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Several self-consistent single-site eAective-medium approximations that allow determination within the tight-

binding picture of the electronic structure of random binary alloys exhibiting statistical correlation amongst the
atomic potentials are presented and developed in detail. The eA'ectiveness of these methods is evaluated by
study of the one-dimensional system since there the approximate results can be compared directly to
corresponding numerical solutions obtained by solving Schmidt's exact functional equations. As a matter of
course extensive results are reported demonstrating the severe effects that correlations can have on the
electronic structure of this model alloy. Within the framework of one dimension an n-site cluster
approximation is also outlined which is able {by employing clusters made up of as few as five sites) to
reproduce accurately the very fine structure of the eigenvalue spectrum. This scheme is applicable to Cayley
trees of coordination number other than 2 as well and when coupled with additional approximations will

prove useful in investigating localized eigenstates in higher-dimensional systems. Where appropriate these
methods are compared both formally and through particular examples to the simple-coherent-potential
approximation and also to the cellular-coherent-potential approximation of Butler.

I. INTRODUCTION

In the last several years considerable progress
has been made in understanding the electronic
structure of disordered systems. Much of the
theoretical work involves the use of a tight-binding
Hamiltonian formed from atomic orbitals associ-
ated with some assumed array of sites. Disorder
is usually incorporated into the formalism by
taking the site diagonal energies as statistically
independent random variables with a given prob-
ability distribution. Various approximations are
then employed to determine the ensemble-averaged
physical quantities of interest. A major develop-
ment in the theory of such model systems was the
coherent-potential approximation (CPA) of
Taylor, ' Soven, ' and Hubbard. ' This approxima-
tion can be made formally plausible within the
multiple- scattering approach of Lax' and involves
the introduction of an effective medium to be
determined self-consistently in such a way that the
average electronic scattering from a single "atom"
embedded in this medium is zero. Attempts to ex-
tend this single- site approximation have occupied
many workers. ' ' One can, for example, enter-
tain the idea of determining the effective medium
so that the average scattering from a whole cluster
of sites is zero. A notable quantitative success
along this line was achieved by Butler' within the
framework of the standard tight-binding model
for a one-dimensional (1D) uncorrelated substitu-
tionally disordered binary all.oy. Several ex-
tensions of the CPA to tight-binding models with
special types of off-diagonal disorder have also
been reported. ' Nevertheless, the theory of
disordered models allowed in the tight-binding

picture is far from complete.
Here we will study the popular two-level tight-

binding model of a substitutionally disordered
binary (Ar„Br ) alloy including in the analysis the
possibility of statistical correlations amongst the
atomic potentials. These atomic correiations (AC)
are introduced in the usual. way, "through a single
parameter P„&~ representing the probability of
finding an A atom at a particular site given a
nearest-neighboring site is occupied by a B atom.
By varying P„&~from zero to one this model can
be made to simulate binary alloys exhibiting a
strong tendency towards segregation of species all
the way to those having a strong tendency towards
compound formation. To date, the vast majority
of studies involving the present two-level model
have assumed that the atomic potentials a,re un-
correlated; however, as we shall see, the AC can
have severe effects on the electronic structure of
this system. Our study of this correlated alloy
was originally motivated because of its relation-
ship to a recent apparently highly successful ran-
dom static one-electron approximation" to the
Hubbard Hamiltonian. Application of this approxi-
mation relies on the existence of computationally
rapid and accurate techniques for obta, ining the
average integrated state density localized about
a particular atom (A or B) along with the total
integrated density of states (DOS) over the entire
range of allowed values of P„&~in the present mo-
del. Thus we wil. l. focus attention on the develop-
ment of approximation schemes for determining
not only the total DOS (sufficient for a quantitative
study of the thermodynamics), but also these con-
ditionally averaged densities of states as well.
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The different approximate methods that we will
present which allow calculation of these quantities
are somewhat similar in spirit to the CPA but are
built on the concept of conditional averaging"
which has already been applied by Licciardello
and Economou. " The first approach we develop
is termed the conditional self-consistent approxi-
mation (CSA) and is capable of treating our model
whenever P„i~~ X„,while its generalization, the
two- sublattice self- consistent approximation (SSA)
is applicable for arbitrary P„i~. This latter
scheme was obtained by coupling to the CSA
Licciardello and Economou's idea" of employing
an effective medium that will reproduce the dif-
ficult periodic compound formation limit for equal
concentrations of A and B atoms. Unlike the CPA,
both the CSA and the SSA are directed toward
generating directly the conditionally averaged
densities of states from which the total DOS is
then determined.

To evaluate the effectiveness of these approxi-
mations we have applied them first to the one-
dimensional system, since there corresponding
exact results can be obtained for comparison by
solving Schmidt's functional equations. " In this
instance we find that both methods are quite suc-
cessful and particularly accurate for determining
the cumulative DOS. Moreover, it is well known
that the 1D case provides a severe test" for any
effective-medium approximation, so that these
comparisons provide strong evidence that the CSA
and the SSA will be reliable schemes for treating
our model in higher dimensions.

In the framework of j.D we have generalized the
SSA to an n-site cluster approximation, the cluster
SSA (CSSA), which, as we will show, is able to
produce accurately the very fine structure known
to exist there in the eigenvalue spectrum. It
should be noted that in applying this method we
have encountered none of the problems such as
several possible solutions to the self-consistent
equations or n,egative DOS'~" that have marred
many of the cluster generalizations of the CPA.

The CSSA is applicable to Cayley trees of co-
ordination number other than 2 as mell, and when
coupled with additional approximations such as
those that we will suggest should be very useful
in investigating, in particular, localized eigen-
states in higher-dimensional lattice structures.

In Sec. II we first describe the model and pro-
vide some background leading to our approxima-
tion schemes. We then develop the formalism in
detail and evaluate the success of the CSA, SSA,
and the CSSA by direct comparisons to the exact
results in 1D. Additional results showing the
effects of AC on Cayley trees of coordination num-
bers 4 and 6 are also provided. Finally, in Sec.

III, we summarize some of the more important
features of this work.

II. FORMALISM AND RESULTS

A. Description of the model

We assume that we are dealing with substitution-
ally disordered binary alloys exhibiting atomic
correlations which have an electronic structure
that can be adequately described by the one-elec-
tron tight-binding Hamiltonain

&=~
I

n) ea(n I+ . IT)vr-(m
I

n l, m

(2 1)

where In) represents a Wannier state centered
at the site n (these sites form some lattice), Vl-
is taken as V if 1, m are nearest neighbors and
zero otherwise, and each ez is a random variable
which can assume one of two possible values E"
with probability P~ (equal to the concentration
X„)or ae with probability Ps(= 1 —P„=1 —X„)
depending on whether the site n is occupied by an
A atom or a B atom, respectively. The possibility
of atomic correlations is incorporated into the
formalism through four parameters P„i„,P„&~,
PB/A and PB/ B where, for example, P~ ~ A r p
resents the probability of finding an A atom at a
particular site given a nearest-neighboring site
is occupied by an A atom. Due to their defin. itions,
these four quantities are not all independent; in
particular we need specify just one, e.g. , P„&~,
to obtain the rest. Note that P„i~satisfies the
relation

0 P„i —min[1, X„/(1—X„)], (2.2)

with the lower limit corresponding to segregated
species and the higher to as close to periodic
compound formation as the concentration X„
allows. Since we can choose the zero of energy
arbitrarily, the two parameters E, E can be
replaced by a single quan. tity

g
—(eA ~ B)/y (2.2)

p(E) = —(1/v)Im lim (9-„(E+is)) (2.4a)

which represents the relative scattering strength
of the A and 8 atoms. As mentioned in the In-
troduction we are interested in developing tech-
niques applicable over the entire space of the
parameters P„i~,X„,5 for obtaining the total
DOS per site p(E) along with the average state
densities localized about a particular type of atom,
p (E), o. = A or B.

