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We report the results of a self-consistent relativistic augmented-plane-wave calculation of the electronic
structure of Nb. This calculation was performed using potentials and charge densities of general shape; i.e.,
the muffin-tin approximations of a spherical shape inside the muffin-tin spheres and constant in the interstitial
region were both removed. The results are thus an accurate representation of the Hohenberg-Kohn-Sham
formalism for Nb. We find that the results are generally better than those obtained using the full Slater (a = 1)
overlapping-charge-density model. The effects of small changes in exchange parameter a and lattice constant a

have also been calculated.

I. INTRODUCTION

As the element with the highest known supercon-
ducting transition temperature, the electronic
structure of Nb deserves careful attention. It has
thus far been studied by magnetothermal® and de
Haas—van Alphen'™ experiments; magnetoresis-
tance,’® Kohn anomaly,” photoemission,® positron
annihilation,® Compton profile,'® optical reflectiv-
ity M x-ray,'?2”'5 plasmon,'® Knight shift,!” and
resistivity studies.!'® The interpretation of these
amassed data has been facilitated by the numerous
band calculations which have been performed.!®~28
The pioneering work of Mattheiss!® based on the
overlapping-charge-density model with full Slater
exchange® has served as the primary basis for all
analysis as it was performed quite early and
has proven very accurate. It has, in fact, been
shown to be very close to the results of a self-con-
sistent calculation®® using the reduced Kohn-Sham-
Gaspar?®®3! (KSG) exchange. Mattheiss’s results
have also been fit by linear-combination-of-atomic-
orbitals interpolation scheme and do quite well in
interpreting the optical data.?® They were also
used as a basis for an attempt®? to understand the
unusual phonon structure (dip) in Nb. (This inter-
pretation is subject to question, however.2?) The
potential of Deegan and Twose?® was created using
the same model as Mattheiss except at a slightly
larger lattice constant. Their use of it was
merely to test their modified orthogonalized-
plane-wave method. It was used for a similar
purpose by Euwema for his plane-wave-Gaussian
method.?* The only physical application of this
potential was by Cooke et al.,?? using a combined
Korringa-Kohn-Rostoker linear-combination-of-

atomic-orbitals scheme to calculate the dielectric
response. Anderson et al.,?® and Wakoh et al.?®
have performed self-consistent calculations. An-
derson et al.?® performed their calculations for
both full Slater and KSG exchange and for normal
and reduced lattice constant. Their results agreed
reasonably well with the experimental Fermi-sur-
face data. Using this potential, the dielectric
response function has been calculated®* with equal
or better success than that from the Mattheiss
potential.?? Wakoh et al.?® performed a self-consist-
ent-field (SCF) calculation for  =0.8 (o =% for
KSG and a =1 for full Slater exchange) but then in-
troduced shifts of 0.02 Ry for the de (f,,) and 0.04
Ry for the dy (¢,) resonances as was done* for V
and Cr in order to get good Fermi-surface areas.
The fact that they obtained good agreement with posi-
tron annihilation® and Compton'® anisotropy indic-
ates that this has been successful.

The calculations of Painter et al.?” and of
Elyashar and Koelling®® (hereafter referred to as
I) were both performed using the full Slater-ex-
change overlapping-charge-density model to test
the sensitivity of the band structure to non-muffin-
tin effects. Inl, we also included the relativistic
effects and found that when both effects were in-
cluded, the calculated results exhibited two ad-
ditional de Haas—van Alphen orbits. These orbits
were tentatively linked to the experimental data
observed in the region near the [100] direction.
This will be discussed in further detail below.

In this paper, we report the results of relativ-
istic self-consistent calculations with no shape
(i.e., muffin-tin) approximations. There are
basically two reasons for performing these calcu-
lations. The first is the desire to have a calcula-
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tion for the electronic structure of this important
material which is as precise as possible. The
second is that, given a very precise calcula-
tion for the model, one can begin to truly assess
the quality of the model. We believe that our cal-
culation is the most precise transition-metal
band-structure calculation to date and thus can give
the tightest bounds currently available. The only
other system being given careful consideration as
a test of Hohenberg-Kohn-Sham theory is copper3*
but there the question of relativistic and non-muf-
fin-tin effects is as yet unanswered. We would also
claim that the augumented-plane-wave (APW) cal-
culations utilize greater variational freedom than
the linear-combination-of-atomic-orbitals calcula-
tions.

