaks and increases their magnitude

ieldsharply. The concentration of the angular yie
to small angles influences strongly the 1' yields
as indicated in Fig. 16. For low angles, the com-
bination of the damping and the plasmon near the
low-q edge enhances the "lemon effect" and this
shows up clearl. y in the 1' yields for 61 ~ 13'. Keep
in mind that the energies at which the low-energy
peaks appear wit. l differ outside the metal.

Increasing 0 to 1.6, thereby moving the plasmon
more firmly into the single-particle region and
enhancing its decay into single-particle excitations,
produces only expected changes in the various
yields for 0 =1.5. The plasmon peak in the Fourier
transform A,' is broadened and reduced (by -2
from that of Fig. 13 for I =10 ~}. As a result,

—---4 ——- —- J. 00 I I

0 5 10 I 5 20 25 30 35 40 45

II(DEGREE}

FIG. 15. Nonlocal angular distributions for 0 =1.5,
r==10, 81 =75', and 4 =2.30 eV. See caption of Fig. 5

for definitions.

the peaks in dY/dE near Ez are reduced but, for
low damping, the curves remain strongly con-
cave upwards. Also, the low-angle peaks in the
angular yields are reduced in magnitude and the
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FIG. 16. Energy distribution curves for the internal
yield into a ring of polar-angle width 1 for 0 =1.5,

an=10 2 and 8 =75' If the number shown on a curve is
s, the angular range is (s —1) to s'.
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FIG. 1S. Fourier transform A» of dA/dz for 9 =2.5,
y =10, and two angles of inc+ence, 8& equals 60' and
75 . The units of A', are arbitrary, but the same as
those in Figs. 2, 9, and 13.

contributions to the 1' yields near the Fermi ener-
gy for small angles is reduced.

As 0 increases further the plasmon continues
to recede into the single-particle region and be-
comes essentially an indistinguishable part there-
of. As this happens, the picture returns to a form
qualitatively much like that for 0 = 0.75. We il-
lustrate for 0 =2.5 and y =10 '. Curves of dA/dz
shown in Fig. 17 exhibit rapid damping of the
oscil. lations and the resulting Fourier transforms
(Fig. 18) possess the same features as that of
Fig. 2. The energy distributions dY/dE are again
roughly triangular (Fig. 19) and both the angular
distributions (Fig. 20) and the 1' yields (Fig. 21)
look much as they did for 0 =0.75 (Figs. 5 and 8).
Note, however, that the magnitudes of all the
yieMs are much greater than they were at 0 =0.75.

We now wish to make some addition comments
on the total nonl. ocal yield and the role of the
plasmon, referring to Fig. 22 which shows the
frequency dependence of the yield. Consider 8,
=45' and keep in mind that we are here considering
only the nonlocal part of the yield associated with
the 2 components of J and E. For 0~0.92, the
internal yield is reduced external. ly by the sur-
face barrier. As 0-1 from below, the reduction

1.0 2.0
E(eV)

3.0 4.0

FIG. 19. Nonlocal energy distributions dF/dE for
0 =2.5, y =10, and two angles of incidence, OI =60'
and 75'.
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FIG. 20. Nonlocal angular distributions for 0 =2.5,y=10, 0& =75, and 4 =2.30 eV. See caption of Fig. 5
for definitions.

of the surface-region electric field essentially
eliminates the yield. As 0 increases beyond one,
the plasmon enters the picture. Above we con-
sidered only the yield associated with the single-
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FIG. 21. Energy distribution curves for the internal
yield into a ring of polar-angle width 1 for 0 =2.5,
y=10~, and 8& =75'. If the number shown on a curve
is s, the angular range is (s —1) to s'.

particle region, which means, of course, that
the plasmon contributes substantial. ly only for
Q& Q~ =1.48. The curve underlying the 8~ =45'
crosshatched region is the single-particle-region
yield. If we simply include the plasmon in the
total yield by extending the q integration in Eq.
(2.19) to include the plasmon peak in A,' (without
specifying a mechanism by which the plasmon
can produce photoelectrons) we obtain the yield
curve given by the upper boundary of the cross-
hatched region. Depending upon the system, that
is, the extent to which the plasmon decays into
excited electrons which ean escape, the yield
could then range throughout the crosshatched
region,

Yields versus frequency curves for the case
where the plasmon is included have been given
in Ref. 2. It should be noted that our electron
gas model does not provide a mechanism for
plasmon decay when Q ~ Q~. So, whil. e we can
formal. ly incorporate the plasmon into the total
yieM, we cannot describe the effects of the plas-
mon on the energy and angular distributions.