In terms of the model Hamiltonian„ the quan-
tities p(E) and p (E) are given by the usual re-
1.ations:
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p(E)= P X.p (E)
0.=A, B

(2.5)

p (E) = —(1/v) Imlim(9~(E+is))f; a=A or B,
s 0+

(2.4b)

where 9sm(Z) is the diagonal matrix element of the
Green's function 9(Z) = (Z —X) ' with the symbol ( )
indicating averaging over all random variables {e;)
and the symbol ( }N representing an average over
the same variables with the exception of «& which
is fixed at « . Obviously,

the totally averaged quantities can be obtained.
Thus (911) will be calculated by first expressing it

a.s

(9ss) = Q P(c)(9II)$, (2 7)

where P(c) represents the probability of a particu-
lar configuration e of the A, B atoms over a clus-
ter 8, and then approximating each (9');- sepa-
rately.

To find (91');- we first introduce the effective
hybrid Hamiltonian

We will also calculate the average state density
local. ized around a particular compact cluster of
atoms 8 centered at the site n which is defined by
the number of sites in the cluster and the particu-
lar configuration c of A, B atoms over these sites.
These quantities will be written for simplicity as
p'(E) and can be obtained from 9 through the rela-
tion

p'(E) = —(1/v) Im lim (9sl (E+is))q,
s 0+

(2.6)

B. Basic ideas; notation

The approximation schemes that we will employ
here are directed toward determining the condi-
tionally averaged Green's functions from which

where n is the central site of the cluster and the
symbol ( );- will always represent an average over
the random potentials not contained in c.

Since our interest lies in calculating the above
densities of states, only the diagonal matrix ele-
ments of 8 need to be considered; thus, the ap-
proximate schemes developed later will be espe-
cially designed to evaluate these quantities. The
same techniques, however, can be used to obtain
(91s);- when either m belongs to c or the distance

l
n- m

l
is less than a characteristic length asso-

ciated with the correlation implied by the differ-
ence lP„~ Xs„l. For larger ln —ml our meth-
ods are not directly applicable, but can be used
indirectly by first expressing 8I- as a function of
diagonal matrix elements, then calculating the
average of the latter, and finally assuming that the
average 81- is given by the same function in terms
of She average diagonal matrix elements. The
errors that the last assumption may introduce are
probably as severe as the ones present in the sim-
ple CPA. Thus we consider our approximation
accurate and therefore applicable for calculating
diagonal matrix elements (9@;-and off-diagonal
matrix eLements (9sg;- when n- m

l
is less than a

characteristic distance depending on c and

lP„~s—X„l.Here we will report results only for
diagonal matrix elements.

0'=- m «-m + mo'-m
IE'8' mfE8

(2 9)

= 6'+ O'T'G (2.10)

where T' is the usual scattering matrix defined
through the relations T'= (1 —V'G') 'V', V'=k —H'.
Thus (2.9) would be exact if {o~jcould be chosen
so that

(1")'=0 (2.11)

Now following a similar line of thought that led to
the simple CPA, we replace (2.11) by

(i');=0, mtEV (2.12)

where t'- is the t matrix associated with the scat-
tering potential

l
m)(e- o'-)(m

l
and the unper-

turbed Hamiltonian H'. The conditional average in
(2.12) is only over the single random variable es,
since this is the only such quantity entering t@.
Note that one could generalize (2.12) by replacing
the sites {m) by appropriate clusters of sites out-
side the basic cluster e. In the present work,
however, we will not consider such extensions and
will rather use throughout equations of the form
(2.12) to determine the coherent potentials cr'-. Ob-
viously from a calculational point of view one can
use only a small number of different a'- which must
be arranged over the sites {mJ (mKP) in a sys-
tematic way so that G' can be determined explicit-
Ly. However, in doing so (2.12) can no longer be
satisfied at all sites R and thus one has to decide

which is obtained from X by replacing all. «- for
m not belonging to the cluster 8 by the nonrandom

(but yet unspecified) coherent potentials {oLl. We
then take

(9ss);=(nl(Z —0') 'ln)=G~, (2.9)

with the quantities {ojbeing determined in such a
way that Eq. (2.9) is satisfied as accurately as is
practical. From the definition of Green's function,
it fol, lows that
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at which sites it will be maintained.
The approximation scheme outlined above can be

characterized by: (i) size, shape, and position of
the cluster 8'; clearly 0 should contain n so as to
reproduce the atomic limit (V=0). In addition, the
larger and more symmetric (about n) the cluster,
the better the approximation. This can be seen
from Eq. (2.10) which implies that the correction
to approximation (2.9) has a factor of the form
GmsGIs with

~
n- m

~
larger than the radius of the

cluster [because by definition (k~ T'~ k') =0 for
k, k' c Pj. However, G~I@—- 0 when V=0 and is also
known to decrease rather rapidly with increasing
~n- m~. A more physical way of putting all of
this is to simply say that 81- depends mostly on
the immediate environment of n which is repro-
duced exactly within the cluster P. On the other
hand, the larger the cluster c, the more compli-
cated the calculation becomes. (ii) The number of
independent coherent potentials a~+ and their dis-
tribution among the sites rn, where m~8; as a
general tendency the more a's available, the more
accurate the scheme can be made. On the other
hand, the choice of a's should be such that certain
symmetry requirements can be satisfied and the
quantities Gm@ can be obtained. (iii) The position of
the sites m outside the cluster c where Eq. (2.12)
is to be satisfied; one has to choose Bs many sites
as the number of self-consistently determined a' s
in order to have as many equations as unknowns.
Also by varying the location of these sites the re-
sultant approximation can be made better or worse.
By making different choices in the above three
aspects of the present approximation technique,
one can generate a host of various specific approx-
imation schemes. Below we examine three such
schemes starting with the simplest.

where

(2. 14)

H = [n) e (n(+ g (m)&r (m)+ ' [I)&»(r(.
Si@

(2.15)

The quantity a' is determined from the condition

(f age 0 (2.16)

where the site rn is a nearest neighbor of n,

fa= ~m)
(

s o), (m(, (2.17)

and G'-- can be easily determined since it corre-
sponds to a periodic Harniltonian with one impurity
at the site n. The CSA is schematically outlined
(for the 1D chain) from a slightly different point of
view in Fig. 1.

The coherent potentials a'", a can be complex
and different and are of course independent. Note,
the effective potential a" is totally determined by
employing techniques discussed in the Appendix to
solve the single equation (2.16) with o. =A and in a
similar fashion a~ is obtained by solving this
equation with o. =B. Thus to approximate (9ls)z",
the CSA employs an effective medium character-
ized by o", while to approximate (9am)z, it employs
a different effective medium characterized by a .
It may seem that it is a rather severe approxima-
tion to allow the effects of conditional averaging
(i.e. , fixing the random variable ez at either e or
&s) to be reflected in the reference medium all the
way to infinite distance from n. However, the
benefits realized by making the medium, to be

(9~) m
=

Gmm, a =A or B, (2.13)

C. Conditional self-consistent approximation (CSA)

In this approximation the cluster 0 is taken as
consisting of the central atom n only; further, all
the coherent potentials a- are considered equal.
Thus the effective hybrid medium is as in Fig.
1(b) (for the 1D case). It remains to choose the
site m at which the basic equation (2. 12) will be
satisfied. Here rn is chosen as a nearest-neigh-
boring site to n. One can argue in favor of this
location of rn by noting that the potentials on sites
closer to n have more important effects on (9mN) I
than those associated with more distant sites.
Also, by symmetry if Eq. (2.12) is satisfied at one
nearest neighbor of n, it is satisfied at all other
nearest-neighboring sites as well.

