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Non-Arrhenius diffusional behavior and high-field nuclear spin relaxation in crystals
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In terms of Eisenstadt and Redfield's encounter model, the dipolar pair correlation functions associated with

two point-defect mechanisms of self-diffusion in cubic crystals assumed to rearrange the nuclear spins
simultaneously, are calculated. As a special case, the correlation functions for a single correlated self-diffusion

mechanism presented earlier are obtained, Also, assuming random nearest-neighbor jumps of the atoms
arranged in a crystal lattice, the random-walk correlation functions of Torrey, Eisenstadt and Redfield, Sholl,
and the present author are included in the limit of uncorrelated self-diffusion. Starting from the Fourier-
transform relations between the nuclear spin relaxation rates and the dipolar pair correlation functions, the
high-field relaxation properties due to two point-defect mechanisms are analyzed in the temperature region
where the related Arrhenius plot shows a curvature, For the simultaneous self-diffusion via mono- and
divacancies in fcc and bcc single crystals, it is found that the orientation dependences of the high-field

relaxation rates are not much affected by a change of the dominant diffusion mechanism. However, the effect
of different activation energies and attempt frequencies assumed to characterize the two mechanisms results in

asymmetric shapes of the T, and Tip minimum as a function of temperature, It is illustrated how these
phenomena allow one to determine both self-diffusion mechanisms involved if the related T, and (or) T,p

minimum may be studied experimentally in the temperature region where the dominant self-diffusion

mechanism changes, i.e., where the corresponding Arrhenius plot exhibits a curvature.

I. INTRODUCTION

In the wide temperature range over which
thermally activated self- diffusion processes in
cubic crystals may be studied by means of dif-
ferent experimental techniques, quite frequently
temperature-dependent values of the activation
energy of the diffusion process are obtained from
the related Arrhenius plots. This effect is usually
attributed to the change of the dominant diffusion
mechanism due to the different activation en-
ergies E, and E, associated with two different
mechanisms. ' Therefore, the total macroscopic
self-diffusion coefficient D is assumed to be the
sum of the two partial self-diffusion coefficients,
D, andD, :

+D -D e @1~~ (1.1)

where D„and Dp2 are the so- called pre-exponen-
tial factors.

Thus, e.g. , by means of the radioactive-tracer
method the diffusion mechanisms in the face-cen-
ter cubic (fcc) metals (e.g. , Cu, Ag, Au, Pb, and

Al) have been identified as the single and divacan
cy mechanisms, using measurements of the tem-
perature and pressure dependence of the diffusion
coefficients, as well as the isotope effect." The
diffusion properties of the fcc metals may be char-
acterized entirely by single vacancies at tempera-
tures up to about T= ~T (T is the melting tem-
perature), while for T& ,'T, divacancies m—ay

become more and more important. '
In body-centered cubic (bcc) metals (e.g. , Li,

Dtr fD (1.2)

where D" is the tracer self-diffusion coefficient.
The comparison of diffusion constants deter-

Na, K) the curvature of the Arrhenius plot is
usually even more pronounced than in the fcc
metals, but the mechanisms acting there are not
quite as well understood, partly because of the
complexity of the possible divacancy mechanisms.
(An excellent review of these and other questions
is found in Ref. 3.)

A curvature of the Arrhenius plot has also been
observed in ionic crystals. Thus, e.g. , in CaF,
(a material containing one nuclear spin sort only)
an increase of the activation energy of self-dif-
fusion is found from nuclear-magnetic-resonance
(NMR) and ionic conductivity measurements"
as the temperature is increased.

A great virtue of NMH as a method to study
self-diffusion in crystals lies in that (i) it is able
to provide information about the relative motions
of the nuclear spins which are known to be strongly
influenced by correlations of successive jumps, "
and (ii) by virtue of the time scale inherent in
NMR experiments (represented by the Larmor
precession frequency of the nuclear magnetic mo-
ments), the correlated jumps of atoms may be
separated from the random jumps of point defects.
Also, the atomic jumps induced by the same point
defect may be distinguished from those caused by
different point defects. In the radioactive- tracer
method all these correlation effects are accounted
for by the correlation factor f defined by
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mined from NMR experiments with those obtained
with other (more direct) experimental methods is
complicated by (i) the difficulties of identifying
all sources of relaxation, and (ii) the considerable
theoretical efforts necessary to relate the mea-
sured relaxation times T, (spin-lattice relaxation
time), T, (spin-spin relaxation time), and T»
(spin-lattice relaxation time in the rotating frame)
to the mean time T between consecutive jumps of
an atom. v. is related to the macroscopic diffusion
coefficient D by the Einstein-Smoluchovsky rela-
tion

D = d'/6v',

where d denotes the nearest-neighbor jump dis-
tance of the atoms.

Therefore, the goal of NMR in determining dif-
fusion mechanisms is to detect relative changes
of the relaxation times as a function of experi-
mental parameters (temperature, crystallographic
orientation and magnitude of the Zeeman field
Ho) rather than their absolute values. Two such
effects have been found: (i) The variations of T„
T„and T„as a function of the orientation of the
strong constant external field H, with respect to
the main crystal axes may be characteristic for
a given diffusion mechanism. ' " (ii) Shape and
wldtI1 of the Ty and Tj p mll1lmun1 as a function of
temperature are functions of the type of point-
defect causing the atomic motions. ' The main
problems associated with the first method are the
relatively small differences predicted for differ-
ent diffusion mechanisms which, in practice, al-
low one to distinguish correlated from uncorre-
lated motions, but not easily different types of
correlated mechanisms. "

The second method may be used to study dif-
fusion both in single crystals and in polycrystal-
line samples. It, therefore, seems to be rather
promising in its application to metals.

As illustrated earlier, ' the prediction of aniso-
tropies, temperature, and field dependences of
relaxation times in the motionally narrowed re-
gion may be reduced to the calculation of the
Fourier transforms 8("(tu) of the dipolar pair
correlation functions

G(a)(t) (P(e)(tf) y(lr)t(t&+, t)) (1 4)
1

for a given self-diffusion mechanism. Here, in
the well-known fashion, ' the functions E,'"(t)
symbolize the geometrical part of the direct
dipolar interaction of a spin pair i, m (q=0, +1,
p2) 12

A first approach to calculate these correlation
functions for the case of nuclear-spin relaxation
due to the random migration of two types of point

defects was recently presented by Cavelius" for
the case of single and divacancy mechanisms.
However, this method starts from the encounter
model' in its first quantitative formulation, '
hence neglecting the effect of pair correlations
and assuming nondiscrete jump directions of the
atoms in a crystal lattice. These simplifications
exclude its application to single crystals and make
the quantitative comparison of diffusion coeffi-
cients determined from NMR experiments with
those measured directly, e.g. , by means of
radioactive tracers questionable.

The difficulties of the encounter model in its
first form'~ have been overcome in a more recent
article. ' Therefore, in the present paper, the
method developed in Ref. 8 to calculate the corre-
lation functions for a single point-defect diffusion
mechanism will be extended to account for the ef-
fect of tzvo diffusion mechanisms relaxing the
nuclear- spin system simultaneously.

II. DIPOLAR CORRELATION FUNCTIONS ASSOCIATED

WITH TWO POINT-DEFECT DIFFUSION MECHANISMS
IN CRYSTALS

Denoting the formation energies of two kinds of
point defects (e.g. , single and double vacancies)
by E, and E, , at a given temperature T their
thermal-equilibrium concentrations C, and C, are
given by'

C =C e 0: ~ (a=1,2). (2.1)

Characterized by the migration energies E,"and
E2~, respectively, these defects are assumed to
move randomly in the crystal lattice thus causing
atomic jumps. Here, C' represents constants
governed by the particular mechanisms. '

A. Application of the encounter model

The general procedure of determining dipolar
correlation functions starts from the conversion
of the time average in Eq. (1.4) into an ensemble
average. " Hence,

G"'(t) = P &,'"(r ') g P(r ', r*, t) I",'""(r ' + r"),
+m

(2.2)

where P(r, r", t) denotes the probability that the
vector of the relative displacement of an arbitrary
spin pair i-rn after the time t is equal to r, if
at t = 0 the vector from i (assumed to sit at the
origin) to m is r'.

Once a point defect induces relative jumps of
some spin pair i-m, these jumps will occur
shortly after the initial jump; they will be bunched
into groups. ' Therefore, if both defect concen-
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trations are low enough to avoid interactions be-
tween different point defects, the relative motions
of the spins "seen" in a relaxation experiment
may be broken down into a random sequence of
encounters with the two types of defects.

Applying this so- called "encounter model" in
determining P(r', r~, f), the time scale may be
separated from the geometrical probabilities, by
writing

P(r, r*, i) = g p q(S„S„t) Ws (r, r") .

(2.3)

Here, q(S„S„f) symbolizes the probability that
during the time interval t the spin pair i-m will
be rearranged S, times by a defect of type 1 and
S, times by a defect of type 2, while Ws s (r', r*)
accounts for the geometrical probabilities that
after an arbitrary sequence of (S,+S,) encounters
of the two kinds, the relative displacement vec-
tor of the two spins will be r if the initial vector
from i to nz is rp.