This second reason requires some elaboration.
In actuality, it is a simple case of the principle
that one tests a theory by making predictions about
an experiment. The complication is that, for
band theory, the computations involved in making
those predictions are sufficiently complex that it
is necessary to make further approximations—
which gives some doubt concerning the faithful-
ness of the resultant predictions as a representa-
tion of the theory. Thus, in this paper, we will
explicitly state the model (theory) being examined,
fully discuss the approximations used, and then
make a comparison to the available experimental
data.

One method of deriving a single-particle Hamil-
tonian for treating many-electron systems is based
on the generalized Thomas-Fermi formalism of
Hohenberg, Kohn, and Sham.3%:35 It has been ex-
tended to include the spin effects by von Barth and
Hedin.’® We here will consider using only the ex-
change effects in the exchange-correlation func-
tional consistent with the original formulation®®
foregoing the more involved expressions avail-
able.®®37 We will also ignore any relativistic cor-
rections to this functional although they are known
to exist®® and assume no net spin density anywhere.
We thus will be dealing with the theory in its
simplest (and most approximate) form which is
what is most commonly in use today.

There are several conditions on the theory that
make it more appropriate for a metal than for an
atom—where it was initially tested.®® The theory
requires a slowly varying density (not satisfied
near the nucleus) and a high density (not satisfied
at large distances in the atom). The violation of
the first condition does not appear to have serious-
ly impacted the theory?®® although one must be con-
cerned about calculations specifically sampling the
charge density near the nucleus. The condition of
high density is fulfilled in the metal. That it is not
fulfilled in the atom (p— 0 as v —«) is the reason

why the value of o found in the atomic Xa calcula-
tion is a generally decreasing function of Z.*»%

As Z is increased, the high-density region expands
and the assumption of the theory is more nearly
satisfied. (Insulators and semiconductors also
suffer from low-density regions which is one addi-
tional reason workers in these fields are trying to
get away from this type of theory.) On the other
hand, the calculations and comparisons are more
easily performed for atomic systems.

The appropriate results of the theory to be ex-
amined are the ground-state total energy and
charge density. In an atom, one can compare to
actual Hartree-Fock calculations for these quan-
tities as well as experimental data. There are
no adequate Hartree-Fock calculations for such a
comparison in metals leaving only the comparison
to x-ray form factors, cohesive energies, bulk
moduli, and lattice constants.** X-ray form fac-
tors are lacking or of inadequate precision. Co-
hesive energies suffer from the complication that
one must then again face the problem of the atomic
calculation and its limitations.*? Bulk-moduli and
lattice-constant determinations involve a great
deal more computation and are single numbers.
This has been done, however, for the lighter
metals* and it is found that the model, in its more
complex form3%37 does quite well.

Thus it is easier to focus initially on the Fermi-
surface properties.** This, however, requires an
additional leap of faith. The energy Lagrange
parameter en(l?) in the total energy variational con-
ditions

(t+v+aCp/3)y, &) =¢,&)y,K) ,
t=ca-Pp+ic3(p-1),

* (1)
v=2<f ¥ |p(r) B ;wf%,,;)’

-7
C=-3(3/n1/2, a=3

is merely to maintain the proper number of par-
ticles. There is no formal proof to connect them
with the quasiparticle excitation energies in Landau
Fermi-liquid theory. This connection can only be
anticipated if one follows the alternate averaged
Hartree-Fock derivation of Eq. (1). Such a con-
nection is motivated by a great deal of past suc-
cess* but can certainly be questioned.*** Again,
we take the simpler (more approximate and his-
torical) option. This is further motivated by the
fact that the improved theories assume the solu-
tion of this simpler problem as a starting point.
The theory is a self-consistent-field theory.
That is, the N y,,’s obtained from Eq. (1) must
yield the charge density used to construct » and
p'/®. As will be described, this has been done to
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high precision. A serious limitation of previous
calculations has been the use of the muffin-tin
shape approximation for the charge density and
potential which can easily be as large as the many-
body effects.*> This shape approximation has not
been made here. In Sec. II, we examine in some
detail the techniques and approximations used in
this calculation. In Sec. III, the results will be
presented and compared with existing experimental
data. The more discursive aspects will be collect-
ed in Sec. IV.

