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Pre~iously, the photoemission spectra of the d levels of ionic transition-metal systems have been analyzed

assuming localized-ion levels and taking into account the multiplet and crystal-field splitting of the final states.

However, theoretical analyses of the relative intensities of these levels given in several recent papers are
inconsistent and usually incorrect. The analysis required to obtain geometrical intensity rules for systems with

several open shells (i.e., t2 and e shells in transition-metal systems) is quite involved and difficult. In this

paper, we review and physically interpret the analysis. We explicitly state the main assumptions used and

show where they enter the problem. Finally, we present tables of our results for d" ions (n = 1—9) in

octahedral and in tetrahedral coordination.

The photoemission spectra of the d levels of
ionic transition-metal systems» ' and the f levels
of rare earths' may be quite complex. Analyses' '
of the spectra, assuming localized-metal levels
and taking into account the multiplet and crystal-
field splitting of the final states, have been quali-
tatively successful. However, theoretical anal-
yses of the relative intensities of these levels
given in several recent papers are not cor-
rect.""A recent publication' presented the
correct intensities, but did not detail their deriva-
tion. The intensity analysis for systems with
several open shells is quite involved and diffi-
cult. ~ In this Note, we review the analysis "
and describe the physical origins of the various
terms which arise. The main assumptions used
in the analysis are explicitly stated. Finally, ap-
plication is made to the d-level spectra of transi-
tion-metal ions in order to correct previous
work "4'

It is essential to first state a notation for the
quantum numbers and characteristics of systems
with several open shells.

(i) The initial ground state is denoted by 4z with
total spin and orbital symmetries S~ and L~.
(For Co" in octahedral coordination, for example,
the ground state is 'T2; S~r=2 and Lr=T~.) The
final state after photoemission consists of an ion
4„with quantum numbers S~ and L ~ and an elec-
tron in a continuum orbital )(. Clearly S~ = S~ + 2

for a dipole-allowed one-electron transition from
4I to %~X. The total space and spin quantum num-
bers for g, and g~ are the resultant of vector
coupling of the space and spin quantum numbers
between two or more shells. We shall now de-
scribe these shells.

(ii) The shell from which the electron is removed
upon ionization is called the active shell. In O'I,

the shell contains N, electrons and in 4~, N, —1.
The N, electrons couple in the initial state to S,
and L, spin and space symmetries. In the ion, the
N, —1 electrons couple to S~ and L~. N, electrons
of the active shell will be denoted by u"&. The
one-electron space symmetry of the active shell
is denoted by l, ; its spin s, is of course &. Follow-
ing the notation of Griffith, the fractional parent-
age coefficient, C(J, F), of ~»»

' (S,I., )) in
~»» '(SIL,)) is written

C(f F) =(»»"o '(S L )»»-, /, i»»"'Sg )

(iii) All shells other than the active shell are
grouped together and described as passive shells.
The spin and space symmetries for this group of
shells are denoted by S~ and L~. Clearly, S~ and
L ~ must be the same in both 4, and 0 ~ or the
photoionization transition will be forbidden. [If,
in addition to ionization from shell »», L~ and/or
S~ are changed, this will correspond to at least
a two-electron change from 4, to O'FX. Since the
transition involves a one-electron operator,
Z»p» ze"'», the matrix element will vanish. ']

(iv) The degeneracies of the various states are
denoted by'o X(Srr), &(Lr), X(S~), A.(L~), etc. The
notation described above is illustrated in Table I
for ionization from the I;, shell of a d' system
(Fe ') in octahedral coordination.

For systems with several open shells, Cox
et a/. ' have derived a formula for the total photo-
ionization cross section 0. Before we discuss
this formula and its consequences, we enumerate
the assumptions used to derive it to apply it to
cases of interest to us.
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TABLE I. Qlustration of the notation described in the
text for the photoionization of a system with two open
shells. The example is high-spin d (Fe+) in octahedral
coordination.