Let us denote the mean time between encounters
of i and m with defects of type n by v„MR (o. = 1,2).
Since the two types of rearrangements associated
with the two diffusion mechanisms are assumed
to be independent of each other, q(S„S„t)may be
decomposed as follows:

x F,'"*(r'+ r") . (2.7)

Every spin pair in the crystal experiences its
individual mixed random sequence of encounters
of the two types. Therefore, by defining b as
the probability that some encounter of the spin
pair i-rn is of type a, the probabilities
Ws s (r', r2') that a particular sequence of S,
encounters of type 1 and S, encounters of type 2
leads to a certain geometrical rearrangement
may be replaced by the probabilities Ws, s (r ', r~)
governed only by the total number, S,+S„ofen-
counters experienced by this spin pair. The
particular sequence of encounters of the two kinds
is thus irrelevant.

Characterizing the geometrical rearrangement
resulting from one single encounter of i and I
with a defect of type 0( by the probabilities
P (r 2, r2'), for S, +S, = I we may write

W,(r, r~) = b, P, (r ', r*) + b2P, (r, r*) . (2.8)

In complete analogy to the procedure illustrated
in Ref. 8, for any value of S]+S2)1 the probabili-
ties Ws, s (ro, r*„) may be calculated successively
from the recursion formula

q( i 2 )=' S ( ~NMR)' S (' NMR).

Here us (f, 2 „MR) denotes the probability that in
time t there are S encounters of type n.

At the usually low thermally-created point-de-
fect concentrations, (even at temperatures close
to the melting point), the time interval d, t during
which the atoms are actually being rearranged
during an encounter is much shorter than the
mean times vNMR between encounters. Hence, the
Poisson distributions

spin

x W, (r 2 + r*, r* —r*),

S&+S enc.

(2.8)

1 t t
S ( ~NMR) S 1 o exp (a I 2)

G ' NMR NMR

(2.5)

determine the random sequence of encounters.
Inserting Eqs. (2.3)-(2.5) into Eq. (2.2) we obtain

p-1 Blc.

oo oo p(q) (~p t Sg+S2
G(2)(f) — ~ ~ Sl ~ S2 m

PP Sj 0 S2Pm

1 1x exp —t —
x +
NMR NMR

(2.6)

where the lattice terms R~s" s (r ) were defined
as follows:

spin I

PEG. 1. Initially spin i and spin m are assumed to sit
at the origin and at r", respectively. Their "relative
displacement vector" due to S& encounters of type 1 and
S2 encounters of type 2 is denotedby r+, and for Sf+S2
—1 encounters by 7*, respectively. Vector r& charac-
terizes the jump probabilities of the two spins in one
encounter averaged over the two types of rearrange-
ments.
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g W, (r o, rm) = Q I) P P (r o, r*) = 1.
R=l p )jz

m

(2.10)

The total number of encounters per second of the
spin pair i-m with the two kinds of defects may
be written as the sum

1 2
NMR NMR NMB

(2.11)

of the encounters of the two individual types. Let
us define the probabilities P that the jumps of
some atom are due to a defect of type e, as the
average number of atomic jumps per unit time
due to all defects of type n divided by the total
number of atomic jumps per unit time, i.e. ,

p =C z) /(C, lz, +C,v,). (2.12)

Here v denotes the jump frequencies of defects
of type a, while N accounts for the number of
atoms in the crystal. Then, the number of en-

taking into account the decrease of pair correla-
tions' with increasing number S,+ S, of encounters
of the two types. The meaning of the vectors in-
volved is illustrated in Fig. 1. Assuming the prob-
abilities I) and P (r, r ) to be normalized, it is
readily seen that the probabilities W, (r ', rm) and

Ws, s (r', r") are normalized also, because1' 2

countess per second of the spin pair i-m which
are of type n may be written as the number of
jumps per unit time, 2P /r, of the two spins in-
duced by type- n defects, divided by the average
number of relative jumps of i and m in such an
encounter, according to

1 =2P- 1
= p-

rNMa r Z (0)+Z (r ) (r„M)()
(2.13)

Here, (r»a) denotes the mean time between two
encounters if mechanism n is activated alone, '
while Z (0) defines the mean number of jumps of
spin i in this type of encounter. Z (ro) symbolizes
the average number of pair-correlated jumps of
spin m in the same encounters. As discussed in
Ref. 8, with increasing number of encounters the
distance between i and m increases on the aver-
age. Therefore Z (ro) is a. function of the total
number of encounters, S,+S„experienced by the
spins i and m. Consequently, ~„M„defined by
Eq. (2.13) depends not only on the initial vector
r' connecting i and m but also on S,+S,.

Similarly as described in Ref. 8, starting from
the values of Z"'(r') determined by a single en-
counter, the mean number of relative jumps of i
and m, Z, (0)+Z'sz's2)(r') averaged over S, +S,
encounters of type n, may be determined from
the recursion formulas

z. (o) ,z." ' **&(, '„) = (s, ,s, ()[z„(o) + z.' * ' ** "(r '.) l ,z. (o) + E s', „(z '„, ,«„) z„(s ' + s„')
)

,
) 2

P Q

(2.14)

with the probabilities Ws, s (r', r ) given by Eq.1' 2
(2.9). The vectors used here have been defined
in Fig. 1.

According to Eqs. (2.7) and (2.9), the lattice
fa,ctors Bs s (r ') depend only on the sum, S, + S„
but not on the individual sequence of encounters
experienced by a particular spin pair. As illus-
trated above, the same is true for the parameters
rmN„a in Eq. (2. 13); i.e. ,

r„"„)(S„S,) =-r(„" (S,+S,); Rs") s (r') =R(s",s (r').
(2.15)

Using these relations and the abbreviation S
=S,+S„and inserting Eq. (2.11), the correlation
functions (2.6) become:

ft(s) PO)C(s) (t) g g s m exp
PO S=O

St TNMR

(2.16)

In writing Eq. (2.16), the binomial coefficients

S, + S, (S,+ S,)!
S2 SltS2 j

have been introduced.
The case S = 0 requires some special attention

because rNMa (S= 0) has not been defined so far.
If &'NMR is a function of S, the probabilities
q(0, 0, t) are not included as the special case for
S, =S, =O in Eqs. (2.4) and (2.5). Instead, the
probability that no encounter occurs in time t has
to be calculated from the relation'

q(0, 0, t) = 1 —g g zo (t, &'„„(S,+ S,))
Sl"1 S2"1

xzos (t~ rNM)((S)+S2)).

(2.17)

Inserting the poisson distributions (2.5) and
adopting the procedure illustrated in Ref. 8, it
may be shown that in a good approximation

q(0, 0, t) = exp(- [r'„Ma(l)+ r2„„„(I)]'). (2.18)
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8. Relation between jumps and encounters

In terms of the probabilities b defined above,
the total number of encounters per second of the
spin pair i-m may be defined in a way slightly
different from Eqs. (2.11) and (2.13), by dividing
their total number of jumps per unit time, 2/7. ,
by their average number of relative jumps in one
encounter averaged over the two possible types,
according to

2 w g

(s) = — g b [Z (0)+ Z,(s)(r~)j . (2.21)
NMR

From the first definition of »T[ ReesEqs. (2.11)
and (2.13)j we have

p 2

»R =1 Z ( )+Z (r ) "-1
(S) (S) «0

PQ

(TRMR)

(2.22)

For the two definitions to be completely equivalent
b, and p must be related as follows [see Eqs.
(2.21) and (2.22)j:

Za(0)+Z,' '(~r ), Z, (0)+Z,' '(P)
z'(o), z"'(| )

"z'(o)+zl"(, )' ')o'

Therefore, Eq. (2.16) remains correct if
TMMR(0) is identified with 7'„„„(1).

Using Eq. (2.11), the summation over S, in Eq.
(2.16) is found to be equal to (7„M„)s, and the
correlation functions G'"(f) become

) EI R"' '( (
) ( )

p s 0

(2.19)

where the index S in v'„M'R indicates the dependence
of 7„„„onS (see above), and the lattice terms
Rs" (~r) were defined by [cf. Eq. (2.7)j:

R"'(r )=z,"'(r )g w (r, o)z,"'*(T r").+

m

(2.20)

Via Eqs. (2.8) and (2.9), Rs(z)(~r„) is a function of
the probabilities b . Similarly, via Eqs. (2.11)
and (2.13), T(ssM)R in the correlation functions (2.19)
depends on the probhbilities P . As illustrated
below, both G(z)(f) and Rs"(~r) are therefore
explicitly temperature dependent.

form of the partial diffusion coefficients':

B = Ca, v~g~g. (2.24)

Introducing D, by Eq. (2.24), the probabilities b

become

(o. , (6=1,2; Pooo.), (2.27)

from which the validity of the normalization con-
dition b, +b, = 1 is observed. Substituting the form
(2.25) of p„Eq. (2.23) is readily verified, thus
illustrating that Eqs. (2.21) and (2.22) in fact are
completely identical definitions of T„'MR.

Noting that the mean number of pair-correlated
jumps Z,(s)(~r) is relatively small compared to
the number of jumps Z„(0), of the "representative"
spin i at the origin of our coordinate system,
and that the decrease of pair correlations with in-
creasing number of encounters is roughly the
same for all diffusion mechanisms, '

b is
practically independent of the spin pair i-m con-
sidered. Then Eq. (2.27) may be simplified as
follows:

Here d denotes the distance between atoms on
nearest-neighbor positions in the crystal, while
g represents geometrical factors to be determined
from the explicit evaluation of the Einstein-
Smoluchovsky relation (1.3) for mechanism a in a
given crystal lattice. Inserting Eq. (2.24) into
Eq. (2.12) we obtain

D e-EI /If F
nepa D + (+ /g )D g e sa/))T yD (g /g )e-sg/((T

(o(, (8=1,2; Son), (2.25)

where Eq. (1.1) has been applied. The validity of
the normalization condition P, +P, = 1 is readily
verified for this form of p .