The CSA thus obtains (9@ through Eq. (2.7) by
taking each

7 "5 "5 I "2 4 n6

(a)

(b)gag gA go(
fI

g% peg
(c)

an Cn Cn Cr 0
5 I 2

FIG. 1. Schematic outline of the CSA which first re-
places the actual random medium (a) by the hybrid ran-
dom medium (b) and then determines the free nonrandom
parameter 0 in such a way as to make (b) behave as
much like (c) as possible insofar as the quantity (Sl, g) g
is concerned.
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used in obtaining the approximation for (9~)&
((9')z"), locally aware, as it shouM be, that the
site n is occupied by a B (an A) atom, will turn
out to outweigh the mistakes made by forcing this
awareness to large distances from n. As a matter
of fact, as we shall see, the CPA makes just the
opposite and usually more severe mistake in self-
consistently defining its effective medium.

Regardless of whether o. =A or B, Eq. (2.16)
will have several solutions, each of which is a
function of Z. Always the correct solution is
chosen by its asymptotic behavior as ~Z

~
ap-

proaches infinity, and then followed numerically
to the interesting range of energies within the band.
We emphasize that in all instances when we have
applied the CSA to systems partially characterized
by large 5, no problems were encountered in using
this procedure to obtain the approximate density of
states over the entire band. This is in marked
contrast to several other effective-medium theo-
ries that suffer great difficulties in continuing the
correct solutions from infinity when treating sys-
tems with large 6, due to the appearance of physi-
cally inadmissible nonanalyticities in their re-
spective effective Green's function. ""

That the CSA's way of defining the (os
~
m en) will

produce the correct results for (9~) in the uncor
related periodic limits of the model follows easily,
since Eq. (2.16) clearly requires in any of these
limits that o' be equal to (es)g, where m is the
nearest neighbor of n; a result which will yield
0~= E =-X„E"+X~& when coupled with the assumed
statistical independence of the site-diagonal ener-
gies. Further, the CSA will reproduce the correct
results to first order around these limits as we11.

To demonstrate this last point we can recast,
the defining Eq. (2.16) for o into the form

(2.18)

which allows us to see that when
j 5~ =

~

c"—c
~

/V
«1 we have o' = E to first order in 5. Thus, our

A

approximate expression for (9) is simply the vir-
tual crystal propagator which is trivially correct
to O(6) in this weak scattering uncorrelated limit.
To investigate the limits of vanishing concentra-
tion of either species we first for definiteness
suppose X„=1—g, X~=g, where g«1, and then
partially solve Eq. (2.18) to obtain

(2.19)

Iterating this result, we have immediately to O(q)
that

(2.20)

By putting these values of a'", o back into their
respective hybrid Hamiltonians and using the fact

that

(9)= Q X G~~ (2.21)

we find, by only retaining terms of 0(g), that

where R" —= (Z —K") ' and K" is the tight-binding
Hamiltonian for a perfect A. crystal. This propa-
gator is just what one would obtain by solving the
problem of pe (N is the total number of sites in
the lattice) independent B impurities in a host A
lattice and as such is correct to O(7i).

In order to further investigate what kind of er-
rors are introduced by the CSA one can use stan-
dard techniques" to express (9)g in powers of G

and t ~, m tn; doing this allows one to see that in
the absence of correlation (P„&s=X„),the lowest-
order corrections to the CSA from sites close to
n are of the form

G ~t ~G't NG't ~G~t ~G

i.e. , fourth order in t, where m, k are two differ-
ent nearest neighbors of n. Thus the vicinity of n

is treated rather accurately in the CSA.
The CSA can be brought into immediate contact

with the familiar CPA in the regime where the lat-
ter approach is applicable (P„&s=X„)by first re-
calling that the CSA was obtained by choosing the
site m at which Eq. (2.16) is satisfied to be as
close as possible to the central site n, and then
noting that if we had chosen instead the opposite
limiting case of taking m at infinite distance from
n, we would have recovered the simple CPA. This
follows since

and hence Eq. (2. 16) reduces to the basic CPA
equation (t -) =0. This clarifies the similarities
as well as the differences between the two ap-
proaches. More explicitly, the CSA chooses a
site as close as possible to n to partially incor-
porate the effects that arise from fluctuations of
the actual medium around the reference medium
in the immediate vicinity of n. However, to
achieve this it uses an effective medium that in-
correctly reflects all the way to infinite distance
from n the effect of fixing the random variable q&
at 6 . 0n the other hand, the CPA in taking m an
infinite distance from n defines an effective medi-
um that is correct insofar as it does not reflect at
infinity the fixing of E& at e, but to achieve this,
it gives up a lot to the CSA by extending this me-
dium incorrectly into the neighborhood of the fixed
site. The two methods thus make complementary
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FIG. 2. Total density of states obtained by employing
the CSA (solid lines) and where applicable, the CPA
(dashed line) compared with the exact density of states
(histogram) for a 1D disordered alloy with X&=X&
= 0.5, 5 =1, and (a) Pzy~= 0.5, (b) Pz/~= 0.3, and (c)
Pzyz ——0.1. If the CPA were applied to cases (b) and (c),
it would yield the same results as in case (a). All curves
are symmetric about: (e +e )/V=—0.

mistakes. In particular, right around the limits
X„=0 or 1;5 = 0, the CPA is the better approxi-
mation since in these limits the effects of fixing
&& should be minimal and thus "much" overstressed
by the CSA; however, whenever the electron's
mean free path is short, but not zero, the CSA is
expected to be the better approximation since the
effects on (9mI)m due to the environment in the im-
mediate vicinity of n, , stressed by this scheme but
ignored entirely by the CPA, should play the more
important role. The price paid to the CPA by the
CSA around the coherent limits of the model when
X„=P„&~as far as approximating the totally av-
eraged DOS is concerned is actually small since,
as we have shown, the CSA reproduces around
these limits the correct Green's function at least
to first order. Furthermore, in the more inter-
esting uncorrelated cases where

~

6
~

is becoming
fairly large and the concentration of both constitu-
ents appreciable, it turns out that the CSA more
than recoups any debt incurred to the CPA in the
neighborhood of 6-0 or X -0 since here com-

A

( )
g &f @=A

m n
sf n =B.

{2.23a)

(2.22b)

Thus, when P„&~=0,the CSA in calculating
(9;;)";((9;;)&) replaces this quantity with the di-
agonal matrix element of the Green's function for
a perfect A {B)crystal having the same lattice
structure as the disordered system, which is just
the correct result. A correlated random binary
alloy with P„&~finite, but a lot less than X„can
be simply interpreted as a system composed of
very large domains of all A or B atoms on the
microscopic scale which are still small however
on the macroscopic scale. An obvious analogy ex-
ists here with%'eiss's explanation in terms of
ferromagnetic domains of the experimental fact
that the total magnetic moment of a ferromagnet
can be very much less than the saturation moment
at temperatures well below the Curie point.

parison of the approximate CSA and CPA densities
of states to corresponding results obtained by sol-
ving Schmidt's exact equation show a systematic
and substantial superiority in the CSA's results.
More specifically, as 5 is increased, the CSA is
progressively better than the CPA in producing the
band edges, cumulative total density of states, and
some of the erratic structure of the band. This
phenomenon is easily understood in the light of our
above analysis since as the relative scattering
strength is increased, the mean free path of the
electron should decrease, thus making the CSA
increasingly better than the CPA. As can be seen
from Fig. 2, in 1D, when X„=X~,the CSA is al-
ready actually the more satisfactory approach for
values of 5 as low as one. This is perhaps some-
what surprising since in this example the total
DOS is not that different from what would be ob-
tained from the virtual- crystal approximation.
%e emphasize, however, that these results are
from 1D where the effects of the local environment
on the total DOS are usually more important.