Initial
state

Final
state

O'I=t2( T,)e (A2); 'T2

O'F ——t-2(A2)e (A2); Al

+ (continuum electron in X)

ST=2, LT=T2» &(Sg ) =5, &(L ) =3

Sp= ~, L z'=A), X(Sz) =6, X(L ~) =1

active shell t2, l, =T2

SI 1. LI T» X(SI) 3~ X(LI) 3

S =~, L = 2, A(S )=4 X(L )=1
passive shells; e plus all closed shells
Sp= 1 Lp=A 2~ &(Sp ) = 3 X(Lp ) = 1

(i) The total cross section is obtained. That is,
o(hv) is summed over all directions of the emitted
electron and averaged over all directions of polari-
zation of the incident photon.

(ii) Both er and 4'„are represented by sums of anti-
symmetrized products of orbitals (Slater determi-
nants) chosen to have the appropriate space and

spin symmetries described above. The orbitals
are symmetry adapted. " In particular, we neglect
many electron effects due to correlation (as might
be obtained by, e.g. , configuration interaction).

(iii) The same orbitals are used to construct
both 4'~ and 4F. The process of photoionization is
assumed to remove an electron from the bound
shell a and place it into the continuum orbital X;
all other orbitals are unchanged. In other words,
we neglect relaxation for O'F.

As a direct consequence of this and of assurnp-
tion (ii) above, we neglect changes in the relative
intensities of the main one-electron peaks due to
losses into many electron (shake-up} satellites.
These losses can be significant. As an example,
for the NiO ionic crystal, self-consistent-field
cluster calculations" on NiO, show that relaxation
effects change the intensity ratios among the vari-
ous 4F by up to 7%. Correlation effects lead to
even larger changes' of up to 24%. As a second
example, for the K-shell ionization of molecular
oxygen" where these losses are quite large, the
deviation of the observed multiplet intensity ratio
from the simple (S+ I)/S rule is 23.5%. Of this
amount, 14% is due to relaxation and the remaining
10% to other many-electron effects [the breakdown
of assumption (ii}].

(iv) The photon energy is large enough so that
the one-electron transition-matrix element varies
only very slowly with the kinetic energy of the

o=iy,
~ i, I'[C(I, F)]2SI;

S.'

S =~(Sr,)~(S,)~(Sr) Wl

(2a)

(2b)

HALF
Lr

L = A (L r}X(Lr)X(Lr) W r ~ . (2c)Lr r Lr f
The contribution to 0 of space and spin symmetries
factor into the terms L and S, respectively. The
Racah W coefficients'" (6-j coefficients) repre-
sent the effect of the active and passive shells.

We shall next derive three rules that determine
relative intensities in these systems. First, using
sum rules for the W coefficients [Eq. (4.13) of
Ref. 8 and Eq. (11.15) of Ref. 11], we have

S = &(Sr) (fixed S~)
allowed $ F

T

I ~(Lr ) (fixed Lr)
all owed I,F

The sums are over all possible multiplets of 4F
which can arise for a fixed final coupling of the
active shell, S," and L~. In effect, Eqs. (3) state
that the total intensity going into the coupling

ejected electron. That is, we assume that the
matrix element is not affected by the differences
of the kinetic energies of the electrons for all of
the final states pF which may arise from ionization
of a given atomic subshell (nl). Clearly, this as-
sumption will not hold for photon energies at or
near the ionization threshold. In this region, the
cross section may be expected to vary strongly
and, in particular, effects due to the presence of
neighboring atoms will be quite important. This
has been shown dramatically by calculations" for
N2. Namely, the K-shell photoionization cross
section changes by a factor of 2 in a 4-eV energy
range at 10 eV above threshold.

The formula for 0 uses the average value of this
matrix element which, for ionization from shell
a, we denote p, For our application to ionic crys-
tals, we assume p., = p, , if shells a and b are crys-
tal-field-split shells with a common atomic origin.
(For example, the f, and e shells arising in a T,
or O„environment from the atomic d shell. } The
equality }r,= p, , requires (in addition to the inde-
pendence of the matrix element on electron energy)
that crystal-field and covalency effects on the
"radial" parts of the orbitals of shells a and 5
are negligible.

In terms of the notation given above, the expres-
sion for the total cross section o derived by Cox
et a/. ' is
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SF, L", is distributed over allowed multiplets
S~, L~~ according to the values of S and L. The
C(I, F) obey the sum rule'~'7

all allowed final
states for ioniaation

from shell a

(5b)

all owed
SF and LF

a a

[C (I, F)]' = 1 (4)

Combining Eqs. (2) and (3), we have

=N p, CI F XSi ALI

for fixed S z and Ln

(5a)

This means that the total cross section for photo-
excitation from shell a which ends with S, , L,
symmetry in shell a is equal to the square of the
coefficient of fractional parentage for SFLF sym-
metry times factors depending only on the initial
state.