Analogously to Eq. (2.12), the probabilities b,
are defined as the number of encounters per unit
time with a defect of type e divided by the total
number of encounters of the spin pair i-I during
the same time interval; i.e. ,

2C~V 2' Va
z (o)+z'*'(T) I z (0)+z'*'( ) )

(2.26)

(@=1,2). (2.23)

The validity of Eq. (2.23) may be checked by de-
riving independent expressions for b and P for
a given set of diffusion coefficients D (o.=1,2).
For that purpose, the definition (2.12) of p, may
be rewritten, introducing the following general

b =D D —" Da a a g Z (0) ()

I g (pi
e + — ()

(o. , P = 1,2; P oo n), (2.28)
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where Eq. (1.1) was used. Similarly, Eq. (2.23)
then becomes

'Z (0) Z„(0)
Zq (0) Zg (0)

(n, p = 1, 2; p e o.) . (2.29)

If all nuclear jumps are caused by a defect of type
o. (p = 1), all encounters must also be of type
o. (b„=1). Similarly, for P =0 Eq. (2.29) yields
b = 0 as expected. To illustrate the physical
meaning of Eq. (2.29), let us consider, e.g. , the
values of b, assuming that equal numbers of
nuclear jumps are induced by either type of de-
fects, i.e. , that p, =P, =0.5. Then, if, e.g. ,
Z, (0) & Z, (0) there will be feurer encounters of the
second type (b, &0.5) than of the first, since once
such an encounter occurs the spins jump more
vigorously than in an encounter of the first type.
Therefore, Eq. (2.29) predicts b, & 0.5 & b, for
Z, (0) &Z, {0).

C. Discussion of correlation functions

The correlation functions (2.19) governing the
relaxation effects associated with two self-diffusion
mechanisms in a single crystal, are characterized
by a decaying exponential multiplied by a power
series in time. The physical origin of this general
mathematical structure was shown to lie in the
Poisson distributions [Eq. (2.5)], representing a
good approximation as long as the mean time
between successive encounters of either type is
much longer than the time during which some
point defect actually induces the correlated rel-
ative jumps of nuclear spins. At the usual ther-
mally created point defect concentrations
(C —10 ), this approximation is well justified.

I. Convergence properties

The rapid convergence of the summation over
the total number S of encounters in Eq. (2.19) is
very closely related to the average increase of
the distance between two arbitrary spins and,
therefore, the decrease of the lattice terms
R~z" (r ) with increasing S. To illustrate this
statement, for simplicity let us neglect the rel-
atively small decrease of pair correlations with
increasing S, thus assuming r„'~'„ to be effectively
independent of S. To obtain an upper limit of the
summation over S in Eq. (2.19), all lattice terms
R~"(r ) may be replaced by their largest possible
value, namely, the rigid-lattice term R~g&, (~r).
The sum over S then yields an increasing expo-
nential in time, just large enough to compensate
the decaying exponential in Eq. (2.19). Obviously,
G'"(f) then no longer decays as a function of time

[since R~~" (~r) no longer decreases with increasing
S], but the sum over S still converges .This
analysis a1so illustrates nicely that the origin of
the decay of G'"(f) in time originates from the
average dec~ease of the dipolar interaction of any
pair of spins as a function of time.

G(e&{f) e 2tlw g -( )
St

with the lattice sums, e.g. , for S=1:

(2.30)

C(a&(S 1) g P(a&

(2.31)

The random-walk correlation functions (2.30) agree
completely with those calculated earlier by Eisen-
stadt and Redfield, ' if we limit their results to
crystals containing one sort of nuclear spins only.
The identity of Eq. (2.30) with Torrey's correla-
tion functions for random-walk diffusion on a
space lattice" was discussed elsewhere. " Per-
forming a powder average of the lattice sums
(2.31), Sholl's correlation functions" are ob-
tained. As illustrated earlier, "this procedure

2. Special case of only one self-diffusion mechanism activated

The formal identity of the correlation functions
{2.19) with those derived earlier' for the case
where all relative nuclear jumps are due to the
random migration of one type of point defects
only, is obvious. If only one mechanism, say,
number one (n = 1) causes diffusion, the tempera-
ture- independent val. ues b j Py I and b2 p2 0
[see Eq. (2.29)] have to be inserted into Eqs.
(2.11) and (2.13) for rN~~M&„and into Eqs. (2.8),
(2.9), and (2.20) governing the lattice terms
Rz"&(r~). It is readily verified that both r'„~~'„

and Rz" (r ) become completely identical with the
expressions derived in Ref. 8; therefore, G "&(t)
given by Eq. (2.19) includes the case of one point-
defect mechanism involved as a special case.

Following the discussion in Ref. 8, it is then
clear that also the correlation functions associated
with a random-walk mechanism of self- diffusion
on a crystal lattice"" "are included in Eq. (2.19)
as a special case. Noting that for an uncorrelated
mechanism Z (0) = 1, while pair-correlated jumps
do not exist [Z (~r) =0], Eq. (2.13) yields r&NMa

=
& ~ independent of S, where S now becomes the

number of random relative jumps of a pair of
spins. Similarly, the probabilities P (r, r ) are
independent of ~r and equal to the inverse of the
coordination number G of the crystal, and r*
represents one of the t" nearest-neighbor lattice
vectors r, (g= 1, 2, . . . , G). Equation (2.19) then
simplifies as follows:
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is not quite legitimate, however, in that it im-
plies that the decay of the sample magnetization
of a polycrystalline or powdered sample is simply
exponential, as in a single crystal. "

III. SPECTRAL DENSITY FUNCTIONS FOR TWO SELF-
DIFFUSION MECHANISMS

A. Basic form

0.0

-0.5—

—-I.O

~ -1.5
Ql
O

-2.0

I I
I

fcc LATTICE

The Fourier spectra J")((c) of the correlation
functions (2.19) are readily found to have the fol-
lowing general form (cf. Refs. 8 and 16):

8"( )
— Q Q))' (r„)j,( „'*„',),

S=o m

where the functions jz(x) were defined in the usual
ways& 16 by

(3 1)

j~(x) = He[2x/(I —ix)~"]. (3.2)

Re defines the sea/ part, and x= ~~„'M„ is closely
related to Eq. (2.22).

As discussed in Sec. II, a steady increase of the
probabilities p, and 5, from zero to one (cor-
responding to the decrease of b, and P, from one
to zero) is expected to result in a smooth transi-
tion of the correlation functions G")(f) from their
form governed by mechanism 1 to their properties
associated with mechanism 2. An analogous
transition between their forms J,")((d) and J',")((()),
therefore, also has to occur in the spectral den-
sity functions (3.1). This steady transition may
be attributed to two effects: (i) the continuous
shift of the microscopic time scale, 7„'„'„, from
(r„'~)„), to (r„'~~a), [see Eq. (2.22)]. (ii) The steady
variation of geometrical probabilities Wz(r„, r )
due to the variation of W, (~r, r*) between
P,(r, r* ) and P,(r, r*) [see Eqs. (2.8) and
(2.9)]; this in turn produces a smooth transition
of the lattice factors R(g)(r~) in Eq. (3.1) from
their forms [R(g)(~r)]„ to [R~()(~r)], associated
with one mechanism acting alone.

Figure 2 represents a doubly logarithmic plot
of J")(tc) vs (dv for the mono- and divacancy
mechanisms of self-diffusion in a fcc lattice
(p, =1 and j), =0, respectively), and for the case
in which P, =P, = 0.5 was assumed in the enitre
region. (The numerical procedure leading to
Fig. 2 is described in Sec. V.) It is obvious
from Fig. 2 that the dominant of the two effects
mentioned is the first one, producing a shift of
the entire curve. Apparently, shape and width
of 8"((d) as a, function of (ov vary only very little
as a function of the parameters b„and j) (n = 1,2).
Therefore, the decrease of pair correlations
with increasing number S of encounters governed
by the probabilities We(~r, r*) [see Eqs. (2. 14)
and (2.8)) must be approximately equal for both

I I I t I I

-I 0 I

Log ((ur)

FIG. 2. Doubly log(rrithmic plot of J ic)} [given by
Eq. (3.1)] vs ~T for a fcc lattice. Shown are the results
for monovacancies (Ref. 8) [P&(T) =1], divacancies
[p&(T) =1], and for their combined effect for p, =p,
=0.5 independent of temperature. (In units of 6cu 'a ~0,
where 2ao represents the cube edge of a unit cell. )
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B. Simplifications and approximations

The numerical determination of J")(&) from
Eq. (3.1) for arbitrary values of j) and b, is
very tedious (see also Sec. V). For practical
purposes, it is therefore desirable to simplify
Eq. (3.1).

