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Effect of nonlocality on the Fermi surface of copper*
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%'e investigate the efFect of the nonlocal nature of the self-energy on the Fermi surface of copper. Results
obtained using a simple representation for the nonlocal structure show that this feature has the potential of
resolving the discrepancy between first-principles local theory and experiment.

I. INTRODUCTION

The adequacy of the local-potential approximation
for the description of elementary excitations in so-
lids has been of interest for many years. An ini-
tial investigation of this question was carried out

by Kane' with emphasis on the band structure of
semiconductors. Recently, Rasolt and Vosko' (to
be referred to as RV) and Rasolt, Nickerson, and
Vosko' have also investigated the importance of
nonlocality with emphasis on simple metals. These
authors have treated the exchange and correlation
contributions to nonlocality on equal footing. Other
works, in simple metals, 4 have focused more on
the Hartree-Fock contribution to nonlocality with
the correlation contribution included as a correc-
tion.

The nonlocality of the potential Z is exhibited in
the following equation:

where Z has been specie. lized to a periodic system.
This is a Schrodinger-type equation with 4-„(r)hav-
ing the meaning of quasiparticle states and E-„that
of quasiparticle excitations. " Equation (1) corre-
sponds to an equation with nonlocal potential in that
Z depends on a finite difference between r and r'
and cannot be approximated by Z(r, r', E)
-Z(r, r', E)5(r —r'). We note that the constant-
energy surface described by E-„which encloses the
proper number of electrons' will correspond to the
experimentally measured Fermi surface (FS).

In this work we wish to extend some of the re-
sults of RV from simple to more complex metals,
specifically copper. The motivation is the recent
thorough FS calculation for copper' in which no
first-principles local version of Z was found ade-
quate to reproduce the experimental FS accurately.
This work is mainly an attempt to establish whe-

ther the nonlocal feature of Z has the potential, in
trend and magnitude, of resolving the above dis-
crepancy between theory and experiment.

The work is divided into three sections. In Sec.
II we spherically decompose the structure of Z in
order to study its effect on the FS via the augmen-
ted-plane-wave (APW) method. In Sec. III we apply
these results to the band structure and FS of cop-
per.

II. SPHERICAL DECOMPOSITION OF Z

M(r, r', E) =—e' p(r, r')/
~

r —r' ~,

where

(3)

p(r, r') = Q 4-„(r)4;(r'). (4)
k-occupied

The solution of Eqs. (1), (3), and (4) in metallic
systems yield a dispersion E-„which is known to be
much too wide and to have an unphysical singularity
on the FS. Both of these deficiencies are corrected
when correlation is included in M. (Note that while

Equation (1) describes rigorously the quasipar-
ticle states and corresponding excitation energies.
To further discuss this equation, it is useful to
separate Z into the following terms:

Z = V„,(r)+ V„(r)+M(r,r', E),
where V,„,(r) is the external potential, V„(r)is the
usual Hartree contribution, and M is the self-en-
ergy operator. ' We note that M is a unique func-
tional of the density" n(r), i.e., the density of the
system determines, in principle, the form of M.
Unfortunately, the structure of M is extremely
complex and not known exactly. Thus various pro-
cedures for approximating M, or equivalently, for
obtaining the quasiparticle excitations in Eq. (I)
have been suggested.

A common starting point is to solve Eq. (1) with
the Hartree-Fock approximation, ' i.e. ,
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the correlation contributions to the total energy are
small, their effect on M is very large and equal in
importance to that of exchange. e) Thus it is impor-
tant to treat correlation and exchange contributions
to M with equal care. To solve first for the Har-
tree-Fock excitations and then add the effect of
correlation as a correction is likely to misrepre-
sent the nonlocal structure of M.