Finally, we obtain an expression that states that
the total cross section for photoexcitation from
shell a is equal to the number of electrons in shell
a times the average one-electron matrix element
(squared) for shell a times the total orbital and
spin degeneracies of the initial state.

We may now state the following rules which, se-
quentially applied, determine relative intensities
of photoelectron peaks:

(i} The dependence on urhich shell is ionized The
ratio of the intensities summed over all final states
gF arising from ionization from shell a to those
arising from shell his N, /N~. This requires the as-
sumption that the average transition moments are
equal, ( p, , )

=
) tt, ['. This followsdirectlyfromEq.

(5b).
(ii) The dependence on the final spin and orbital

symmetries of the active shell a. For ionization
from shell a, the ratio of the intensities summed
over all final states pF arising from final sym-
metry S1F, L1F of shell a to those arising from a
different symmetry S2r, L2r is [C(I,Fl,)]'/
[C(I,F2,)]2. This follows directly from Eq. (5a).

(iii) The dependence on the final state its. For
ionization from shell a and with final symmetry
S, , LF of shell a, the ratio of the intensity of
final state Plr (S Irr, Llg) to $2r(S2rr, L2rr) is

~(»") (S' S' -'& (S" S' —,
' ) ' h(LI ) (L L' I ~ /L I.'

(S'r SI S ) (S' S2r S ) ' (L' LI Irr. j '(I, ' L2r L,

The relative intensity is given by the ratio of space
and spin degeneracies of the final multiplets times
an additional factor of the ratio of Racah TV co-
efficients to account for the recoupling of spin and
space symmetries [from Eq. (2}]. It is this second
factor which is often neglected. This rule only
applies in the ease of ionization from an open shell
when other open shells are present. If the passive
shells are totally symmetric, S~= 0 and L~=A„
only one set of symmetries S~~=S," and L~~= L~ are
possible.

We note that rules (i) and (ii) permit us to com-
pute relative cross sections for classes of transi-
tions. Rule (i) compares the total intensity of
emission from a given shell to that of another
shell; rule (ii) compares the total intensity for a
given final symmetry of the active shell to that of
different final symmetries for the same active
shell. In cases where there is more than one final
state associated with this final symmetry of the
active shell, one must use rule (iii) to compare the
intensity of these final states.

As an example, let us apply the above rules to
Fe" in FeO. The two open shells are t, and e. The
d' ground state P, is t', ('T,)e'('A, ) T, (as dis-
cussed in Table I}. The possible final states gr

I(1)+ i(2) 1
I(3}+I(4) +I(5)+ I(6) + I(7) 2 (7)

TABLE II. Possible final ion states for photoionization
of (high spin d6) Fe ' in octahedral coordination.

State
So La a a ~p Lp +F (8 z, z ) number

1 A2

1 A2

1 T)

1 Tl

1 T)

1 T& a

1 T)

E 1 T(

A2 1 A2

A2 1 A2

E 1 A2

Tl 1

A2

T2(p s T2)

T((2 s T()

A ((~,A ))
4 3
Ay(p A))

E(— E)

'T2(2 * T2)

4T, (-,', T,)

are listed in Table II.
Rule (i) tells us that the sum of the intensities

for states (1) and (2) (emission from shell e) divi-
ded by the sum of the intensities for states (3), (4),
(5), (6), and (7) (emission from shell t,) will be
2/4=-,', i.e. ,
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Since states (3) and (4) arise from the same final symmetry of the active shell, rule (ii) tells us how to
relate the intensities for states (5), (6), and (7) to the sum of the intensities for states (3) and (4). We
obtain

I(3) + I(4) [C( T„4A,) ] 3 I(3)+ I(4)
I(5) [CPT 2E)]2 + ' I(6)

[C('T„A,)]' —' 4 I(3)+I(4) [C( T„~A,)]' —' 4

[C('T 'T )]' — 3 ' I(7) [C(~T 2T )]2

(6)