The fact that (i) the shift of the curve for P,
=P, =0.5 in Fig. 2 relative to the plots of J")((d)
for p2= 0 and p, = 0, respectively, is practically
the same on both sides of the maximum of J'"((o),
and (ii) shapes and widths of all three curves are
about the same, strongly recommends the following
decomposition of Z")((d) for all values of p and
b

g((()((d) —P P g (())((o)
m=1

(3.3)

Here the lattice terms [R(z"(~r)] and the func-
tions je(x„) associated with the "pure" case of
mechanism n acting alone have been introduced,

a K(Y N~~Mn)()''

For P, = b, = 0 and P, = b, = 1, respectively, the
unrestricted validity of Eq. (3.3) is readily
verified using the general forms (2.19) and (3.1)
of G")(f) and J")((d), respectively, together with
the general relations (2.20) and (2.22) for the
lattice terms and the mean numbers of encounters
per unit time. On the low-temperature side of
the maximum of J("((o)(x»1), Eq. (3.1) yields:

mechanisms. This indicates that the second effect
outlined above must be very small.
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R(k&(r ) R e&(ro)
(d «p x

m

~ [R,'"(r )) —[R,"'(r )]
Pe(d 1 P Xe

m

(3.4)

2R(0) (Po) T(E&

s=p pp
m

(4.2)

where x=(dT„'M'„, and the asymptotic forms of jE(x)
discussed elsewhere'" have been used. Also,
according to Eq. (2.22),

I/x=p, /x„+P, /x, . (3 5)

In writing Eq. (3.4), the following form of
R(E"(~r) for S=0 and S= 1 was used [see Eqs. (2.20)
and (2.8)]:

IV. TEMPERATURE DEPENDENCE AND ANISOTROPY
OF RELAXATION RATES

Using the spectral density functions (3.1) or
their simplified version (3.3), respectively,
all relaxation properties (anisotropy, tempera-
ture, and field dependence of relaxation rates)
associated with two self- diffusion mechanisms
may be predicted. Inserting Eq. (3.1) into the
usual expressions for T, and T, (see, e.g. ,
Abragam"), we obtain

2 i&0

(4.1)

RE"(r ) =b, [RE"(r')], +b, [RE"(r )]k (S=0, 1).
(3.6)

As discussed above, R(Ek&(~r) varies only very
little as a function of the probabilities b . There-
fore, the asymptotic form (3.4) of 8"((d) repre-
sents a very good approximation. Comparing Eqs.
(3.4) and (3.3), it is seen that on the low-tempera-
ture side of the J")(v) maximum, the approxima-
tion (3.3) introduced on phenomenological grounds
is practically identical with the exact form (3.1)
for all values of P„and P, .

On the high-temperature side of the maximum of
Z("(d (x «1), the general validity of the approxima-
tion(3. 3) cannotbe derived from Eq. (3.1)for allval-
ues of p, and p2. Only for P, & 1 and p, & 1, re-
spectively, Eq. (3.3) is found to be a very good ap-
proximation to the exact form (3.1). Nevertheless,
as we shall show in Sec. V, even for intermediate
values of P, and p„Eq. (3.3) represents a fairly
good approximation, certainly good enough for all
practical purposes.

A. Temperature dependence

Through the mean jump time ~ and the probabilities
p and b, the relaxation times T„T„and T„
vary with temperature. Applying the Einstein-
Smoluchovsky relation (1.3) to Eq. (1.1) and in-
troducing the parameters

D = c= ' ' g =—(c( &3=1 2 Pen. )
D E —E g

~g
pP 1 g'g

(4.6)

the mean jump time 7 varies with temperature
according to

1 6D0(&-E&lkT(I +D &- (lkT)
T d 21 (4.7)

Similarly, in terms of the parameters (4.6), the
probability P„e.g. , depends on temperature in
the following fashion [see Eq. (2.25)]:

Similarly, using Look and Lowe's relation, ""in
the high-field limit the corresponding expression for
T„becomes

00 g(q)
(,)RE"(r ~)j,(~"','M'R),

1P q p (k p pp
m

(4.3)

with 5 = y ff'I(I+ 1) and the following abbreviations:

h'"=h"'=1; h"'=10; co")=2~ . (d"'=~co

((I = 1, 2) . (4.4)

Owing to the linearity of the relation between the
relaxation rates T„' and the spectral density func-
tions J (k&((d), it is obvious that their simplified
form (3.3) leads to the following linear decompo-
sition:

1/T„,= f', (1/T .(),+ P.(I/T, .i). ,

(4.5)

where (T,,', )„symbolizes the relaxation rates asso-
ciated with the "pyre" case of mechanism n
(a = 1, 2) alone causing self-diffusion (see, e.g. ,
Ref. 8).

In what follows, temperature dependence and
anisotropy of the relaxation times T„T„and
T» will be analyzed for both the exact relations
[Eqs. (4.1)-(4.3)] and their simplified versions
(4. 5).
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12 21g D e-ez, /I r
P2( ) I+ D e sz&lkr

12 21
(4.8)

B. Orientation dependence of relaxation rates in cubic

single crystals

As a function of the orientation of the strong
constant magnetic field H, with respect to the
main cubic crystal axes (characterized by
two angles, 8 and P)", the lattice terms
R~z" (r ') in Eqs. (3.1) and (4.1)-(4.3) vary accord-
ing to'"

R(e) (PO ) P(a) (~0 ) +f(8 P) Btq)(PO ) (4 9)

where the "anisotropy function" f(8, Q) is given
by8y 16

f(8, P) =sin'28+ sin'8sin'2P. (4.10)

Via the probabilities b, (T), the orientation inde-
pendent new lattice terms A~z" (r ') and B~z"(r')
originally defined in Ref. 16 depend on tempera-
ture. Only in the limiting case of one diffusion
mechanism acting alone, the lattice terms
[A~z" (r ')], and [B'z"(r ')], in the expression

[R~z"(ro)].= [X~s"(r')], +f(8, P) [B~&"(r')]„
(4.11)

governing the simplified relations (3.3) and (4.5),
are independent of temperature.

It is well known that the anisotropies of the
relaxation rates depend on temperature. '"'" This
is illustrated, e.g. , in Fig. 3, where T",', T,',
and T„' (for H, »H„) have been plotted versus
(&pT for two diff erent orientations of the field 8,
with respect to the main crystal axes and for
polycrystalline samples. The mechanisms chosen
in Fig. 3 are the so-called 1N-2N-4N mechanism
of divacancy migration in a bcc lattice and the
monovacancy mechanism. (For details, see Sec.
V.)

As discussed earlier'" and as also suggested
by Fig. 3, for temperatures far below and far
above the T, and T» minimum, respectively, ex-

while P, (T) may be determined from the normal
ization condition: p, = 1 —p2. Finally, the temper-
ature variation of the probabilities 5 is governed
by Eqs. (2.29) or (2.28), respectively.

Inserting Eqs. (4.7), (4.8), and (2.29) into Eqs.
(4.1)-(4.3) and (4.5), respectively, the tempera-
ture dependence of T„T„and T» may be deter-
mined in the exact limit and under the assump-
tions underlying the approximate form (3.3) of the
spectral densities. As illustrated in Sec. V, this
requires the evaluation of the lattice sums in-
volved for each particular combination of diffusion
mechanisms.

—, e 0
Ql0

0 I 2
Log(cy v)

FIG. 3. Relaxation rates for the simultaneous migra-
tion of mono- and divacancies (1N-2N-4N, &2&

= &24,

see Sec. VA) in a bcc lattice for p&(T) =p&(T) =0.5
(independent of temperature) and two different crystallo-
graphic orientations of the field Hp namely f(8,$)
=0 (8=0, Q =0), f(8,$) =1.25 (8=45', Q =45'), and for
polycrystalline samples for which f(8,$) =0.8 (Ref. 16).
[~(}/co)=1000, Tg and T2 in units of 6MO ao~, T&& in

units of 6~& 'ao~; see Eqs. (4.1)-(4.3) with Eqs. (4.9) and

(4.10).]

plicit expressions for the orientation dependences
of T„T„and T» may be derived, starting from
Eqs. (4.1)-(4.3) and (4.5), respectively, the form
(3.2) of the functions j~(x), and Eqs. (4.9)-(4.11).
This procedure is completely analogous to earlier
m'ork, '" and will therefore not be illustrated here
in detail. In Sec. V, however, numerical values
of these anisotropies in the different temperature
regions will be presented. Noting that""

B( )(r ) P B(l)(r 0) g B(0)(r 0) (4 12)
]0'p p p ~o

m m rm

for any self-diffusion mechanism, it may readily
be shown, e.g. , that on the high-temperature side
of the T~ minimum (i.e. , for nor«1) Eqs. (4.1)-
(4.3) predict T„T„and T„ to be equal and iso-
tropic (see also Befs. 7 and lib).

V. NUMERICAL RESULTS FOR VACANCY-INDUCED
SELF-DIFFUSION IN fcc AND bcc CRYSTALS

To investigate the relaxation effects of a tem-
perature- dependent admixture of divacancies to
the dominant monovacancy mechanisms in fcc and
bcc crystals (see Sec. I), in the rest of this arti-
cle the two relaxation mechanisms will be identi-
fied with a mono- and a divacancy mechanism of
self- diffusion.