For simple metals (or equivalently the contribu-
tion of the metallic s and p bands) an appealing ap-
proach for including correlation in M is that used
by RV. In that work, M is approximated by the
self-energy operator M„ofa uniform electron gas,
l.e. y

M—= M„[r—r', E —u, + u„(n(r,));n(r, )],

where p,
„

is the chemicalpotential for a uniform elec-
tron gas of density n, u, is the chemical potential, and

r, = —,'(r+ r'}. The properties satisfied by thisM, to-
gether with a way to include corrections to Eq. (5),
are discussed extensively by HV. It is sufficient to
observe that Eq. (5) is the first term of an expan-
sion for the nonlocal M, similar to the first term
in the gradient expansion of the local theory. In
fact in Sec. III we will further simplify M in re-
placing the density n(r, ) by its uniform value n, . In
addition the correlation contribution will be evalua-
ted within the random-phase approximation (HPA).
Then

M(r r' E)—= e'" "~)M(k E n )(2w)' o t

where

M(k, E,no) =M„(k«no)+Map„(k,E, no),

-e' k~ kF' —k' k~+ k
k~-k

2e k "dqM„„,(i, z, ,) = «««& () (e( ) e(o.«) «)]
o q (e/ eel-() )

e'k„' "
dq

"
[(d —(k/2k~ q)']'+ y' 1

$(q, iy) = I+@(q,iy),

(8)

and

E = (()2k -'k ~o/m, k ~ = (3v' n, )
' '

(x =(4/9v)'/', r, ao= I/akim, ao=ii'/me'.

form. The calculation is straightforward but a bit
tedious. The key points are integration by parts
followed by proper contour integration using the
analytic properties of

In Sec. III the above structure of M will be ap-
plied in conjunction with the APW method for states
on the FS. This requires a spherical decomposi-
tion of M within each unit cell. We end this section
by giving the explicit structure of M in spherical
coordinates up to angular momentum / =2 for E on
the FS ((o = e). Writing

(14)

e'k'
(15)

Below we write down the results for both exchange
and correlation for l =0, 1, 2. For exchange

M(, ')=Q Q v, («, «)r', (()', «')M, (r, v'),
l=o m=-l

(12)

where 8 and y are the polar angles of r and Y,
are the spherical harmonics. Using Eq. (6) we
have

2M/(&)&'}=— P'dPM(P, u, (no), n. )A (P&)i'((P~').

where

1 sin(p, ) cos(p, )D', =- ' — ' -Si(p) .
p2 pI, I

D', = D', +,[Si( p,}—s—in( p,)];

Do+-D,
y y

(16)

The integration over p can be gotten in closed

(13) +, ,[p" sin(p, )+3p' cos(p, ) —3 sin(p, )];

(18)
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and

rr'y=, „;x =k~(r'+r")'~'I p, =k~~r+t '~; Si(p) =I E,(lp}+-,' tr.r2 r f29

For correlation
OO CO

(20)

(21)E,„„(q,y) = C;(-a„b)+ C;(a., b) C;-(a, b) + C;(a, b),

where

(22)

6ab, 6a(a' —3b') 24ab(a' b')
b2 + & 2 b2&2 Pk I 2 b2%3 ( Pk), I

(24)

a, =2q+{0.5[(1+16v2)Ii2+1]}i/2 b {0.5[(l+16v&}& 2 1]}"'

structure of 3I in metals on equal footing. The
M",(y, y ') is very wide for all l, as expected from
the structure of M„(~r—r'~, p, „(no),n, ).' The cor-
relation contribution greatly reduces this width.
Nevertheless, from Figs. 1-3 it is clear that a
substantial contribution of M, (y, r ') resides outside
the muffin-tin "(MT) radius It

In Sec. III we apply these results to the study of
their effect on the band structure and more spe-
cifically the FS of copper.

Finally,

M, (y, y') =M;(t, r ')+M", "(~,t") (25)

After appropria. te transformations, Eqs. (20}-
(24) have been integrated numerically for a, mesh
of r and r '. In Figs. 1-3 we display the forms of
M, (r, r ') and M i(y, t" ') for l =0, 1, 2 with the density
corresponding to the 4s electron of copper; r,
=2.6'l. A comparison of M, (r, r') and M",(r, r') re-
emphasizes again the importance of treating cor-
relation and exchange contributions to the nonlocal

III. APPLICATION TO THE FERMI SURFACE OF COPPER

Owing to the high precision measurements of its
FS and its relatively low atomic number, making
it nonrelativistic, copper has been for many years
a testing ground for theoretical studies of non-
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FIG. 1. The l = 0 component of the angular decomposed
nonlocal exchange and correlation potential as a function of x
for r ' = 0.2, 0.4, 0.6, 0.8, 1R . The curves are peaked
at x =~' . M(x, x' ) =M(r', x). The muffin-tin approxima-
tion corresponds to ignoring the contribution of M be-
yond the muffin-tin radius R~. The curves on the right
are for exchange potential only.
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C'(a, b) = 2I E, [(b +la) p, ];

C', (a, b) =—Co(ai b) +. . . — '+, , sin(ap, ) '+, , cos(ap, ) (23)
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simple metals. A recent and very extensive study
of copper is that of Janak, Williams, and Moruz-
zi.' Since our interest in this section is the FS of

copper, we focus on this aspect of their study, al-
though their analysis covers many other features
of copper.