Il. CALCULATIONAL TECHNIQUES

In I, we discussed the techniques we used to con-
struct a non-muffin-tin potential in the required
dual representation from the charge density in this
same representation and the inclusion of the non-
muffin-tin terms into the secular equation. Thus,
we here discuss only the creation of the charge
density from the solutions of the previous poten-
tial.

The electronic density is considered in two
parts: (i) a contribution p_,. .. due to the valence
electrons, and (ii) a contribution p_,  from the
(assumed) spherically symmetric densities of the
filled atomiclike core shells

p= pvalence + Prore - (2)
The core density is given by
Pcore (-f) = Z pgore (.f_ ﬁ) ) (3)
R

where p?, is the contribution from a single site.
These are calculated anew at each stage of the
self-consistency process. R are the vectors of

the direct lattice. We make two very common
approximations in the treatment of the cores. We
ignore the nonspherical components of the potential
in solving for the radial solutions and we assume
that the cores are spherical about each site. These
approximations must certainly be valid for the
deep cores and are assumed so for the upper core
states which are about 3.5 Ry below the Fermi
energy. In any case, these approximations have
even been used for most (if not all) calculations on
the tetrahedrally bonded semiconductors—a far
worse case than we are dealing with here. The
valence density is given by

_ + 1
Pratence= D St Wi Py(Uni Y * Unilhd) » )
nk

where ¢,; is an eigenvector of the band Hamilton-
ian for the state having a reduced wave vector k
and a band index n, and y; is the spin-flipped
state. P, is the I'| projection operator and w; is
an appropriately chosen weighting factor. The k
summation is over the irreducible wedge of the

Brillouin zone since we are summing only the cubic
symmetric parts. f,; is the Fermi factor at T=0,

fom {1 for E;<E,, (5)
0 for E;>E,,

where E ; is the Fermi energy.
This density is to be written in the required dual
representation

> pMEP), ¥=Ryy,

> p®eRieF, r=Ry,,

i
where R, is the muffin tin (MT) sphere radius,
K, are the reciprocal-lattice space vectors, and
K ,(?) are the cubic harmonics. It should be noted
here that the muffin-tin sphere merely decomposes
into two regions where different expansions are
used. There has been no limitation to a muffin-tin
potential or density.

The wave function is written

( Zun Xk
Z ak“(k.,n,s) > ’ TSRMT 4
Ku iG,(l/C)fx,an

Zpk,n,s= (7)

. .. X(s’)
Zb“,(k’n,s)e”k*kj)'? ’ TZRMT’
L!s’ ~0

p(%) (6)

where k and p are the standard central-field quan-
tum numbers,*” g, and f,, are the radial functions
for kK and E,, X! is the central field angular func-
tion,*” and x(s) is a spinor quantized along the z
axis. The expansion coefficients are related by

a,,=4m Z i'b,,,C(kps')i(|K+K, | Ry
ns’
x (S Ee ).,
lk+K, |

l={K’ k>0,
-(k+1), k<0,

where j is a spherical Bessel function and C is a

j’ =% Clebsch-Gordan coefficient which is complete-
ly specified by the arguments given (although this
is not the standard notation). Then

- 1
p(F) = E fanxx'uwi <gmgn'n+? fmfx'n) ’

nyk, Ky K (9)
where the A,,., are given*® by straightforward but
tedious (and error-prone) angular-momentum con-
siderations. The projection operator P, no longer
needs to be explicitly included as it is already
accounted for in the cubic harmonic projection
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TABLE I. Convergence of density components (in a.u.)
at the muffin-tin surface with the maximum angular
momentum used from the wave function. This test was
performed without including the core states. The wave
functions actually used were those resulting from the
overlapping-charge-density « =1 potential used in I.

L yax L gy o3
2 2.7087 ~0.2541 0.0
4 2.8027 ~0.2824 ~0.1114
6 2.8103 ~0.5107 0.0055
8 2.8111 —0.5377 0.1356
10 2.8112 ~0.5403 0.1476
wc? 2.8114 —0.5404 0.1481

20btained from the plane-wave-expanded expression
for the interstitial region.

implied by A,,.,.
The interstitial plane-wave expansion is given by

1 * - -
p(K1)=Z Z: faiwy D b g (nks) by, (nKs)

nkg irii”
s?

xa®,, &, -%,.)), (10)

where #n; is the number of elements in the star of
K, and A(K,,K,) is zero unless K, and &, are in the
same star when it is one. In this way we have per-
formed the I', projection on the contribution from
each y; , ; and thus need only sum over the 4th

of the Brillouin zone.