As illustrated above, the numerical determina-
tion of the temperature dependence of T„T„and
TI p and their anisotropies necessitates the evalua-
tion of the lattice sums R~g'(r o) and the mean

. time ~„'M'„between encounters. These quantities,
in turn, are governed by the geometrical probabil-
ities P„(ro, r") [see Eqs. (2.8), (2.9), and (2.20)]
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TABLE I. Comparison of two modes of migration of divacancies in a bcc crystal. Listed
is the number of jumps of spin i, Z~{0) {column 1), and the number of pair-correlated jumps,
Z„(r~) of a spin m sitting on a nearest- to third-nearest-neighboring position r~ (columns
2 to 4) relative to spin i located at the origin [r~~=(0, 0, 0)]. For comparison, results for
single vacancies have been included (Ref. 8). The values of Z~(0) are in agreement with those
presented by Cavelius (Ref. 13).

Z(r) rm=(0 o 0) (+1,+1,+1) (0, 0, +2) (0,~2, +2)

Single vacancies
(Ref. 8) (0'=1)

Divacancies (& =2)
(1N-2N-1N, i.e. ,
v 24

——0)

Divacancies {G,'=2)
{1N-2N-4N for
V2j —V24)

1.36

2.47

2.19

0.65

1.94

1.84

0.53

l.78

1.69

0.41

1.41

1.34

and the average number of relative jumps,
Z (0)+Z (r'), in an encounter of an arbitrary
spin pair with a single or double vacancy. As
illustrated earlier, '"numerical values of these
parameters may be determined from the compu-
ter simulation of the random migration of these
defects.

A. Computer simulation of the random migration of mono-

and divacancies in fcc and bcc lattices

Numerical values of P,(r, r") and Z, (0)+Z,(ro)
for self-diffusion via single vacancies by random
vacancy jumps to nearest-neighboring positions
in fcc and bcc crystals are found in Ref. 8, while
results for random nearest-neighbor jumps of
divacancies in a fcc lattice have been presented in
Ref. 11a.

In a bcc lattice, the modes of divacancy migra-
tion are more complicated. Thus, e.g. , a diva-
cancy originally, say, in a, nearest-neighbor (1N)
configuration (i.e. , the two vacancies are sitting
at nearest-neighboring positions in the crystal)
cannot jump into another 1N configuration without
partially dissociating, even though the individual
vacancies of the pair are assumed to jump to
nearest-neighboring sites only. Therefore, after
the jump of one of the two vacancies, the divacancy
forms a second-nearest-neighbor (2N) configura-
tion. As pointed out, e.g. , by Mehrer, "from this
2N configuration the vacancies may either jump
back into a 1N configuration (i.e. , associate again
with a probability v») or they may dissociate even
further by jumping into a 4N configuration (with
probability v,~).

Some typical results for the two divacancy
mechanisms in a bcc lattice (so-called 1N-2N-1N
and 1N-2N-4N mechanisms) are listed in Tables
I-III. They were obtained from the simulation of

1500 encounters in each case, every encounter
consisting of 1300 random jumps of a divacancy.
All calculations were performed in the CDC 6600
computer of the University of Stuttgart. The com-
puter time required for the simulation of one
mechanism amounts to about 8 min. (For details
on the computer simulation of the random migra-
tion of single and double vacancies in cubic crys-
tals, see Ref. 21.)

The motivation for simulating both the 1N-2N-1N
and the 1N-2N-4N mechanism was to find out
whether they are distinguishable by NMR studies.
To get an idea of the differences expected we have
chosen the simple case v»= v„ for the simulation
of the 1N-2N-4N mechanism. As seen from
Table I, the average numbers of relative jumps
are rather different for the two mechanisms; but
the decrease of pair correlations with increasing
number of encounters is about the same (see
Table II).

Although there are fewer correlated jumps of

n(0)+ n" (rm) S=4

Single vacancies
(Ref. 8) (~= 1)

Divacancies (& =2)
(1N-2N-lN, i.e. ,

&2y =0)

Divacancies (m =2)
{1N-2N-4N for
"2t =~24)

2.02

4,41

4.03

1.93

4.19

3.84

1,88

4.02

3.69

1.84

3,88

3.55

TABLE II. Decrease of pair correlations with increas-
ing number ~ of encounters for the monovacancy (Ref. 8)
and for two divacancy mechanisms in a bcc lattice. List-
ed is the total number of relative jumps, Z~(0) + Z~ (r~)
of spin i and spin m after S encounters of type &.
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TABLE 1II. Probabilities P~(r, r ) for mono- and divacancies in a bcc lattice. rm = (0, 0, 0)
represents the position of spin i located at the origin, while rm ——(1, 1, 1) denotes the position
of a nearest-neighboring spin of i. (For further details, see Secs. IIA and VA.)

&n (rm &m)
~p
rm r* =(0, 0, 0) r+=(1, 1, 1) rm+ = (0, 0, 2) m*=(0~2~2)

Single vacancies
(Ref. 8) (& =1)

Divacancies (& =2)
(1N-2N-1N, i.e. ,
V2f —0)

Divacancies (n = 2)
(1N-2N-4N for
"2f = V24)

(0,0, 0)
(1,1, 1)

(0,0, 0)
(1,1, 1)

(0,0, 0)
(1,1, 1)

12.9
11.8

13.3
9.5

11.1
9.3

9.6
7.6

7.7
5.9

8.5
6.1

1.0
1.8

2.7
3,3

2.2
3 ' 2

0.2
0.6

0.4
0.8

0.4
1.0

the spins i and m in an encounter of the 1N-2N-4N
type (see Table I), Table III indicates that the
spins move apart further than in an encounter of
the 1N-2N-1N type. Thus, e.g. , the probability
W, (0, 0) of spin i remaining at its lattice site is
13.3' for the 1N-2N-1N mechanism versus 11.1%
for the iN-2N-4N mechanism. Similarly, the
probabilities of greater relative displacements
of two nearest-neighboring spins are higher for
the second mechanism.

Unfortunately, see Sec. VB, in their effect on
the relaxation rates the differences between the
two divacancy mechanisms exhibited by Tables I-
III tend to compensate each other.

B, Anisotropies of relaxation rates for single- and double-

vacancy migration in fcc and bcc crystals

Starting from the explicit expressions of the
orientation-independent lattice terms A~s" (r ') and
B~s"(r') in terms of the crystallographic coordin-
ates (xo, yo, zo) of r' (see Ref. 16), the aniso-
tropies of T„T„and T» in the different tem-
perature regimes may be calculated, making use
of the recursive procedure for the evaluation of
the average number of relative jumps, Z(0)
+ Z~ (rs)oof the spin-pair i mand the geometri--
cal probabilities Ws(r, r ) associated with S en-
counters [see Eqs. (2.9) and (2.14)]. Results of
these rather lengthy computer calculations are
listed in Table IV.

As discussed elsewhere, '"'" T, and T» for
copT ~~ 1 and (of T ~& 1, respective ly, are ful ly
determined by the terms for S=O and $=1 in
Eqs. (4.1)-(4.3) alone. In contrast, the values
of T» for wyT «1 of Ty for pT «1, and of T2
in the entire (motionally narrowed) temperature
region are governed by many encounters. The
required computer time in these regions is, there-
fore, determined by the convergence of the sum-
mations over S in Eqs. (4.1)-(4.3), which included

as many as S ~= 10 encounters for the results
listed in lines 3 and 4 of Table IV. Typical com-
puter times were about 50 to 60 min on a CDC
6600 computer, compared to only about 6 min for
the results in lines 1 and 2 involving terms for
S=O and S= 1 only. A further increase of S ~
left these results practically unchanged. All lat-
tice sums were extended over the first 1350
spins closest to the "representative" spin i at
the origin.

The function f(e, Q) may vary between 0 and —,
'

[see Eq. (4.10)], its smallest value corresponding
to the orientation of Ho parallel to a (100) direc-
tion of the cubic crystal, and its largest value
defining a (ill) orientation of H, . The "aniso-
troPy factor" n, defined by

T a[f(e, 0)=;]—~.a[f(~, 4') = o]
~a[f(e, 0) =o]

T,g((111)) —T„i((100))
T re| ((100))

therefore represents a convenient measure for
the orientation dependence of the relaxation times
T„T„and T». Values of ~ for the different
vacancy mechanisms have been included in Table
IV.

The relatively small differences of the aniso-
troPies of T, and T, for ~pT»1 associated with

t

the two modes of divacancy migration in a bcc
lattice are illustrated in Fig. 4.

C. Discussion of anisotropies

From Table IV and Fig. 4, it is apparent that
the orientation dependences of T„T„and T» for
the vacancy mechanisms considered are too simi-
lar to be experimentally distinguishable. Reasons
therefore lie in the fact that (i) the geometrical
rearrangements of two spins due to the random
jumps of different kinds of vacancies are very
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I' 2

0.9

0.8

&~8 0

-I

bcc LATTICE
IN-2N"IN(0) vs IN-PN-4N (b)

I I I I I I I I

0 20 40 60 80 I 00 I20 I40 I 60 l80
e(deg)

FIG. 4. Anisotropies of T f and T2 for ~~7»1 for the
1N-2N-3. N and the 1N-2N-4N {v2f = v24) mechanism of
divacancy migration in a bcc lattice (in arbitrary units;
see lines 2 and 3 of Table IV).

similar, and (ii) the anisotropies of high-field
relaxation rates are mainly due to the orientation
dependence of the dipolar 1ocalfield, "b incorpor-
ated in the rigid-lattice contributions (terms for
S=O) to the relaxation rates (4.1)-(4.3) and (4.5).
The anisotropies of 7» in a lose rotating field in
the so-called Slichter-Ailion region are known to
be mainly due to the motions of spins and not due
to the local field. These effects will be the sub-
ject of a forthcoming article.