Up to this point we have only examined some of
the ramifications of applying the CSA to uncorre-
lated alloys (X„=P„&s). However, this approach
in contrast to the CPA has the ability to incorpor-
ate effects on the state densities of interest asso-
ciated with a tendency of the A, B atoms to segre-
gate. More specifically, the effective medium that
we employ in the CSA to approximate (9II)I will
quite naturally treat some of the effects of taking
P„~~~X~, and in particular, will allow the re-
production of the limit P»~-0. That the CSA
yields the correct results when P„&B=Ofollows by
first noting that here P„&„=P» ~ = 1 and P~~ ~
= P~&„=0 regardless of the value of X„sothat Eq.
(2.16) can be trivially solved to find that
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Since the CSA reproduces the limit P„i~=0and
works quite well when X„=P„i~it provides an
interpolation scheme throughout the regime P„i~
«X„.To analyze somewhat whether this is a
reasonable interpolation scheme we first note that
if we apply the CSA to an alloy with P„i~(X„,we
make a sacrifice in this approximation's ability to
precisely incorporate many of the more important
average effects on the quantities of interest that
arise from local fluctuations of the random medium
around the reference medium at nearest-neigh-
boring sites to where (9;;)s is to be calculated
For example, there are now correction terms
(associated with nearest neighboring sites of n)
to the CSA that are second order in t and not
fourth order as in the uncorrelated case since
now all the random scattering vertices ti become
statistically dependent. In this sense, the CSA could
be expected to progressively worsen as an approxi-
mation to (&;g)S as P„isbecomes more and more
different from X„;however, as P„i~ decreases
from its uncorrelated value, the present approach
could also be expected to improve due to a system-
atic reduction in the magnitude of the average
fluctuations bf the random medium around the self-
consistent reference medium in the neighborhood
of a site known to be occupied by an atom of a. given
type. This follows of course because of the ten-
dency of the system to form large clusters locally
of one type of the atom and it is just through this
process that the CSA recovers the limit P„i~-0. Since the CSA employs this type of balancing,
it can be expected to work fairly well in the regime
P„i~»X„.These expectations are in fact realized
for the 10 cases where we have compared results
obtained by applying this approximation to cor-
responding results generated by solving Schmidt's
function equations. Some examples are shown in
Figs. 2(b) and 2(c). In light of these and other
results (not shown) in 1D, we can make a strong
conjecture to the effect that the CSA will prove a
surprisingly accurate technique for obtaining both
the conditionally and totally averaged densities of
states in our model when P» ~» X„regardless of
the dimensionality of the system, since in higher
dimensions the effects on the quantities we wish
to approximate of the more important fluctuations
neglected by the CSA are expected to lessen rather
than to increase. Thus the CSA is expected to be
very useful in analyzing both quantitatively and
qualitatively the effects on the electronic structure
of random alloys due to a tendency toward segrega;
tion of species (P»s X„)in real higher-dimen-
sional systems.

When X„=0.5, the CSA is of course unable to ef-
fectively approximate (9-)~ as P„isapproaches one
due to its inability to reflect the increase at this

E-""Ig'(nl+ ~ Im)o;(ml
magi

+ g (r)a, (ri+ g il)V(m [,
p GS2

(2.26}

limit of the number of atoms per unit cell. For
this reason, we have developed the SSA described
below which is capable of reproducing this difficult
periodic compound formation limit along with the
other coherent limits of the model and represents
in almost all instances an improvement over the CSA.

D. Two-sublat tice self-consistent approximation (SSA)

In this approximation, as in the CSA, the cluster
c is chosen in the simplest possible way as con-
sisting of the site n only. In choosing the number
and the arrangement of the coherent potentials a'-,
m wn, we first note that when X„=0.5 and P~i ~
= 1, the system divides into two interpenetrating
sublattices which have no sites in common, with
the sites of one sublattice being occupied only by
A atoms and the sites of the other only by 8 atoms.
Under these circumstances, if we separate the
self- consistent equations (2.12) into two groups,
with one group being associated with sites of one
sublattice and the other group associated with sites
of the other sublattice, then in the limit X„-0.5,
P„i~-1, all the equations in a particular group
have the same physically correct solutions. Thus
if we, when approximating (9@);by G-, define
the reference medium as composed of two sub-
lattices each characterized by a single coherent
potential and determine these two potentials self-
consistently by requiring that (tg f = 0, (t&~) f = 0,
where r, rn are sites in different sublattices, we
have generated an approximation scheme which
reproduces the limit X„-0.5, P„i~-1.It should
be clear from our previous discussion that this
way of determining {opjwill incorporate the other
coherent limits of the model as well. In the spirit
of the CSA, we now choose m, r to be as close as
possible to n so as to include on the average in
the approximate Green's function a partial de-
scription of the local environment around the site
n which is expected to have the most important
determining effects on the state densities when the
mean free path of the electron is short. With
these specifications, the SSA is now defined and
can be summarized as obtaining

p (E) = —(I/v)lm lim(QII(E is)+)1 ~ a =A or B,
(2.24)

approximately by taking

(S')s=G =(z-ff )-', (2.25)

where here the hybrid Hamiltonian H takes the
explicit form
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with S, representing the sublattice which contains
n, S, the other sublattice, and with the quantities
a', , a, being determined through the relations

(f ps=0; (t)))=0, (2.2V)

where m and r are nearest- and next-nearest-
neighboring sites, respectively, to n.

For the purposes of numerical calculations Eqs.
(2.27) can be recast in the more convenient form

e, —ox™—(e —o,')Gmsm(a" —o, ) =0, (2.28a)

(2.28b)

where e", = (&9');, e", = (e,)s. To solve these
equations we must determine &-,6- as an ex-
plicit function of a, , a, which is easily achieved by
using Eq. (2.10).

Note that the SSA to obtain (9-)f employs an
effective medium characterized by a, , a,", while
to approximate (Qst)ss it employs a different ef
fective-medium characterized by a~, a2~. The
reference potentials a", , a~2 are energy dependent
and are determined by solving Eqs. (2.28) simul-
taneously with a =A. Likewise, the reference po-
tentials a, , a, are also energy dependent and are
obtained by solving Eqs. (2.28) simultaneously
with a =B. In both instances (o. =A or P) these
equations have several solutions which are a func-
tion of energy and the model parameters. The
physical solution is always unambiguously chosen
by asymptotic behavior as

(
Z

~

=
~

E+is
j
-~ and

then continued numerically using the techniques
of the Appendix into the interesting range of eigen-
energies within the band. In contrast to many other
effective-medium theories, ""'"no problems werg
encountered in employing this procedure even
though in many instances 5 was taken quite large
(5- 10).

On the surface it may seem that inherent in the
SSA is an obvious flaw that would in much of the
parameter space seriously affect its ability to
approximate accurately (9+&™.Specifically, this
method seems to make a crucial mistake in em-
ploying two sublattices; however, as we shall
see, the errors incurred in this way, even when

P„&~ is considerably less than X„arein fact
small while the benefits gained when, for example,
X„=0.5, P„&~close to 1 are large. Let us ex-
amine this question further. (9;ge depends on the
environment within a mean free path or so of n.
Thus, when the mean free path is short, the SSA
should be far superior to the CPA and even to
the CSA, since it treats the environmentof nmore
accurately than either of the latter two schemes.
The fact that the SSA may incorrectly continue
the a, , a, arrangement all the way to infinity is
immaterial in this case.