It is useful to note that the two expressions of
Eq. (6) for the density must yield the same value
at the muffin-tin-sphere surface. This not only
provides a useful check for errors in the computer
programs but also a very good test for the con-
vergence of the various summations. The expres-
sions of Eq. (6) involve two different truncations
(v and K,) and thus can give information about the
effects of these truncations which we have discussed
in I. But in addition, by using a Rayleigh decom-
position of the plane waves, we can examine the
(k,k’) convergence for each p, in Eq. (9). The
series is found to converge quite rapidly for the
spherical part (v=0,k=«’) of the density. Carry-
ing the positive and negative parts of the ¥ sums
out to the same [, =4 yielded a result for this
term which had no significant error. Unfortunate-
ly, the nonspherical terms cannot be so quickly
truncated. With the same [, =4, they differed in
sign from the corresponding plane-wave generated
component. This difference is easily understood.
The spherical part represents only the gross fea-
ture of the density and is a sum of rapidly dimin-
ishing nonnegative numbers. The nonspherical
terms represent finer structure and involve sizable

cancellations. The [ ,, convergence was tested
over the range from 4 to 12. For [ ,, =10, the two
expressions matched within one-tenth of a percent
as can be seen in Table I.

The K summation of Eq. (4) is a finite sampling
representation of an integral. Thus some care
should be used in the choice of thei:points used
and weights assigned. We have chosen to use the
traditional cubic mesh with the weights wi=48/ ng
where #n; is the order of the group of the k vector.
This choice is not only convenient but is actually
the sum that would result from using periodic
boundary conditions with finite cells containing N
unit cells where N is the number of points in the
full Brillouin zone. Mattheiss et al.*® have esti-
mated for MT calculations on fcc crystals that
one will get millirydberg precision using 256 points
in the Brillouin zone (19 in the irreducible wedge).
We have thus chosen to use 55 points in the irre-
ducible wedge (1024 points in the entire zone)
throughout our calculations. This mesh is finer
by a factor of 2 in linear dimension. It was used
because the non-muffin-tin contributions are more
sensitive® to Brillouin-zone sampling than the
muffin-tin contribution—which is, after all, only
the gross average. Our sampling is thus appro-
priate to periodic boundary conditions of a cell con-
taining 1024 unit cells. There are, of course,
other choices. One could array one’s points as the
centers of a set of tetrahedra, for example. Or
one could include in f, ;w, information about the
actual volume of occupied space “near k.” Such
refinements while interesting as to their effect,
would require considerable additional computation
to explore and thus were beyond the current scope
of our endeavors. They are mentioned only to
point out one approximation of this calculation.

One further approximation was made in order to
be able to include the 4s and 4p levels into the core
states—which results in a considerable savings of
effort. These orbitals are not fully contained with-
in the muffin-tin spheres. Thus we merely linearly
extended the muffin-tin (v =0) potential and over-
lapped the single site orbitals. This amounts to
neglecting the effect of the very small 4s and 4p
bandwidth on the wavefunctions. For the 4p states,
this was tested by numerical calculations the re-
sults of which are shown in Figs. 1 and 2. As can
be seen the spherical part of the electron density
is unaffected. There are small but quite acceptable
errors for the nonspherical contributions.

IIl. RESULTS

A. Self-consistency

Three self-consistent calculations were actually
performed. The first used a lattice constant a
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FIG. 1. Comparison of the spherical contribution to
the density by the 4p states as calculated from the re-
lativistic APW wave functions and from the single-site
approximation described in the text. All densities with-
in the MT sphere are plotted as 0= 4mrip.

=6.23774 a.u. with the KSG exchange (o =%). This
lattice constant was chosen the same as Anderson
et al.?® to facilitate comparison. To see the effect
of a change in exchange scaling, a second calcula-
tion was performed using o =0.705 at this same
lattice constant. A third calculation was performed
using ¥ =% but at a lattice constant of 6.2286 a.u.
which we believe to be more appropriate to liquid-
helium temperatures. These calculations will be
identified as SCF(1), SCF(2), and SCF(3), respec-
tively.