As outlined above, all values listed in columns
1 and 4 of Table IV are independent of whether
they were obtained from Eqs. (4.1)- (4.3) or from
the approximation (4.5). For P, =P, =0.5, columns
2 and 3 show the predictions obtained from Eqs.
(4.1)-(4.3) and from the simplified relations (4.5),
respectively, by superposition of the values in
columns 1 and 4. In the temperature regions
where only the terms for S = 0 and S = 1 contribute
to the relaxation process (see lines 1 and 2 of
Table IV), the agreement between exact and ap-
proximately valid results is excellent. Following
the discussion in Sec. III 9, this is not surprising,
As expected, in the regimes where many encoun-
ters contribute to relaxation (see lines 3 and 4 of
Table IV), the differences between exact and ap-
proximate results are greater (typically about 10
to 15'). However, noting that the probabilities
p and b~ are not known too accurately either
(owing to uncertainties in our knowledge of the
parameters D», D„, E„E,), for all practical
purposes at all temperatures the simplified rela-
tions (4.5) certainly represent good approxima-
'tlolls 'to tile 11101'e accul'a'te expl'ess1011s (4.1)-
(4.3).

D. Temperature dependence of Tf and T&

Although the anisotropies of the high-field
relaxation times are rather insensitive functions

-2 -I 0 I 2
Log(f4',v)

FIG. 5. Doubly-logarithmic plot of T ff, T2f, and
T f p (for Hf &&Hg p ) vs fx)() 7 for powdered bcc samples
if(8, Q) = 0.8l. The dominant diffusion mechanism was as-
sumed to change from single vacancies (P~ =0) through

p f p 2 0 .5 to divacanc ies (p &
= 1) . The plots obtained

from the evaluation of Eqs. (4,1)-(4.3) are practically
the same for both the 1N-2N-1N and the 1N-2N-4N
mechanisms. Units are the same as in Fig. 3. Corre-
sponding numerical values are listed in Table V.

of the types of vacancies inducing atomic jumps,
their magnitudes for a given value of the mean
atomic jump time v may differ considerably. In
a more complete way than in Table IV, this ef-
fect is illustrated in Fig. 5, showing the relaxa-
tion rates in a polycrystaiiine sample [f(B,P)
=0.8] as functions of ~o7 for three temperature-
independent values of the parameters p and 5 .

In reality, p and b are functions of tempera-
ture [see, e.g. , Eqs. (4.8) and (2.28)], an effect
Ilot exl1iblted by plots of the type of Fig. 5.

The transformation of the logIo(&oo7) scale in
Fig. 5 into an inverse-temperature scale is read-
ily accomplished Fo. llowing Eq. (4.7), any value
of log„(+or) may be converted, e.g. , into a corre-
sponding value of the parameter E,/kT, according
to

(dd E~
6D kT I 1001.

log (1~D e NEI/kr) (5 2)

Using the relaxation rates (T,,II) (n = 1,2) shown
in Fig. 5 (plots for p, =0 and p, =1, respectively)
and listed point by point in Th,ble V and VI for the
bcc and the fcc lattice, respectively, as functions
of log»(o'er), and applying the relation [see Eq.
(4.5)]

1/T ~ =P, (T)(1/T;I), +P,(T)(1/T. ), (5 3)

found to be sufficiently accurate in the entire tem-
pexature range (see above), for any given set of
values for co„E„D„,&, and D„ the temperature
dependence of the relaxation rates may be deter-
mined from the following procedure:

(i) For any value of E,/kT, Eq. (5.2) allows



50 DIETER WOLF

I

g W

Q Q O
~ me

~~ P Cd

~W

g ~o
Q.

g
O

N
'U

Cd ~
Q W

~ a~
JH ~ Q

04 e
"II@e ~

m ~
oR "+
o

~5~ ll

~~ ~ O~ ~ ~

e~m
m

0 ~ C4 g
m Cd

N ~ Oe N oe 'p
al bf

b7IC '
Q
II

Cd
cd

3-8 eR

O I gONE

o e

N
Cd

7~9~ g,e N e-gol-,g ~~ g
N

~ Cd Cd 80 ~ e
ge" &88 m

cd me~

~8 e + m

Q

g s
O g N

~O Cd
~ ~

g
cd 0

& e ge

NWe
~W
Q

Cd
3 Q

I a,~~

+

II .e
Q

M)

.8
M

N
.8
Q

7

I o.~
~ kg"