Another regime where the SSA obviously excels
is the large P„&~regime when X„=0.5. In the
1D case the a, , a, alternating arrangement is
physically meaningful within a correlation length
of the order of —(InP„&s)' which is quite large as
P~& ~- 1. Moreover, in higher-dimensional lat-
tices when P„&~ exceeds a critical. value P, de-
pending on the lattice [e.g. , for the 2D square lat-
tice (P, = 0.855)] the o, , o2 two sublattice arrange-
ment remains meaningful all the way to infinity,
since when P»~&P„ long-range order exists in
the system which is created out of the AC. This
can be easily seen by noting that correlating the
A and B atoms through P„&~is exactly equivalent to
an Ising coupling between spin up and down. " As
a matter of fact the above value of P, = 0.855 was
obtained from Onsanger's solution of the two-
dimensional Ising model. " Thus, in the regime of
high P„&~, SSA is very accurate, while both the
CPA and the CSA fail there. Even the quite so-
phisticated cellular CPA (CCPA) developed by
But?er, ' although capable of incorporating partial
ordering, is not accurate when P„&~is large; be-
sides, we have found in this regime that the CCPA
develops numerical difficulties when one tries to
extrapolate the correct solution at high energies
to the interesting range of energies within the band.

Also, as can be readily checked, the SSA like
the CSA will reproduce the correct results for the
total DOS to first order in the weak scattering
1.imit, when the site diagonal energies are un-
correlated. Moreover, it is exact in all the non-
random correlated limits of our model and gives
the correct results in the atomic limit as well.
Errors introduced by the use of two sublettices
are most pronounced when P„&s is small (where
the favored segregation of species cannot be ef-
fectively described by two interpenetrating sub-
lattices) and for medium mean free path (not too
short when the distant sites become immaterial;
not too long when o, =o2). Even in this most un-
favorable regime, we do not expect the whole
spectrum to be affected equally. It is well known
that the alternating ABAB. . . arrangements
have severe effects around the center of the
band, E= (e"+as)/V=-O, where a gap develops.
Thus the SSA is expected to be at its worse for
low P„&~,medium mean free path, and E around
zero. Our explicit results to be presented later
support this analysis.

It should be stressed once more that the above
comments about the properties of the SSA apply
when this approximation is used to evaluate di-
agonal matrix elements (9+ or other local quan-
tities like (9+, with n, m nearest neighbors. The
SSA would give very poor results if applied di-
rectly to the evaluation of (QsS) when

~

n- r~ is
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any effective-medium technique since approxima-
tions of this type should improve with increasing
dimensionality and as Elliott et al."have noted
it was just this sort of analysis that put the CPA
on firmer ground.

To test the SSA and to see the effects of AC ex-
plicitly, we first display in Fig. 3 the total elec-
tronic density of states of a 1D alloy with X„
=X~=0.5, and 5=1, for three values of P„&~,
while in Figs. 4 and 5, we show how these results
are changed as the relative scattering strength
5 is increased to two and then to four where the
bands are just split. For a given 5, the dif-
ferent values of P„&~are chosen to allow com-
parison involving the total DOS per site of the
completely random alloy (here P„&s = 0.5),
the random alloy which has a tendency towards com-
pound formation (P„~s= 0.9) and the random alloy
which has a tendency towards segregation of con-
stituents (P„~s= 0.1). These results show the severe
effects that changing P„&scan have on the density
of electronic states of our model when X„=0.5, and

0.0
0.0 1.0 2.0 0.0 1.0 2.0 5.t:

E/V

larger than the correlation length associated with
P„~s. To be on the safe side, the SSA (and the
CSA for that matter) should be seen as approxi-
mation schemes for evaluating averages of di-
agonal matrix elements of (Q~, or equivalently
average DOS, and not averages of the total oper-
ator (9).

To evaluate the effectiveness of the SSA as an
interpolating approximation we have first applied
it to the 1D random alloy; however, we stress
that this scheme is also applicable with no
additional approximations to any random alloys
describable by our model. In presenting any new
effective-medium approach such as the SSA, it
is important to first test it in 1D since there ex-
act results for the total DOS can be generated,
for example, by solving Schmidt's functional equa-
tions. These exact results can be then compared
to the corresponding approximate total DOS. Such
detailed comparisons provide a severe test for

FIG. 3. Total electronic DOS per site [(a), (b), (c)]
from the SSA (solid lines) and where appropriate, the
CPA (dashed line) compared with the corresponding
exact results (histogram) for a 1D alloy with X&=0.5,
6=1, and P~y&. (a) 0.9; (b) 0.5; and (c) 0.1. Also shown
[(a'), (b'), (c')] are the corresponding average state
densities at anA atom p" (E) (solid lines), and a E atom
p~(E) (dashed lines) from the SSA weighted by X& and
Xs= 1 —Xz, respectively. Note that p"(E) = ps( E), p(E)-
= p(-E).
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FIG. 4. Total electronic DOS per site f(a), (b), (c)]
from the SSA (solid lines) and where appropriate, the
CPA (dashed line) compared with the corresponding
exact results (histogram) for a 1D alloy with X&=0.5,
6=2 and Pzg~.. (a) 0.9; (b) 0.5; and (c) 0.1. Also shown
[(a'), (b'), (c')] are the corresponding average state
densities at anA. atom p (E) (solid lines), and a B atom
p+(E) (dashed lines) from the SSA weighted by X& and
Xs, respectively. Note that p (E)=p ( E), p(E)=p( E). --
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p&G. 5. Total electronic DOS per site [(a), (b), (c)]
from the SSA (solid lines) and where appropriate, the
CPA (dashed line) compared with the corresponding
exact results (histogram) for 1D alloy with X&=0.5,
6=4 (just split band case) and for Pzg~. (a) 0.9; (b)
0.5; and (c) 0.1. Also shown [(a'), (b'), (c')] are the
corresponding average-state densities at an 4 atom

p (E) (solid lines), and a B atom ps(E) (dashed lines)
from the SSA weighted by Xz and X~, respectively.
Note that p"(E) = ps( E); p(E) = p( E).--
thus emphasize the necessity of including sta-
tistical correlations amongst the atomic potentials
in any analysis of the electronic structure of such
alloys. For each P„&~,the total DOS obtained by
employing the SSA and, where appropriate, the
CPA is compared to the exact results generated by
solving the Schmidt's functional equations. In
addition, in Figs. 3-5, we exhibit the average-
state densities at an atom of type A, p"(E), and
an atom of type 8, ps(E), determined directly by
the SSA and then used to obtain the SSA results for
the total DOS, also shown in these figures. It
should be noted that the SSA can be used to gen-
erate both the totally and partia, lly averaged DOS
at 250 points within the spectrum for less compu-
tational costs than required to solve Schmidt's
functional equations accurately using Agacy's"
techniques at just one point. Moreover, Schmidt's
formalism is incapable of producing the condition-
ally averaged DOS shown in Figs. 3-5. These
results taken all together indicate that the SSA
is a surprisingly accurate scheme for uncovering
many of the features of the exact DOS.

Although we do not display in this subsection any
results showing the effects of AC when X„0.5,

we will do so in Sec. II E where it will be seen
that as X„is increased, the AC play a diminish-
ing role, due to the increasing dominance of the
majority constituent (here X„)in determining the

spectrum of states.
To analyze these results in further detail we

first consider the "anticlustering" sequence shown
in Figs. 3(c),3(c')-5(c),5(c'), where the alloy ex
hibits a fairly strong local tendency towards segre-
gation of species (P„~s——O. l}. By examining these
figures, we see right away that the SSA is suc-
cessful in reproducing quite accurately the exact
results in this regime of small P„&~.Although the
SSA is doing a good job here, it is not doing as
well as the CSA, as can be seen explicitly by com-
paring Figs. 3(c) and 2(c) and as could be expected
from our previous analysis. The small differences
in the approximate results from the SSA and CSA
that can occur when P„&~ &X„areprimarily due
to the SSA's use of an effective medium different
in form from the effective medium used by the
CSA. As was noted before, the CSA's effective
medium is more appropriate in this regime than
that of the SSA's with the two sublattices. The
fact [see Figs. 2(c} and 3(c)] that the differences
in the approximate results from the SSA and the
CSA are most pronounced around E=O when

P»~ = 0.1 X~ = 0.5 and 5 = 1, is in agreement with
our previous conclusions. Since this particular
problem with the SSA is of a global nature (i.e. ,
associated with its effective medium), it is not
quite rectified by the cluster extensions that we
present in Sec. IIE. We have called attention to
this very slight difficulty to emphasize how little
error is really introduced in this approximation by
the use of two distinct sublattices even when P„&~
&X„.Since it is just this feature that allows the SSA
as opposed to the CSA to interpolate successfully into
the parameter region where P„&~&X„,and to repro-
duce the periodic compound formation limit X„-0.5,
P„&~-1,it is a very small sacrifice to make in
order to obtain a much more generally applicable
scheme.