The first calculation was started using the over-
lapping charge density model constructed as de-
scribed in I. The niobium atomic charge density
was calculated assuming a d*s' configuration with
a=%. The second and third calculations were
started from the converged results of the first.
The sensitivity of the calculation to the exchange
scaling parameters a can be seen from the fact
that it required six iterations to converge the «
=0.705 calculation starting from the converged
a@ =% charge density. The effect on the charge
density was to pull an additional 0.025 electron in-
to the muffin-tin sphere and increase the aniso-
tropy by roughly 4%.

Because the SCF iterative process is normally
unstable, it is necessary to provide some form of

damping. This was done by mixing the input and
output densities of the nth iteration to form the in-
put density to the (z+ 1)th iteration

Py =BPR + (L= B)p,” . ay

The mixing fraction g was varied from 0.25 at the
beginning (where changes were large and much
damping required) to 0.95 at the final iterations.
Iterations were continued until no energy on our
55 point mesh changed by more than 0.0005 Ry
and no component of the density changed by more
than 0.1%. The second condition proved the more-
stringent condition. In the first calculation, we
continued to iterate beyond these conditions until
the components were seen to oscillate about a
mean. This was done to insure that there would
not be small systematic shifts which could accum-
ulate to a significant error. In all, we performed
nine iterations on the first calculation but we had
satisfied our criterion for convergence by the
sixth iteration.

In the SCF process, we also observed the prop-
erty?® that the relaxation effects could be very
well mimicked by increasing the exchange scaling
o up from %. Its primary effect is to pull the
upper d bands down relative to the s-p band (which
is itself pulled down). There is, of course, a
resultant narrowing of the d bands. An increase of
a to 1 actually produces an effect greater than that
produced by the relaxation. If one assumes that
the effect is roughly linear in the overlapping-
charge-density (OCD) model, then one should in-
crease a by = to mimic the SCF results. This

—_ APW
0.1 4o a a a SUPERIMPOSED PSEUDOATOMS

0.0 .

1.5 2.0 2.5
RADIUS (a.u.)

FIG. 2. Comparison of the nonspherical contribution
to the density by the 4p states as calculated from the
relativistic wave functions and from the single-site ap-
proximation described in the text. All densities within
the MT sphere are plotted as o = 4mr% .
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FIG. 3. Comparison of the spherical component of the
density (0=4mr%) within the MT sphere for the =%
overlapping-charge-density (OCD) model and the final
SCF result.

mimicry is only valid for the energies, however.
In going from the first iteration (or @ =% OCD
model) to the converged results, one finds that
density is moved out of the MT sphere so that the
charge in the interstitial region is increased from
1.249 electrons to 1.525 electrons. But increasing
a in the OCD model moves charge into the MT
sphere decreasing the interstitial density to 1.056
electrons for @ =1. Thus, in order to adjust the
energies, one increases the error in the wave
functions.

In Figs. 3 and 4, the densities are presented

04

0.2 —

0.0

o lau)
o
N
]

-0.6 —

1.0 1.5 2.0 25 3.0
RADIUS (a.u)

FIG. 4. Comparison of the nonspherical components
of the density (o, =4m7% ;) within the MT sphere for the
a=% overlapping-charge-density (OCD) model and the
final SCF result.

both for the OCD model and the final SCF results.
From the spherical component of Fig. 3, one also
sees the net movement of density away from the
nucleus consistent with the increase in the density
in the interstitial region. The nonspherical com-
ponents of Fig. 4 show another interesting feature.
The v=6 component shows a diminished asphericity
in the SCF result as one might expect. The v=4
component, however, is greatly increased. The
major additional contribution in this case is from
the fact that the Nb 44 states are not fully occupied
and thus yield a sizable intra-atomic contribution
to this nonspherical density. This is supported by
the fact that the local maximum in the magnitude
of o, occurs at a radius of about 1.6 a.u. while the
Nb 4d principal maximum occurs at about 1.55 a.u.
This feature would normally not be included in any
application of the OCD model as it is customary to
overlap spherical charge densities. Its effect on
the potential is shown in Fig. 5 where the non-
spherical components are compared for the OCD
model and the SCF calculation.

B. Comparison with other calculations

In Table II, we compare our results with those
of other authors for selected energy separations.
Because ours is the only relativistic calculation,
it was necessary to remove the effects of spin-
orbit coupling to make this comparison. Thus we
have used I'y - T',; Hi~H,,; 5T3+4I;~T,,; and

0.20

0.10 —

Vi (Ry)

0.0

-0.06

-0.12

3.0

RADWS (a.u)

FIG. 5. Comparison of the nonspherical components

of the potential for the =% OCD model and the final SCF
result.
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TABLE II. Comparison of Nb band structures.