The interesting feature of the Janak, Williams,
and Moruzzi FS analysis is that all of the local
forms for M based on a fundamental theory (e.g. ,
Slater, "Kohn and Sham, ""and Hedin and Lund-
qvist" }resulted in discrepancy with the experimen-
tal FS. Moreprecisely, the FSneckwas 29%%u& too
lar ge. They note that a relative shif t in ener gy be-
tween a point on the calculated FSalong L- S' and that
along F- X of 0.02 Ry would remove this discre-
pancy. ' (We note that when these authors chose an
ad hoc n =0.77 in the "Xe'* local potential these
discrepancies were removed. )

Since the calculation of Janak, Williams, and
Moruzzi was done within the Korringa-Kohn-Ro-
stoker scheme, they estimated the error intro-
duced through the MT approximation. They further
investigated the effect of gradient corrections (XaP
method) and relativistic corrections, and showed
that none of the above is sufficient to explain these
discrepancies. These authors conclude that since
the electron-gas results do not appear to contain
uncertainties of the required magnitude, one should
question the adequacy of the local approximation
for M. In this section we wish to investigate this
possibility in the simplest possible way with the
hope of doing a more refined calculation in the fu-
ture.

The first of our simplifications is to take the
Chodorow" potential for our local description of
the FS of copper. We thus measure the effect of
M by adding its contribution to the Chodorow band
s tructure.

The second simplification involves the structure
of M. Let us first state the form we chose, and
then show that although it is very crude, we still
expect it to contain the essential features.
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FIG. 4. The band structure of copper along I' to L
direction. The bands A3 are d like. The encircled por-
tions of bands '&& are also g-like. The dashed curve
corresponds to the unhybridized s band of copper.

For M(r, r', E) we chose the uniform electron
form of Eq. (5) with E = p and constant density n,
corresponding to the 4s electron of copper and
evaluated it within RPA (Sec. II). In other words,
in Eqs. (I) and (2),

& =—Vc(r)+M„(
~

r —r'
~, p„(n,), n,}-v„(n,), (26)

where Vc(r) is the Chodorow potential. The poten-
tial Vc(r) includes in principle the full electronic
density. Since only the contribution from the 4s
density to Vc(r) is replaced by a nonlocal structure
we remove the corresponding loca.l pa.rt [v„(n,)
=M(kz, p, „(n,),n, ).'] in Eq. (26}.

RV in a model calculation of simple metals with
sizable density variation have set n(r} =n, and found

the error on the FS distortions to be relatively
small. This suggests that the s, P contributions to
M (in copper) can be approximated by n(r) =n, while
maintaining the qualitative effect of M on the FS.

The reason for using the density of a single elec-
tron can be argued from Fig. 4, where we choose
the band structure of copper in the I'-L di-
rection (the direction is not important). First we
note that the filled d bands (A,) are narrow a,nd
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correspond to semilocalized states. The nonlocal
structure of M of the uniform electron gas is bound

to totally misrepresent their contribution and we
are forced to leave them as part of V,(r).

The two bands A, have been collapsed into a sin-
gle s, p band given by the dashed line, the rationale
being that in the encircled region the states are
highly d like and again are left as part of V,(r).
Away from this region the states become more s, p
like and we can include them in M. We make the
approximation that the number of these states is
equal to one electron.

We next return to Eq. (I) and angularly decom-
pose it within a single unit cell and get the usual
radial equation

EJ.ps {L W) —Ez,Fs (r X)
Exchange plus

correlation Exchange

TABLE I. The relative energy shifts in rydbergs
between a point on the calculated local Fermi surface
(LFS) along I.—W and that along I'-X for the nonlocal
exchange and correlation potential and for the exchange
potential only. The first row is calculated by the APW
method with the nonlocal potential treated nonperturba-
tively within the muffin-tin approximation. The last
three rows are calculated by first-order perturbation
[see Eq. (33)]. The methods employed to determine the
coefficients needed in the perturbation correction and

the local potential used are those of Hefs. i5-i7, re-
spectively.