~I

x .I&

Iea Q
Cd

e
.Qc

e
~ W
Qlo 0
Cd
Q
Cd

~h

+

~m-e&

Cd

e

m4

h
3

h0o

I IO 0
X X

I I I I0 0 0 0
X X X X
O4 LQ CD Cb0 CO

I I I0 0 0
X X X

CD O CD

I I IO O 0
X X Xt- ~
O4

I I I0 0 0
X X X

Ot

'I I IO 0 0
X X X
00 L

t
Cb t CD

I I IO O Q
X X X

CO CO

I I IQ O O
X X X
CD 00 00

CD LQ

I I I I I I0 0 0 0 0 0
X X X X X X
LQ ~ 0 00 CD cD
Cq Cb CD Cq CD CD

CD t CD

gq ~ C4 ~ O4 ~ C4
I I I I I Iooooooa
X X X X X X

gqoo CD~
CD CD Ce 00 M

CQ CQ CQ

I I0 O
X X
cD 000 0

I I I I I I I0 0 0 0 0 0 0 0
X X X X X X X X

CO 0 ~ CD 00mcDmt-moOLQm
CQ CO

I I I0 0 0
X X X
00 O O
00 CD n
CD

I I I0 0 0
X X X

Cb t
O
LQn Ce

I I I I I I I0 0 0 0 0 0 0 0
X X X X X X X X

CO
LQ 0 LQ N 0 CD R 0

L CD LQ

CO

I I I I I
Q 0 0 O O

X X X X
CD0 00 0

LQ t 00

I I
Q O
X X

~ ~

I I0 0
X X

O

I I I0 0 0
X X X

CD CD
CD 00

I I IO O Q
X X X
00
CD 00

I I I
Q O O
X X X

00
00

I I I I I I I IO O O 0 O 0 Q 0
X X X X X X X X
L-COLQO t-00 M CD M & C0

00 cD LQ

I I I I I0 0 0 0 0
X X X X X

00
CD

00

C4 CQ g4
I I I I I0 0 Q O 0
X X X X X

0 g
00

I IQ O
X X

I I
O Q
X X

'Nfl

CQ CO

I I IO O Q
X X X

Q CD
L Cb CD

CQ

I IO 0 O
X X

cD 00
CD

I I IO Q O
X X X
LQ ~O
00 &O
Cg

I I I I I I I I0 0 O 0 O 0 0 O
X X X X X X X X
C9 O4 CD CD 00 0 0
CD

00 cD

I I I I I0 0 0 0 0
X X X X X
Cq CD Cg CD 00t A t CO 0
Cg Cg

I I I I I Io ooooo
X X X X X X

L OO L
00 t LQ

00

I I I0 0 0
X X X
LQ t CD
00 LQ O

LQ

I0 0
X X

CD

I I0 0 0
X X X
O O
CD 00 n

I I I0 0 0
X X X
t CD
00

I I I0 0 0
X X X

LQ

o a0 0 0
X X X
OO CD O

LQ

a o a o a0 0 0 0 0
X X X X X

LQ
Cb ~ CD

O4 CQ

a a a0 0 0
X X X

00 CO

t CD

I I0 O
X X

O
00

I I I0 0 0
X X X
CD
LQ CD

I I
O O 0
X X X

t ~ t
CO CO

I I I
O Q O
X X X

CD

I I I0 0 0
X X X
CD LQ
LQ O CD

LQ CD CD

I I I

O Q O
X X X
00 ~ CD
CQ ~ 00
t 00

o a o0 0 0 0
X X X X
00 ~ L Ch

Cq

o o o a o o0 0 0 0 0 0 0 0 0
rE
X X X X X X X X X

CD t M L LQ 0L~Cg~t LQOCOL
LQ cD 00

CD

I IO 0
X X

LQ 00 00
00 CD

CD

I I I
O O
X X X

CD CD

I I IOOO
X X X0 00

CD

I I I0 0 0
X X X

CD
LQ CD

Cg ~ CD

I I I0 0 0
X X X

O O
LQ

I I IO 0 O
X X X
LQ O

t
t

I I I0 0 0
X X X
00 CD CD

CO

I I I0 0 0
X X X

LQ LQ
00

LQ cD 00

o o o
O 0 0 O 0 0 Q

H
X X X X X X X

C4
I I
O Q

X X

O CQ

LQ

N
I I I0 0 0
X X X

L
CD 00

I I I

O Q O
X X X

00

I I I I I0 0 0 0 0
X X X X X
t ~ Q

~ ~ ~ ~ ~

CQ

I I IO O Q
X X X

CD 00
LQ O

~ ~ ~

LQ CD

I I I

O 0 O
X X X
cD ce oo
CD

CD t 00

o a0 0 0
X

CO
00

Cb

o a o
O O O
X X X
cD oOM

o a o a0 0 0 0 0
X X X X X0 L CD CO CD

n~LQcDOO

I I I0 O O
X X X X

g CD t
~ ~ ~ ~

00 M ~ LQ

I I I

I I0 0

Z

I I

I I I I0 0 0 0
X X X X

00
00

LQ L

I I I I

I Ia o
X X
t 00

LQ

I I I0 0 0
X X X
00
CD CD LQ

I I I I I

I I I I0 0 0 0
X X X X
cD cD oo M

CD CD

CD

I I I

I I0 0
X X

CD LQ

I I

I I I I0 0 0 0
X X X X0 CO O

CD
~ ~ ~ ~

CQ

I I I I

I I I I0 0 0 0 0 0
X X X X X Xt- CO LQ CD LQ 00
CD Ce O CO CD R

00 CD LQ

I

gg hi
I I0 O
X X
O O
00
CD

I I I0 0 0
X X X

CD
t CD

I I I0 0 0
X X X
O O CO

LQ

I I I
O O 0
X X X

I I I0 0 0
X X X

O Cg
CD

~ ~ ~

I IO Q O
X X

I I I0 0 0
X X X
00

Cb L

t

I I0 0 0
X X X
00 W Cb
t O

CO

I I I I I I I0 0 0 Q O O Q
X X X X X X X
O R O CD CD CO CD
CD LQ M LQ LQ 0 t

CD L CD

I I I 1 I0 O 0 O O
X X X X X

Cg CD
CD 00 LQ ~ 00

Cg
I I I I

I I I I I0 0 0 0 0
X X X X X0

L L CD t-
LQ

I I I I I

I I I I I0 0 0 0 0
X X X X X0

LQ CD

t
I I I I I

I I IO O Q
X X X

00
LQ

I I

I I I0 0 0
X X X

00O
00

I I I

I I I0 0 0
X X X

O
00
CD LQ

I I I

I I I I I IQ O O 0 Q Q
X X X X X X0 YJ 00
LQ 00 ~ t rfl

I I I I I I

I
O 0
X X

CD

C4 C4
I I I I0 0 0 0
X X X X

CQ
L LQ

CD L CD

I I I0 0 0
X X X
CD n oo
Cg CD OO

I I0 0
X X

4Q

I I I0 0 0
X X X
CDNO

I I0 0
X X

Cg

04
I I I
O O Q
X X X

00
00

~ ~ ~

CD

I I I0 o o
X X X
L O
CD L

I I I0 0 0
X X X

00
Cg 0 O
CD LQ

I I I
O Q O
X X X

00 LQ
Cg LQ O

I I I0 0 0
X X X
CO CD CO

N 0

0 CD 00 L CD LQ ~ K M ~ 0 ~ Ol ~ + LQ CD L 00 CD 0
IVI

I I I I I I I I I I I I I I I



~\

N

Q

0

o

cd

~IH

N

o

o
cd

Q

0'0
'U

cj
0
be

~g

cd
~W

0
~W
M

Q

m g
~&o

o
c5

Yo .~~

A

@Kg
II 8

~ o
c5

be 4g
.8
M

m g
~~
8lo

3 o
I o

A

CS

M

II
g

Q

Cf}

Q
o
cd

I o
C5

CCI

0

CD

+
m +

II o
cd

05

K~-
M

3
be0

~++4

NON-ARRHENIUS BEHA VIORD IF F US ION AL AND. . .