Ref. a o (1‘25:— 1"1) (sz—rl) (stl—H‘g) (EF—HQ) (EF—FI)
Present SCF(1) 6.23774 % 471 865 700 277 442
work SCF(2) 6.23774 0.705 463 850 688 274 436
SCF(3) 6.2286 % 471 868 704 279 442
28 MT 6.23774 1 457 810 660 271 421
28 Gp? 6.23774 1 443 806 648 259 417
19 MT 6.2294 1 420 770 660 280 390
20 MT 1 440 778 672
23 MT 6.23774 1 396 752 673 270 349
23 SCF 6.23774 j?; 428 828 775 314 387
27 MT 1 388 736 645
27 GP 1 380 735 634
26 ADJ® 0.8 420 783 661 275 397
23/28 SCF° 6.237 74 444 854 763 302 413

2GP, general potential.

PThis calculation was an adjusted Green’s function calculation. The adjustment consisted
of shifting the ), phase shifts up by 0.02 Ry and the €, by 0.04 Ry.

¢See text for an explanation of this entry.

2H:+%1H:~H,, as the necessary correspondences
(see Fig. 6). The most interesting comparison is,
of course, to the nonrelativistic muffin-tin self-
consistent calculations of Anderson et al.? for

a =%, It was to facilitate this comparison that we
chose to use the same (room-temperature) lattice
constant for our first calculation. As can be seen,
the results differ by a considerable amount.
From the comparisons in I, one finds that the non-
muffin-tin terms give rise to energy shifts which
can be as large as 10-15 mRy. Most likely the
non-muffin-tin effects are somewhat larger in the
SCF calculation but it is difficult to believe that
they could be much larger than about 20 mRy.
This would seem to leave a sizable difference to
the relativistic effects: too large, in fact, to be-
lieve. The resolution, we believe, lies in the fact
that Anderson ef al.?® truncated the expansion used
to start their radial integration at two terms. Too
rapid a truncation of this series can cause s states
to rise relative to the d states.® Because the mesh
used in the relativistic calculations extends to much
smaller radii, this problem never occurs for us.
By recalculating I', with the Anderson et al.?® po-
tential, we find a shift of 30 mRy. Thus, we have
created an extra entry in Table I which includes
this 30-mRy shift of I', and the general-potential—-
MT shifts of I as SCF. From this it would appear
that the relativistic mass velocity and Darwin
terms lower the s states by roughly 25 mRy and
narrow the d bands by as much as 10%. This sec-
ond effect is somewhat surprising since one might
expect the relativistic effects to produce increased
shielding of the nucleus for the d states causing
them to extend more and thus be broader. But as
such an argument depends on a very-tight-binding

picture with only first neighbor overlaps it very
likely does not apply here. The agreement of the
two calculations is, in general, quite good as can
be seen from a simple consideration of the charge
densities. We find that the muffin-tin component
of the charge densities is not very different for the
two SCF calculations. For example, the Ander-
son et al.?® potential yields 1.50 electrons in the
interstitial region where we obtained 1.525.

As there are no other relativistic band calcula-
tions for Nb, one can only compare the spin-orbit
splitting to that of the atomic calculations. If the
spin-orbit interaction is written

ENERGY (Ry)

(W A SR
P DNDP F H

G N T T A

FIG. 6. SCF band structure resulting from the calcula-

tion performed using a =% with a lattice constant of
6.237 74 a.u.
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H,=t, LS. (12)

£, then contains all the potential information.
Then in the atom

£2t=2[E(d,,,) - E(dy,;)]=0.0044 Ry, (13)

and in the solid we split the triply degenerate T,
and should get

[E(T)) - E(TY)] = $ §,=0.0066 Ry (14)

from tight-binding considerations.? We find in-
stead that this energy separation at I' is 0.008
Ry—Ilarger by just enough to perhaps be signifi-
cant. This could be due either to the non-muffin-
tin terms or to the deeper penetration of the d
states into the core. The non-muffin-tin terms
will provide an interaction between the I'y(I"
- I'j(T,5.) states but not between the I'y(T,,)
T'}(T,,.) states thus increasing the splitting. On

the other hand, an increased penetration into the
muffin-tin sphere would also increase £, because
of the stronger potential experienced. This cer-
tainly occurs as one moves up in the band as can
be seen from Andersen’s treatment®® of the spin-
orbit parameter in band calculations or just from
the fact that at the higher energy H,.,, £,=0.008