~ V, ~ r, (r& —v,.(v, &)
&', (r&

d2P (r) II' I(I+I)
2m dr 2 2m r 2

Ru
+ dr 'JC, (r, r ') P, (r ') =EP,(r), (27)

0

where

AP% —NLMT
(Chodorow)

Interpolation
(Chodorow)

APW
(Chodorow)

0.0is

0.022

0.0i5

0.056

0 ~ 044

E,(r, r ') = rr ' M, (r, r '), —P, (r) =rR, (r), (28)

EPM
(Fong and Cohen)

0.024

R, (r) is the radial wave function and I is the angu-
lar momentum. We then use the M, (r, r') (Sec. Il)
in Eq. (27) and solve the differential-integral equa-
tion for P, (r) by an iterative procedure. The cor-
responding phase shifts are then used following the
APW method to determine the corresponding E-„.
The results for the energy difference between the
points on the calculated local FS (FS calculated
with a localpotential) along I, -W and I'- X are
tabulated in the first row of Table I. The nonlocal
corrections are seen to have the right magnitude
and sign for explaining the discrepancy between lo-
cal theory and experiment.

As noted previously (Sec. II, Figs. 1-3), signifi-
cant portion of M resides outside the MT radius.
To ensure that this contribution (neglected in the
MT approximation) does not have drastic effect on
the above results (or trends) we have in addition
examined the effect of M in a perturbative ap-
proach, which does not involve an MT approxima-
tion. Within this approach and consistent with ne-
glecting the d contribution to M, we also neglect
the d character in s, p bands. The easiest way to
concentrate on the s, p bands is to use an interpo-
lation scheme in which the solution of, e.g. , the
Chodorow potential, is expressed in terms of (s,p)
and d contributions separately.

Using, e.g. , Mueller's interpolation" scheme,
we can write

(29)

~NLMT, nonlocal muffin tin.
EPM, empirical-pseudopotential method.

where

(30)

(32)

lk) and
l $~) are the plane wave and d states, re

spectively.
Once the secular equation" is solved for n„-,G and

a„,we ignore all d-band effects [i.e. set a„=0and

M~„(k)=0] and treat the nonlocal term in Eq. (26)
via first-order perturbation. ' The first-order per-
turbation correction is

l a;.o l'[M„(k+G,p„(n,),n, ) —v„,(n,)] .
G

(33)

Near the high-symmetry points L and X, the d
character is small. Thus, we used in addition in
Eq. (33) the coefficients o(I,o from the APW solu-
tion of the Chodorow potential, "and the plane-
wave coefficients of the empirical-pseudopotential
solution for copper" to see if the answer does not
depend strongly on the interpolation scheme. The
results are tabulated in rows 2-4 in Table I and
are seen to give similar results to each other and



EFFECT OF NON LOCALITY ON THE FERMI SURFACE OF. . .

to that found in the nonperturbative MT solution. In
Table I we also tabulate the results using Eq. (SS)
with M„alone. As can be seen, the effects are
much too large.

Finally we make the following two observations.
First it is apparent from Table I that in copper the
nonlocal contributions to the FS distortion are rel-
atively small compared to the local contributions
resulting, e.g. , from Vc(r). Nevertheless, to
achieve such nonlocal corrections requires a sig-
nificant change in the parameter o. of the local M
from any of its first-principles values. ' Second,
in Ref. 6 the full density was used in the local po-
tential. We have corrected only the 4s contribution
to the local potential by a nonlocal one. As dis-
cussed above, similar corrections with the density
from the localized states included in Eq. (26) will
totally misrepresent the true quasiparticle poten-
tial. For example, from the HF form for M in
Eqs. (3) and (4) it is clear that the difference in r

and r' is confined to the "radius" of the localized
states. It is thus likely that for these states a lo-
cal potential as used, e.g. , in Ref. 6 is preferable
to a nonlocal version of the form of Eq. (5).

We end by emphasizing that this calculation was
done only to illustrate that the nonlocality in M of
the s, p electrons has the potential for removing
the discrepancy between first-principles local
theory and experiment in the FS of copper. ' Re-
finements such as putting the density dependence
in M, studying an improved form for M (see HV),
properly including the d states are being consid-
ered. The question of how to include the d contri-
bution to the s, P bands in the structure of M is es-

peciallyy

challenging.
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