Io
X

CO

04

I
O
X

O

I I I
O O O
X X X
Cg CD

I IO O

X X

W QO

LQ

I
CD

X
Cg
00
CD

I

X

CD

I
O
X
00

00

I I I
O O O
X X X

CD

CO 04

I I Ia o o
X X X
eOQO

QO

I I
O O
X X

I

X

Io
X
Cg
LQ

00

Io
X
CQ
CO

00

I
O
X
LQ

L

I I I
O O Ol

I I
O O
X X
O 00
LQ

CQ

I I
O O

I Io a
X X

CO
X X

Cb LQa

I I I I IO O O O O
X X X X X

Cb 00 00
Cb L LQ~Cg

I I
O O
X X
LQ CD
t

~ ~

t

I
O
X

Io
X
LQ
O

I
O
X

I I
O O
X X
LQ LQ

IO
X
00

I
O O
X X

LQ
O +

00

I
O
X

LQ

I I

X X

O
CO

I
O
X

g

I
O
X

I
O
X
00
00

Io
X

Cb

Io
X
CD
00

I

X

Io
X
LQ

Ch

Io
X

CO

I IO O
X X
Cb
O
Co

I I
O O
X X
Cb
00 00

CQ

I I IO O O
X X X

CQ 00

I I I I
O O O O O
X X X X X

00 M ~ O

CO

I I I
O O O
X X X

I I IO O O
X X X

I I I
O O O
X X X
O I O

~ ~ ~

I I I I I IO O O O O O
I IO O

5$

I Io o
X X
cD 00
L

CQ

I IO O
Io
X

I

O
XX X o o

~ ~

I

X
CQ
LQ

I I

O O
X X

00
CQ

I I
O O
X X

Cb

CD LQ

I

O
X
CD
00

I

X

CD

I I IO. O O
X X X

~8~
LQ cD 00

Io
X

I I I
O o

X X X
L t O

CD LQ

I
O O
X X
LQ

CQ

I I I
O O O
X X X

00
L

I
O
X
LQ
QO

I

X

00

I
O
X
t

I
O
X
CO
00

I
O O
X X
O Ot

~ ~

QO

I
O
X
CD

I
O
X

CD

I
O
X
tt

I I
O O
X X

O
C4

Io
Xoo

CO 04 04 Ol
I I I I I I
O O O O O O I I

O O
X X

00
L Cb

IO
X
00
LQ

I
O
X

LQ

Io
X
LQ

I

X

00
CQ

O Cl
O O O
X X Xt- O
ce w ~

LQ

o o
O O
X X
Cb CP

I I
O O
X X
CD Ce

Cg

I I
O O O
X X X

O

LQ

a o
X X

t

o
X

CO

O
X
00

O
X
Cb

Cg

o
X
O

O
X
LQ

X X X X X

cD

00

X
Oa00

CD

I I
O O
X X

O
CD

I o
O O
X X
O 00
O O
Cb

I
O
X

I
O
X

Io
X
00
00

O Cl O O
O O O O
X X X X

00 00 00
00

o o oo o a
X X X
L t 00
O

o o
O O
X X

04 O
LQ

o o co o a
X X X

o o o
O O O
X X X

00
CD

CD L Cb

O O
X X
Cb g

~ ~

a o
X X
CQ g

O
X
00

o
X
LQ
00
LQ

O
X
CD

O
X
00

X

00
O L

LQ
~ ~

I I I I I Io o a o o o
X X X X X X
00 O + N CD Oo 00

t

I I I

O O O
X X X

g Co
~ ~ ~

LQ

I I I
O O O
X X X

O
00

00

I
O
X

I Io a
X X
O t

I c o
O O O
X X X

5~ X
~ ~ ~

I I
O O
X X

O

Ol CQ

I
O
X
00
00

I
O
X

CD

o o o
O O O
X X X
L ~ 00

o
O O
X X

QO
O

cD oO

o o
O O
X X
CO 00O O

LQ

O
X

O

o
X
00

Io
Xo

I IO O
X X

O
Cb t

IO
X

CO

Io
Xo

Io
X

C0

Io
X

'Nfl

I

X
Cb
00

o o
O O O
X X X
L t t

O 00

c c
O O O

o o
O O O
X X X

o c oa o o
X X X

o o
X

o
CQ

O O
X X
C4

O
X

O

O
X
Cb
CD

O
X

O
X
CD

o
X
00

o
X

LQ

CQ

o
XX

O
X

CO
o OO

I I I I IO O O O OI IO O
X X
QO

O
LQ

I I

I I I
O O O
X X X

CQ 00
M CQ

I I I

I I IO O O
X X X
LQ CO

I I I

I I IO O OI I I Ia o o o
X X X X

I I I
O O O
X X X
OCD t-

t CD

I I I

I I I

O O O
X X X

N O
oO

Cg
I I I

I I
O O
X X
Cn O
LQ QO

Cb
I I

I I I
O O O
X X X
t CD L
CO OO cD

t
I I I

Qb

Cg
I

00

II I I

I I Io o a
X X X

I I I I IO O O O O
I I
O O
X X

g
~ ~

oO W

I I
O O
X X

LQ

Io
X

9

Io
X
00

Cb

I

X

Io
X
CD

CD

Io
X

Cb

I
O
X
00
00

I

Xo
LQ

I o
O O
X X
00e O
Cb

I
O
X
LQ
CD

I Io a
X X

g
~ ~

cD

Ia
X
LQ
LQ

00

Ia
X

CO

Ia
X

Io
XI

Io
X
L
O

Ia
X

Cb

CFi

Io
X

00
Co

X X X X
00 O H Oo

CD

t oo

CQ

O4 C4 N
I I I
O O O
X X X
Cb 00
00 CO

I I I

I I Io o a
X X X
cD LQ 00

I I IO O O
X X X

Cb

I I IO O O
X X X
Cg ~ LQ
O QO +

CQ

I I I

I I I I I I IO O O O O O O
I

X
CD

I

Io
X

LQ

I

Io
X
00

I

IO
X

Ch

I

I
O
X
O
O

I

Io
X
Cb
Cb

I

IO
X

I

Io
X
CO

CD

I

I
O
X

LQ

I

Ia o
X X
00
O

I I

Io
X
CD
t

I

X X X
Cb
00

I

O
CQ

00
I

LQ

I

LQ

t
I I I

L

I

O4 04 t4 Ol
I I I I IO O O O O
X X X X X

Io
X

Co

I
O
X
C)
LQ

Cg

Io
X
00o
Cg

I

X
CD
CO

Io
X
C0

I
O
X
00

I

X

LQ

I I
O O
X X

oO CA

00 t

I

X
Cb
00
CD

I

X
LQ
00

I
O
X

I I
O O
X X
O 00
Cb LQ

IO
X
LQ

I
O
X
cD
LQ

Cb

Io
X

00

Io
X

Ch

1

X

O4

CD

I
O
X

I

Xa
Cb

I
O
X
CO

00

Io
X
Cb

I
O
X
L
00

o
O O
X X

O
CD O
Cb

LQo O

LQCD

o
Cb

O
CD

O
I

LQ

O O
LQ

O
I

t
O

OCb

O
I

00
O

Cg

O
LQ

I

00
a

I

CQ

o
I

o
I

O OO
I

o
I

O



52 DIETER WOLF 15

TABLE VII. Geometrical factors gf, g2 (in units of the nearest-neighbor distance d ) and

gf2 ——gf/g2 for the vacancy mechanisms considered in this paper as presented by Mehrer
(Ref. 3). Interestingly, for the 1N-2N-4N mechanism g2 and, therefore, gf2 is independent
of the ratio &2f/F24.

gf
(monovacancies)

g2 (divacancies)
1N-2N-1N

g2 (divacancies)
1N-2N-4N

bcc

fcc 2
3

1

2
3
2

calculation of the corresponding value of log~o(id').
(ii) For every value of E,/kT, P, (T) and P, (T)

may be determined from Eq. (4.8) and the normal-
ization condition p, (T)+p, (T) = 1, using the values
of g ~ listed in Table VII.

(iii) Finally, the values of the relaxation rates
at that temperature are obtained from Eq. (5.3)
and the results for (T,,I)„(o.'=1, 2) in Fig. 5, or
from the appropriate interpolation between the
values listed in Tables 7 and VI, respectively.

Following this procedure, Figs. 6 and 7 have
been obtained. Also shown there is the increase
of the probability p, that atomic jumps are due to
divacancies and not single vacancies. According
to Fig. 6, for &=0.20 and D,z 30 Pg increases
from 10'/o to 73% in the temperature range chosen.
For D» =100 these values become 27% and 90%,
respectively. Similarly, choosing & = 0.30, p,
increases from 1% to 52% for hz = 30, and from
3% to 79%%d for D» = 100 (see Fig. 7) for our choice
of (dp and vz re spe ctive ly.

The first term on the right-hand side of Eq.

IO i

10

(5.2) is temperature independent. For a given
value of cop or (dz respectively, the magnitude of
this term governs the position of the Tz or Tzp
minimum with respect to the temperature region
where the dominant diffusion mechanism changes.
For the plots shown in Figs. 6 and 7, this term
was chosen to be 10 ' (id, = 2vv, = 10' sec '; d'
= 5 x 10 "cm'; D„=O.l cm' sec ').

For the hypothetical change of diffusion mecha-
nism from divacancies assumed to dominate at
low temperatures (E, is then identified with the
a.ctivation energy for divacancies) to single vacan-
cies at highe~ temperatures, the curves shown in

Fig. 8 are expected.
This case, in fact not realistic at all, shows a

general feature of the method suggested here:
the shape and width of the Tz and T» minima as
a function of inverse temperature differ signifi-
cantly for the hypothetical change of the dominant
diffusion mechanism from one mechanism to an-
other and for the reverse transition. These dif-
ferences are the greater the more the absolute
values of the relaxation times at a given tempera-
ture differ for the individual diffusion mechanisms
(see, e.g. , Fig. 5.), i.e. , the more the numbers
of relative jumps of some spin pair i-m vary from
one mechanism to another (see also Sec. IIIA and
Table I).

I

0.90'
0.73

10

0.27

0,10

IO

IO
I

0.79-
0.52

IO 9 12 15 18

E, /kT
21 24

10

0.03

FIG. 6. Relaxation rates and probabilities p2 as a
function of Ef/kT and the parameters e and D2f for
mono- and divacancies {1N—2N —1N) in a powdered
[ f(8, $) =0.8J bcc sample for D2f =30.0 and 100.0, re-
spectively, and e =0.20. Up to a few percent the plots
are the same for a 1N-2N-4N mechanism. (Units as
in Fig. 3).

10 0.009

10 i

21129 15 8
El/kT

FIG. 7. All parameters are identical with those chosen
in Fig. 6 except ~ =0.30.
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FIG. 8. Curves named 1V 2V (identical with the
corresponding plot in Fig. 7 for e =0.30, 8&& = 100)
represent the relaxation rates T&

~ and T&& for the
temperature-dependent admixture of divacancies (1N-
2N-1N) to monovacancies in a bcc lattice [f(0,P)
=0.8]. Second set of curves, labeled 2V-1V, would be
expected for the hypothetic change of diffusion mecha-
nism from divacancies at low temperature (with activa-
tion energy E&), to single vacancies at higher tempera-
tures. Owing to the differences between g&2 and g&&

[see Table VII and Eq. (4.8)], p2(E, 4'T) is a different
function for the two cases. (Units as in Fig. 3.)

VI. ON THE DETERMINATION OF SELF-DIFFUSION

MECHANISMS BY NMR

A. Detection of the admixture of divacancies to the dominant
monovacancy mechanism in metals

Figures 6-8 suggest the following procedure to
detect an admixture of divacancies to the mono-
vacancies usually dominant at lower temperatures
(T& —'.T„):

(i) Assuming that on the low-temperature side

As illustrated in Secs. V 8 and VC and in Ref. 11b,
in terms of the anisotropies of T„T„and T,~ (in the
high-field limit) there is little chance ever to identify
different defect mechanisms of self-diffusion,
(The effect of two diffusion mechanisms on the
anisotropy of T» in the so-called Slichter-Ailion
region will be discussed elsewhere. ) However,
as illustrated above, the shaPes of the T, and T»
minima as a function of temperature are strongly
influenced by a temperature-dependent admixture
of a second diffusion mechanism to the mechanism
dominant at low temperatures. Since in both sin-
gle crystals and powdered samples the features
of these minima characterize both diffusion mech-
anisms involved, a new method to study the mech-
anisms of self-diffusion in metals and ionic crys-
tals is thus proposed.

of the Tj p minimum single vacancies repre sent
the dominant diffusion mechanism, the parameters
E, and D„may be determined by analyzing the
xelated T» values in this region.

(ii) In favorable cases, in the temperature re-
gion where the dominant diffusion mechanism
changes (and where, therefore, the corresponding
Arrhenius plot shows a curvature), both the T,
and the T» minimum are experimentally accessible.
From a computer fit of the theoretical predictions
for T, and T„[see Tables V and VI and Eqs. (5.3)
and (4.8)], the adjustable parameters e and D»
may be determined.

(iii) Using the values of the parameters E„D»,
E, and D» thus obtained, values of the self-dif-
fusion coefficient D as a function of temperature
may be calculated from Eqs. (4.7) and (1.3) thus
allowing the comparison of NMR relaxation data
with diffusion coefficients measured by other
(usually more direct) experimental techniques.

In essence following this outline, an attempt to
determine the four parameters Ej Dpy E and

Dp j was recently made by Me sse r and Noae k"
who analyzed both T, and T» minima in lithium
metal for several values of both the large Zeeman
field H, and the rotating field H, . However, owing
to the uncertainties inherent in the simplified
theory of Cavelius"" (see also Sec. I), the agree-
ment of Messer and Noack's data with the theory
is not too good. Their investigations, neverthe-
less, seem to indicate a narrowing of the T,
minimum when shifted towards higher tempera-
tures by increasing the Larmor frequency v„an
effect also predicted in this article (see, e.g. ,
Figs. 6 and 7). A reinterpretation of these exper-
iments in terms of the above theory is therefore
desirable.

8, Analysis of self-diffusion in ionic crystals

Qwing to the requirement of charge neutrality,
the doping with impurities of different valency
than the host atoms allows to influence the equi-
librium concentrations of defects in ionic crys-
tals. The values of Dpy and Ey in the temperature
region where extrinsic diffusion dominates are
usually very different from D„and E, character-
izing the intrinsic diffusion mechanism. If it is
possible (e.g. , by appropriate doping concentra-
tions or by the choice of ~, or u&, ) to measure the

T» or T, minima in the rather narrow region
where the transition from extrinsic to intrinsic
diffusion occurs, the analysis of the relaxation
minima in terms of the transition, e.g. , from in-
texstitialcy to vacancy-induced self-diffusion and
vice versa, may allow one to identify both dif-
fusion mechanisms involved.
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Note added in Proof. The case in which the cur-
vature of the Arrhenius plot is fully attributed to
the temperature dependence of D» and E, is dis-
cussed in a forthcoming article by this author in
the Proceedings of the International Conference
on Atomic Defects in Metals, Argonne 1976 (un-
published).
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