Let us examine the l.imit where the pl.asmon
contributes essentially no photoelectrons for
Q & Q~. The character of the photoyield can then
be rather complicated. The peak in the 45' yield
of Fig. 22, with the plasmon included, is an op-
tical effect' and occurs when the local dielectric
function e(td)= sin'gz or, for the electron gas,
Q= (ense&) '. So, when ez 6 30', the single-par-
ticl.e photoyield would have a small maximum
for Q & 1.15 and would then decrease until Q -Q~
where it would increase sharply. For 30 & 8,

2-

I
0+ t I It l t I t I t I t I

0 4 0.8 I.2 I.6 2.0 2,4 2.8
Q

FIG. 22. Total yields as a function of frequency
0 for y =10 2. The angle of incidence is given on the
curves. For ez =45', both the internal and external
yields are shown for the entire frequency range of the
figure. The curve underlying the crosshatched region
is the yield from only the single-particle excitations
and the curve defining the top of the crosshatched region
is the yield with the plasmon included for 1 & 0 & 1.48.
Yields for 81 =75' are given only for Q&1 with the
borders of the crosshatched region defined as for 6I
=45 . Two points for 81 =60' and 67 are also shown.
These curves are essentially independent of the escape
length $ if $ R 3 A, except in the range 1 & 0 & 1.48 when
the plasmon is included. Then we used $ =10 A. .

s 47.5' [47.5'=cos t(1/Q~)], these peaks would
merge with the sharp rise at Q~ dominating; this
is the case for 8I =45' in Fig. 22. For 8I &47.5',
the single-particle yield would increase from
Q =1 and then increase sharply for Q -Q~. This
is shown for 8I = 75' in Fig. 22 where the top of
the erosshatehed region is again the yield with
the plasmon included and the bottom, that due
only to the single-particle region. The extent
of the yield increase for Q-Ql is better indicated
by the 8I =75' curve as the obscuring effects of
the optics are removed. So, the most dramatic
manifestation of the plasmon when it is weakly
damped and contributes but little to the yield for
Q& Q~ (probably the normal case) is to increase
the yield strikingl. y for Q-Q~.

IV. SUMMARY AND CONCLUSIONS

A detailed description has been given of the
nonlocal surface photoyield resul. ting from the
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normal component of the electric field for an
electron gas excited by P-polarized light. These
yields are not insignificant, indicating that the
basic physical fact leading to their existence, a
strong dependence of the electric field (or the
vector potential) on distance from the surface
must be allowed for in general.

For an actual metal, our detailed description
will of course be modified by the addition of bulk
contributions such as those from interband tran-
sitions. However, within the total photoyield,
comprised of the bulk contribution and the non-
local or surface yield, features of the latter, as
described by the present theory, should be mani-
fested. These include: (i) surface contributions
to the energy distribution curves strongly peaked
near the Fermi energy; (ii) surface contributions
to the angular distributions of the yield, which
are confined to a decreasing angular range with
increasing light frequency; (iii} unique and un-
expected structure in the energy-resolved angular
distributions; (iv) a reduction of the total P-polar-

ized yield for 0%1 [more generally, e(~}&0];
and (v) structure due to the plasmons. For 0-2-3,
the electron escape lengths $ are very small. "'"
Under these conditions, the surface yield, es-
sentially independent of g, might dominate the
total yield.

The photoemission discussion presented herein
does not represent a complete description within
the model used. We have not included yield con-
tributions associated with the electric field com-
ponent parallel to the surface nor contributions
resulting from local. effects associated with the
normal component of the electric field. In our
previous work we have implied that the former
can be considered local, but we now know this
to be not the case." A proper treatment of the
photoyield resulting from the local part of the
optical, absorption means, in our model, a theory
for the photoyield due to the Drude absorption.
This is of general interest for photoemission due
to moderate-energy light and will be reported
shortly. '

*Work performed for the U. S. Energy Research and
Development Administration under Contract No.
W-7405-eng-82.
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