Ry ~2£3'. This would also be consistent with the
diminished value of o, at small radii as seen in
Fig. 3. Our 3d (core) splitting of 2.9 eV is within
experimental error of the 2.8 eV observed by x-ray
photoelectron spectroscopy.®® We thus conclude
that the treatment of the spin-orbit interaction is
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FIG. 7. Density of states for SCF(3) (a=6.2286 and
@=3%) calculated using the tetrahedron microzone tech-
nique applied to the Fourier-series representation of
the bands. Inset gives greater detail about the Fermi
energy (0.6975 Ry).

quite adequate.

To obtain a density of states, and hence the
Fermi energy, we have fitted a Fourier series to
the calculated data points and used that in a tetra-
hedron microzone scheme® [SCF(3)] or irrational
vectors sampling [SCF(1) and SCF(2)]. For SCF(3),
for example, we fitted 53 star functions (because
of I, symmetry, the expansion coefficients of all
members of a star are equal so that they may be
combined into a single function for the star) to
120 points. These points were made up of the reg-
ular 55-point mesh plus a set scattered about the
Fermi surface. The rms errors of the first six
bands were 1-4 mRy with band 2 having 1.7-mRy
and band 3, 2.1-mRy rms errors. The resultant
density of states for SCF(3) is shown in Fig. 7.

It yields a Fermi energy of 0.6975 Ry and a density
of states of 10.2 states/Ry spin. Thus our SCF(3)
results fall somewhat below the OCD (a =1) model
results and more closely in line with the values
found by other workers. This leaves a discrepancy
from the McMillan value of 12.4. (It is of interest
to note, however, that there are two discontinui-
ties®® in y for Nb below 11°K.)

We have also performed an approximate ! decom-
position for SCF(3) based on a j decomposition of
the wave function within the muffin-tin spheres
which was continued to the Wigner-Seitz sphere
radius by continuation with the appropriate V=0
solutions. They were combined for j=l+% and
j=1-% to give a “fractional I character.” When
used as a weighting on the density-of- states cal-
culation, one obtains the partial density of states
often shown. This is, of course, only a very ap-
proximate description of wave-function character
(not just calculationally but conceptually) but it
has proven useful. We thus found there to be 0.64
s, 0.68 p, 3.63 d, 0.12 f, and 0.03 g electrons in
the conduction band. These numbers add to 5.07
electrons as a result of the very approximate
nature of the calculations. This is in reasonable
agreement with the results obtained by Nikiforov
et al.,* using the Green’s-function method with a
potential similar, if not identical, to that of
Mattheiss'®: »,=0.51; n,=0.61; n,=3.88 if one
scales their results for the interior of the muffin-
tin sphere to the Wigner-Seitz sphere. (Theéy get
no f or g contribution as they truncate their basis
set at /=2.) Within the calculational errors, our
results were essentially identical® to those ob-
tained using the potential of Anderson et al.2?
Referring to the total density of states shown in
Fig. 7, one sees the typical three-peak structure
below the Fermi energy: the first (lowest in ener-
gy) is an s-d admixture with very slight p contri-
bution on the high-energy side; the second is al-
mostapure d-p mixture; and the thirdis a d-p mix-
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FIG. 8. X-ray form factors for Nb and the difference
from a muffin-tin approximation.

ture with some f contributionbut virtually no satall.

In Fig. 8, we show the calculated x-ray form
factors for the charge density resulting from
SCF(3). The changes implied by the muffin-tin
approximation to that density are also shown. Un-
fortunately, there is no experimental data available
for comparison to the best of our knowledge. How-
ever, it is possible to argue by comparison to the
vanadium results that the anisotropy might be too
small by an order of magnitude.*®