The most prominent feature of all the results
when P»~=0. 1 is their similarity to what would
be obtained at the limit P„&~ = 0. In particular, as
shown in Figs. 3(c'), 4(c'}, and 5(c'), the average
state density localized around an A atom is quite
like the total DOS per site for the perfect A crys-
tal while the average state density localized around
a B atom is similar to the total DOS per site of the
perfect B crystal. It is somewhat surprising that
the very sharp band edges associated with either
the perfect A or B crystal are not more rounded
by the introduction of the non-negligible random-
ness P»~=0.1. We also see from these figures
that as the scattering strength is increased the
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average state density localized around an atom of
type n becomes progressively more associated
with states of parentage n, where the parentage is
clearly registered in the atomic limit. Finally, to
conclude our discussion of the segregated regime
we note that the SSA splits the band right around
5 = 4, a result which is in agreement with the exact
critical value of 6 necessary for splitting predicted
from the Saxon-Hunter" localization theorem.

Now consider the random sequence (P„&s——X„
= 0.5) shown in Figs. 3(b)-5(b') and 6. We first
note that when the difference between the two con-
stituents is not large (6= I), both the CPA and the
SSA yield approximate densities of states that are
in good agreement with the exact results. This is
not at all surprising since both schemes are exact
in the virtual crystal limit (5-0) and thus are ex-
pected to do well when 6 is small. However, as
the relative scattering strength is increased [check
Figs. 4(b) and 5(b)] both approximations become
progressively less successful. We see though as
(5~ increases, the results from the SSA are all
and all progressively more satisfactory than those
from the CPA. This is to be expected since the
SSA like the CSA stresses in its self-consistency
conditions the partial inclusion of local effects on
the conditionally averaged DOS, while the CPA
ignores them completely and these effects are of
course increasing in importance as the states
acquire a shorter mean free path with increasing
~6~. If this explanation is in fact correct, then the
SSA in this regime should also be superior to the
CSA, since its approximate results are more
aware of the environment around n. In all cases
where we have tested this conjecture, we have
found it true and a particular example is shown in
Fig. 6, where it is shown that the SSA on the whole
shifts the states less severely from their correct
values.

As with the segregated sequence, we see also
with this uncorrelated sequence that as the differ-
ence between the atomic levels is increased, the
band is split into two subbands, with each being
made up almost entirely of states associated with
a particular type of atom. When X~=P~&~, the
SSA splits the bands less readily than the CPA,
but still too easily.

Although the SSA is not producing the fine struc-
ture of the band in Fig. 6, it is really shifting
states only locally from their correct values as is
shown explicitly in Fig. 6(a), where the cumulative
total DOS from the SSA is compared to the exact
results from Schmidt's functional equations. This
point is important since it means that although
these results from the SSA cannot be used to ana-
lyze the fine detail of the band there, they should
be perfectly adequate for thermodynamic calcula-
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FIG. 6. (a) Cumulative DOS from the SSA (thick solid
line), CPA (dashed line), and Schmidt's equations (thin
solid line); (b) Cumulative DOS from the CSA (thick
solid line), CPA (dashed line), and Schmidt's equation
{thin solid line); (c) Total DOS from the CPA (dashed
dotted line), CSA (solid line), SSA (dashed line) and
Schmidt's equation (histogram); 6=4, Pzy&=X&=0.5.

tions when the temperature is not too low.
We now turn our attention to the sequence ex-

hibiting a tendency towards local compound forma-
tion, Figs. 3(a)-5(a'). It is evident from these re-
sults that the SSA has the ability to interpolate in-
to the region P„~~ -X„,and produces well in all
cases the residue of the periodic limit
(X„=0.5, P„&s=I) found in the exact results.
Although this method is having problems with the
two prominent impurity "bands" that are shown in
each figure, it qualitatively reproduces their be-
havior as the relative scattering strength is in-
creased. These impurity bands result from states
localized around points where large periodic AB
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FIG. 7. Total DOS of a binary Cayley-tree alloy from
the SSA for Pzyz.. (a) 0.9; (b) 0.5; and(c) 0.1, and coordina-
tion number ¹ 2 (dashed dotted line); 4 (dashed line);
and 6 (solid line); (5/4' —1) =0.75, and X&=0.5. All
curves are symmetric around E= 0.

clusters have been improperly connected. They
are not associated with the replacement, for ex-
ample, of an A atom at some site in the periodic
AB compound by a B atom. Aswiththe segregated
and totally random sequences, we see that as the
relative scattering strength is increased, states
of parentage A are increasingly depleted from the
allowed region of eigenvalues around &~ and vice
versa.

The most interesting feature of these results is,
of course, their similarity to the totally periodic
case, X„=0.5, P~&~=1, even though the atomic
correlation is not that strong (P„~s——0.9). This
happens in higher dimensions as well, and thus,
when dealing with random alloys thought to have a
local tendency toward periodic compound forma-
tion, one should be alert to the possibility of a
rather drastic depletion of states in the center of
the band. Moreover, in this picture, "the states
remaining in the gap should be strongly localized
so that most probably in higher dimensions one is
left with a. semiconductorlike DOS with localized
states inside a gap that separates the valence from
the conducting band.

In Fig. 7, we show the effects of AC on the total
DOS of several alloys having equal constituent con-
centrations and Cayley-tree lattice structures of
coordination numbers two (1D), four, and six,
where the latter two cases effectively represent
higher-dimensional systems. These results were
obtained by applying the SSA, and the different
values of P„&~were taken as 0.1, 0.5, and 0.9.
In each instance, the energy is normalized by
1/(N —1)'~' and the relative scattering strength
taken so that 6/4(N —1)' '=0. '15, where here N
represents the lattice coordination number. This
was done to emphasize that under these circum-
stances after N becomes larger than two the Cay-

ley-tree DOS differs little in form as the coordin-
ation number is changed. This fact has nothing at
all to do with the SSA as can be seen by examining
the analytic form of the DOS in any of the periodic
limits. It is simply a feature of Cayley trees that
has gone largely unrecognized in the literature.
Further, note that when the coordination number
is infinite, the crystalline Cayley-tree Green s
function simply becomes the Hubbard or semi-
circular Green's function if 6/(N 1)'~'-is kept
constant as N is increased. This Cayley lattice
with infinite coordination number has been used
extensively by Velicky et al."to study the simple
CPA. Moreover, the DOS in this case does not
differ much from what is obtained by taking N = 4,
6, etc.

We see from Fig. 7 that when X„=X~,AC has
effects on the band structure of random Cayley
alloys with coordination numbers other than two

qualitatively identical to those found in the 1D case.
Explicitly, a tendency toward local periodic corn-
pound formation results in much fewer states
around the center of the band than would be found,
for example, in the purely random and segregated
regimes.

The evident success of the SSA in handling our
model for arbitrary P„&~in 1D strongly indicates
that it will be an even more successful approxima-
tion scheme in higher-dimensional systems where
exact procedures are absent. This follows since
this approach has been found to have its greatest
difficulties in 1D around energies where the actual
spectrum of the system exhibits very sharp peaks
and although such structure in the DOS exists in
higher dimensions, it is of decreasing importance.
Thus, we expect our model. in conjunction with the
SSA to be very helpful in analyzing both quantita-
tively and qualitatively the effects on the electron-
ic structure of random alloys in the presence of
short-range statistical correlations amongst the
atomic potentials in real systems.