TABLE III. Relative intensities of multiplet and crystal-field-split d-level photoionization
peaks of high-spin transition-metal ions in octahedral coordination.

d2

d3

ds

Initial
state

t2('T2)

t2(3T )

t23(A2)

t2(A2)e ( E);5E

t2(A2)e {A ). A,

t42(Tf)e {A ) T

t ( T2)e (3A2) ~ Tf

t6(fA1)e2(3A )

t2( A f)e ( E)

t (Ai)e (Af)

Final ion
state

t0(1A )

t2('T2)

t2 (3T )

t23(A 2)

22{ T f)e 1(2E) 4
1

t3(4A )ei{2E).5E

t {Ti)e (A2); 5T2

t (3T )e (2E) T2

4T

t2(A2)e (A2)

t2( E)e (3A2); E

t2( Ti)e (A2); T2

t ( T2)e2(3A2); Tf

t5(2T )e 1 (2E) 2

'T
1

'T2
t2('Ti)e'('A2) 3T

2

t2( T2)e (A ) 3T1

t4(1E)e2(3A 2) 3E

t2(A1)e (A2) A2

t (Ai)e'( E)

Ti
t5(2T )e2(3A )

Tf

t2(A1)e (A2)

t6(iA )e2(1E)

t 2( A 1)e ( A 1)

'T2

Tf
t2( T2W ( @) tT

2

iT

t62{Af)e (E)
t5( T2)e (Ai)

Intensity
(arbitrary units)

6

5

2

15
2

3

1

1

2

9

4
9

3

3
4
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TABLE IV. Relative intensities of d-level photoionization peaks of high-spin transition-
metal ions in tetrahedral coordination.

d2

Initial
state

e'('E)

82(3A 2)

e2(3A2)ti(2T2). 47 i

e0(iA )

e i(2E)

g2 (3A )

Final ion
state

Intensity
(arbitrary units)

d4 e (A2)t22(Ti); T2

'T2
"('E)t2('T2) 3,

1

e (3A2)t'( T2) Ti

d6

dv

e'(A2)t2(A )'A f

e (E)t2(A ) 5E

e (Ai)t2(A2); A2

4T

4
i

same as octahedral case

e 3 (2E)t 2 (3Ti) 2

4T

6Ai

( A 2)t 2 ( A 2) 4A
1

g (E)t2(A ) E

e ('Ai)t2(A2); A2

e (Af)t (T) Ti
SE

e3(2E)t3(4A )
3E

3

2

3

2

6
5

3
10

Rule (iii) tells us the relationship between the intensity of state (1) to that of state (2), and the relation-
ship between the intensity of state (3) to that of state (4). We obtain

(k 1 k'} (E &, E'I

(2 a 1 3 (T2 Tg Tgf

(& 1 2l t&2 Tl T2)

(2 1 2 )~( l) ~2 Tl T2 l 4 ~2 1 3

(2-'1) T ~ Xj

(9)

Combining Eqs. (7)-(9), we have six linear equa-
tions in seven unknowns. We therefore solve for
six unknowns in terms of the seventh. If we use
1(1)=—1 as the seventh unknown we obtain the re-
sults shown in Table III for cP.

In the case that the active shell is closed in the
initial state, (S,'=0, L,'=A„Sr= —,', and Lr=f, ) an
important simplification of (iii) arises. Using the
symmetry properties of the W coefficients for per-
mutation of indices together with Eq. (11.12) of

Ref. 15 and Eq. (4.2) of Ref. 8, we have
1 p 1
2 2W, , = ~(-,')~(S',),

l A,
W ~ r = X(l )X(Lir);

where the values are independent of S~~ and L~~.
Equation (8) then reduces to the ratio of multi-
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plicities:

Il A (S1~) X(L1~~)
12 X(S2~) X(L 2g

(6a)

Because of their practical interest, we apply the
formulas described above to high- spin transition-
metal ions as encountered in a crystal-field treat-

ment of ionic crystals. The relative intensities of
the various d-level photoelectron peaks are given
in Table III and IV for ions in octahedral, 0„, and
tetrahedral, T„, coordination. Values of the W

coefficients for these two groups are the same and
are given by Griffith. ' The TV coefficients required
for spin are tabulated by Rotenberg et al."
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