E. Generalizations of the SSA

All of the approximation schemes that we have
introduced up to this point use only the simplest
possible random hybrid Green's function. Al-
though our best scheme so far, the SSA, is very
successful in incorporating many of the effects of
short-range order, it does not uncover the very
fine structure that is expected in the density of
states when the electron's mean free path is short.
Thus it cannot, for example, be used to analyze
the erratic structure that occurs in the 1D band
when the relative scattering strength 5 is fairly
strong, the system is completely random, and the
concentration of both constituents is large (check
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FIG. 8. Schematic outline of the CSSA which in ap-
proximating (9~1) ' replaces the actual random medium
(a) by the random hybrid medium (b) and determines
the free parameters a ~& (i=1,4) by requiring that the
average of the random scattering matrices (tg )-II+ 4 ci=1,4 equal zero.

Fig. 8). Moreover, it does not reproduce a com-
pletely satisfactory DOS at eigenenergies associ-
ated with impurity states. These problems essen-
tially arise because the SSA fails to incorporate
into its effective Green's function enough of the
effects of the environment around the site where
the conditionally averaged DOS is calculated and

are expected to be partially alleviated by an ap-
proximation scheme employing a larger cluster

To develop such an approach is straightforward
in one dimension (or, for that matter, whenever
a Bethe lattice is assumed) but as we shall see,
more difficult in higher dimensions because of
symmetry problems associated with self- consis-
tently defining the effective medium. The cluster
approximation that we present below in the frame-
work of the 1D lattice will be termed the cluster-
SSA(CSSA) and, for example, it is able to repro-
duce (at considerably less cost) all the many very
sharp peaks that are shown in the histogram of
Fig. 6. Although this method j.s applicable in prin-
ciple to any random binary Cayley-tree system
treatable by our model, it unfortunately, unlike the
SSA, cannot be carried over directly to real two-
and three-dimensional lattices. It can, however,
as we shall discuss at the end of this subsection,
be used as a basis for a tractable cluster approxi-
mation applicable in higher dimensions, and a,s
such is a technique of considerable interest.

As noted above, to incorporate into the totally
and conditionally averaged DOS more of the effects
associated with the local environment around the
site n, we should begin with a more complicated
hybrid random Green's function than used by the
SSA. In particular, in the CSSA, which we present
now, we start with a random hybrid Green's func-

A

tion, G', where c, is a cluster centered around n.
By following reasoning processes analogous to
those which led us to the SSA, we find that the ef-

A

fective medium to be used by G' in approximating
(QII)i~ should be characterized by four coherent
potentials o', ; i = 1,4. These potentials are arranged
on the chain in such a manner that to the right of
the fixed cluster we have 0'„o,at alternating sites,
while to the left we have a„o4at alternating sites
(check Fig. 8); all four of these coherent potentials
are determined self-consistently by requiring, in

the spirit of the CSA and SSA, that the average
scattering matrices associated with the nearest-
and next-nearest neighboring sites to the cluster
of fixed configuration c be zero. %ith these speci-
fications, the CSSA is defined and can be sum-
marized as taking each

(2.29)

where the quantities v'„i= 1,4, which together
with the cluster c define H', are determined from
the four self- consistent conditions

(t I .);- = 0; i = 1,4. (2.30)

(k is the number of sites contained in P.) This way
of self-consistently determining G' will yield the
exact results in any of the coherent-model limits.
Also when the number of sites contained in t." is
one, the CSSA immediately collapses into the SSA
since in this instance o,'= a„o,'= o', and there are
only two configurations: A, B.

For the purpose of numerical calculations, the
self-consistent conditions for o'„i=1,4, can be
recast as

Z',. —o',.—(es- o', )GI I (e"- oi) =0; i =1,4,
k+i y+5

(2.31)

where e', -=(cl ); (check Fig. 8). Although Eq.
a+i ~

(2. 10) could be used to obtain the desired matrix
A

elements of G' as an explicit function of a'„i=1,4,
it is simpler since we only need diagonal matrix
elements of this operator to use the renormalized
perturbation expression" which allows these quan-
tities to be written elegantly as continued fractions
in terms of a'„i= 1,4. Thus the CSSA approximates
each (9&1);- separately (for a cluster composed of
k sites, there are 2~ of these corresponding to the
2" different arrangements of the A, B atoms over
the cluster), by employing an effective medium
characterized by four coherent potentials a f, i = 1,4,
which are dependent and are determined solely by
solving the four equations (2.31) simultaneously.
As with the SSA's self-consistent conditions, the
physical solution to Eqs. (2.31) are chosen by their
asymptotic behavior at infinity and then continued
numerically using the techniques of the Appendix
to the interesting range of energies within the band.
Once again, no problems were encountered in em-
ploying this procedure. Finally, having approxi-
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mated through the CSSA each (9+;- separately,
total or partial DOS can be easily obtained.

To understand how much numerical work is
necessary to generate in this manner the totally
and conditionally averaged DOS, suppose c is
composed of k sites. Then there are 2" possible
arrangements (configurations) of the A, B atoms
over this cluster, so we must determine 2 x 4

coherent potentials self- consistently. This is
easier than may be thought since: first, we do not
have to determine all of these quantities simul-
taneously, but, at worst, in groups of 4; secondly,
we only have to treat half of the asymmetric con-
figurations since for each of these there is another
which is its mirror image around n and in the
CSSA both of these configurations contribute equal-
ly to the approximate totally and conditionally
averaged DOS; finally, if a particular configura-
tion is symmetric about n, then 0,'= o, and o, = o4

as can be easily seen from Eqs. (2.31) so rather
than solving four equations simultaneously to de-
termine cr'„i= 1,4, we need for this case to solve
only two. In terms of cost, the five-site CSSA can
be used to generate the conditionally and totally
averaged DOS for a little less than one-third the
cost required to generate similar results by solv-
ing Schmidt s functional equations using the tech-
niques of Agacy. " It is important to note also that
not only does the CSSA produce for this cost the
totally and conditionally averaged density of states
but simultaneously generates the 2~ conditionally
averaged state densities p'(E) each of which gives
the average-state density localized around a par-
ticular configuration of atoms over the five-site
cell. These quantities of course give a lot of in-
formation that can be used most informatively to
analyze the total spectrum.

In Fig. 9(a)-9(c), we show the evolution of the
total DOS from this approximation for an alloy with
X„=0.75, P~&~=0.6, 5= —3.2 as the number of sites
k in the cluster is increased from one to three and
finally to five. When k is as small as three, most
of the features of the corresponding histogram
have been revealed and at five, the agreement be-
tween the two results is really astonishing. The
very sharp peaks in the impurity region of the
spectrum (E/V&0. 4) are associated with states
localized on B-rich clusters which are surrounded
locally by pure chains of A atoms. " This is easy
to see since in this region of E/V, the pure A
chain has no propagating solutions and as a re-
sult, the A atoms surrounding a B-rich cluster
have a tendency to localize the wave functions
associated with that cluster. In this light, for
example, the most prominent peak in this impurity
region is expected to be associated with single B
atoms isolated in an A environment, and this is
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FIG. 9. Exact total DOS (histogram) for a 1D alloy
with X&=0.75, P&g&-—0.6, and 6 =-3.2 compared to the
corresponding results from the CSSA as the number of
sites in the cluster c is increased from one (a) to three
(b) and then to five (c). Also shown (d) is the total DOS
(histogram) for a 1D alloy with the same Xz, 6 as in

(a), (b), and (c) but with P&~~= 0.9 compared to the cor-
responding results from the three-site CSSA.

exactly what is found. The less prominent peaks
that appear in the region of the spectrum allowed
to both the pure A and B crystals cannot have the
same origin as those in the impurity band and the
interested reader is referred to the work of
Papatriantafillou" for an analysis of structure of
this type. The effects in this example of increas-
ing P„&~from 0.6 into the region of local random
compound formation (P„&s=0.9) is shown in Fig.
9(d). We see here that the CSSA is also performing
admirably, but the point that we want to make with
this example is the diminishing importance of sta-
tistical correlation amongst the atomic potentials
when X„is different from 0.5. This of course re-
sults because of the increasing dominance in the
spectrum of states associated with the majority
constituent. Thus, when X„is appreciably differ-
ent from 0.5, and the atomic correlation is not too
strong, in many instances it should not be such a
bad approximation to simply consider the system
as though P„&~ =X„.However, if the atomic cor-
relation is very strong, particularly in the anti-
clustering regime, the effects of statistically cor-
relating '.he atomic potentials can still be impor-
tant, as one can see trivially from our discussion
of the limit P»~-O, X„arbitrary, in Sec. IIC.

In Fig. 10, we compare the total DOS from the
three-site CSSA and CCPA to the corresponding
exact results. As could be expected from our
comparisons of the CPA to the SSA, results from
the three-site CSSA are better than those from the
three-site CCPA, although both methods are work-
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FIG. 10. Total DOS from the three-site CCPA (dashed
line) and CSSA (solid line) compared to the exact results
(histogram) for the 1D alloy with a just split band (I5

=4) and X&——P~~~=0.5. All curves are symmetric about
+=0

ing well. The same is true for larger clusters.
Away from the uncorrelated case X„=P„&~,when-
ever one has need for such approximations, the
CSSA will improve significantly its superiority
over the CCPA since, for example, the latter
scheme cannot reproduce the periodic compound
formation limit (X„=0.5, P„&~——1). Finally, in
Fig. 11 for the sake of comparison we present the
totally and conditionally averaged DOS from the
five-site CSSA for a case studied earlier in dis-
cussing the SSA. As can be seen by examining
this figure the five-site CSSA consistently repro-
duces correctly almost all the features of the his-
tograms.

Although the CSSA in light of the above results
is clearly a completely satisfactory cluster ap-
proach in 1D and can be simply generalized to
treat any Bethe lattice, it, unlike the SSA, is not
directly applicable to higher- dimensional systems.
To understand the problem, it is simplest to ex-
plain in some detail our reasons for using four
coherent potentials as opposed to two in formu-
lating the CSSA. The reader may have wondered
when we introduced the CSSA why we did not in
fact employ only two coherent potentials arranged
over the chain in just the same way as in the SSA,
since after all in that instance by simply setting
the average scattering equal to zero at a nearest
neighboring and next-nearest neighboring site at
one edge of the fixed cluster, we would reproduce
all the coherent limits of the model. Doing this
however is undesirable since this approach, which
we will term the CSSA-2, treats configurations of
atoms asymmetric about the center of the cluster
c not as well as the CSSA, while being essentially
no less expensive computationally. More specifi-
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FIG. 11. Results from the five-site CSSA (solid line)
and exact results (histogram); parameters as in Fig. 4.

cally, due to the asymmetry of the configurations
and the local nature of the self-consistent equa-
tions, we would now no longer as we really should,
obtain identical contributions to the total DOS from
this cluster and its mirror image. To get around
this problem in 1D, we used four coherent poten-
tials and similar games can always be played with

any Bethe lattice; however, for real two- and
three-dimensional lattice structures, such a gen-
eralization of the SSA is clearly not obtainable.
So if we are to produce a cluster approximation
applicable to higher-dimensional systems while
still staying in the mainstream of our present
development, we are essentially stuck with the
CSSA-2. However, we note that the real reason
for generalizing the SSA at all is to resolve in the
DOS some of the very fine structures that may
exist there and this structure is usually associated
with states very localized in real space. Under
these circumstances, we then expect in many in-
stances that the CSSA-2 will work very nicely, and
so propose it as a useful scheme for uncovering
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many of the features missed by the SSA.
In closing this section, we note that our cluster

methods are directly applicable to models ex-
hibiting long-range as well as short-range ordering
of the atomic potentials, and this should be kept in
mind when investigating the electronic structure
of such systems.

III. CONCLUSIONS

We have studied the popular two-level tight-
binding model of a substitutionally disordered
binary (A» 8» ) alloy including the possibility of

A B
statistical correlations amongst the atomic poten-
tia)s. Results from this study show the severe ef-
fects AC can have on the electronic structure of
alloys (particularly those for which X„=0.5), and
thus emphasize that one should be alert to the
possibility of such effects in any analysis of sys-
tems of this type.

In the framework of this model we have developed
two new self-consistent effective-medium theories
(CSA, SSA) that allow easy approximate determina-
tion of the totally and conditionally averaged DOS
of alloys having a strong tendency towards local
compound formation all the way to those having
a, strong tendency towards local segregation of
species. To evaluate the effectiveness of these
schemes, we have applied them to the 1D alloy
since in this instance the approximate results
can be compared to the corresponding exact re-
sults. Here we found that these methods are sur-
prisingly successful and since they should improve
with increasing dimensionality we expect them to
work well in higher dimensions where exact pro-
cedures are absent.

In addition, in the context of 1D we generalized
the SSA to an n-site cluster approximation (the
CSSA) that was able to reproduce accurately the
very fine structure known to exist there in the
eigenvalue spectrum. The CSSA is the first such
effective-medium theory that has this capability in
the presence of AC. This cluster approximation is
applicable to Cayley trees of coordination numbers
other than two as well, and when coupled with the
additional approximations discussed at the end of
Section IIE, will be a very useful tool for studying
higher- dimensional systems.

Finally, we have built a conceptual framework
that can be employed to develop self-consistent
effective-medium approximations for obtaining the
totally and conditionally averaged densities of
states in random tight-binding models assuming
for example, long-range as well as short-range
ordering of the atomic potentials, off-diagonal

randomness, or continuous as opposed to discreet
probability distributions of the random variables.
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APPENDIX: NUMERICAL METHODS FOR SOLVING THE
SELF-CONSISTENT EQUATIONS OF THE CSA, SSA, AND

CSSA

To apply any of the approximation schemes that
we have presented in this work we must be able to
solve either singly, as with the CSA, or simul-
taneously, a,s with the SSA and CSSA, a small
number of highly nonlinear equations which im-
plicitly and self-consistently complete the defin-
itions of the effective Green's functions which we use
when approximating the quantities of interest. To
do this we have developed a somewhat complicated
but highly efficient numerical technique based on

the Newton-Raphson procedure. The salient fea-
tures of this technique are most easily outlined
by sketching how we solve the single self-consis-
tent Eq. (2.16) of the CSA that defines the single
effective potential 0 which is a complex function
of the energy, concentration, scattering strength,
and the AC parameter.

Equation (2.16) defines implicitly several
branches of the complex function a (Z); however,
the correct one must be such that lim»„„a(Z)
= (e-);. Since the quantity of interest p'(E) is
given by (2.4), we need to determine a ™(E+i0')
only. This we achieve by using the Newton-Raph-
son method to first obtain a (E+iq) with q = 0.05,
at each point of interest E and then (again using the
Newton-Raphson procedure) we take the limit q-0' numerically. One may wonder why not follow
the simpler path f(Z) =E+iQ', and thus obtain
a (E+is) directly. However, this is in fact more
difficult numerically since there are problem
points encountered along this line which one can-
not get through easily. These are not branch
points, but points essentially centered in an in-
terval along f (Z) where the left-hand side of
(2.16) changes so rapidly with respect to a that
it is no longer fea,sible to apply the Newton-
Raphson technique.

To solve the SSA's two self-consistent equations
for ag(E), a, (E) and thus obtain p (E) we simply
use the 2D version of the above method, while
to solve the CSSA's four self-consistent equations
for ( ( a);Ei =1,4), and thus obtain p'(E), we em-
ploy the 4D version.
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