C. Comparison to experiment

The only experimental data to which we will be
comparing our results in any detail is the magne-
tothermal oscillation and de Haas—van Alphen
data. In Table III, we compare the results obtained
by direct relativistic APW orbit tracing for SCF(3)
to the experimental results. Two remarks about
Table III are in order. First, although the eigen-
values used inthetracing were for the actual general
(shape) potential, the Hellman- Feynman calcula-
tions of the derivatives omitted the derivatives of the
the non-muffin-tin terms because of their com-
plexity. This should yield only minor errors in
the calculated masses—which will be largest for
the octahedron. Second, the new octahedron and
JG(N) results* are preliminary results which are
included for completeness. Further analysis is

being performed on the experimental data (and in-
terpretation) so that they may have to be revised
although we doubt it. As can be seen, the calculat-
ed ellipses are too large and the octahedron too
small. This is the effect seen in I for the addition
of the non-muffin-tin effects. The self-consistency
has improved the situation somewhat, however, by
moving some volume from the ellipses back to the
octahedron. The jungle gym is seen to be general-
ly too small. The values for dA/da must be con-
sidered very approximate as two different tech-
niques were used to assign the Fermi energy for
SCF(1) and SCF(3). Although the difference should
be small (i.e., less thana mRy), it would still affect
the results. Nonetheless, one can see that the effect
is not uniform as would be obtained by a simple
Fermi surface shift.

To make an easier comparison, we have tab-
ulated in Table IV two error functionals:

e[ (o) 14t tucl ] /N2
o[ (;}?)(A;;M_Agm)z] /NGEYE,  (15)
v=T ) A (T pat)/v

which are weighted by the calculated band mass
(to convert to an energy error as mm*=dA/dE).
The sum is over the areas given in Table III. In-
terestingly enough, the two OCD model calculations
with the muffin-tin approximation give the best
agreement with experiment. The SCF calculations
with reduced exchange (@ =%) all are in roughly
the same range. This would lead one to believe
that an increase in exchange parameter should
improve the calculated results—which one sees is
not what happens [from SCF(2)]. This was especi-
ally puzzling to us in light of one (erroneous) cal-
culation we performed. In one of our final itera-
tions, aninput card was incorrectly done which re-
sultedinthe d- orbital logarithmic derivatives being
lowered by 3-5 mRy (and slightly narrowed). This
“adjusted” calculation was the best of all, yielding
an rms error of 3.2%! In a muffin-tin calculation,
this should be the effect of increasing the exchange
constant «. One possible resolution of this ap-
parent discrepancy is that the non-muffin-tin
effects have also been significantly increased.
Thus the “good” effect of lowering the d bands is
undone by the increase in the I'y,— Iy, separation
(which is a natural consequence of the non-muffin-
tin effects). This very well may not be the whole
story, however, as the same effect apparently
appears in the muffin-tin SCF calculations.®® It
would thus appear that the SCF calculations are
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TABLE III. Comparison of experimental and calculated de Haas—van Alphen areas (in a.u.)
and masses (in electron masses). Areas were calculated using actual relativistic APW cal-

culated points and derivatives.

Field Area
direction Label ® Expt. Calc. dA/da Expt. Calc.
[100] OCT(I)® 0.2793 0.2547 —0.34 —2.06
ELL (N) 0.1787 0.1898 ~0.35 ~0.90
ELL(N) 0.2277 0.2475 —0.004 -1.97 ~0.96
JG(a) 0.0389 0.0330 ~0.07 -1.6 —0.56
JGWN)© 0.4053 0.4201 0.14 1.77
[111] OCT(T) 0.1352 0.1155 —0.23 —~1.40
ELL(N) 0.1803 0.1939 -0.33 —1.56 ~0.71
ELL(N) 0.2271 0.2446 —0.47 —1.08
JG(T) 0.2317 0.2103 —0.42 —2.22
JG(H) 0.5192 0.5110 ~0.34 —1.12
[110] OCT(T)® 0.2086 0.1884 —0.27 -1.66
ELL(N) 0.1859 0.1978 —0.33 —1.4 —0.72
ELL(N) 0.2131 0.2307 —~0.37 —1.54 —~0.80
ELL () 0.2408 0.2574 —0.45 —~0.93

3629

2Notation of Refs. 19 and 23. (The OCT refers to the so-called octchedral surface at I'; the
ELL to the ellipses centered at N; and the JG to the “jungle gym.”)

P Preliminary results, Ref. 4.

¢The experimental data is probably for a break-down orbit. The more probable value is

0.405 (Ref. 4).

producing d bands which have too large a band
width which is only exacerbated by increasing the
exchange parameter.

Finally, we should like to reexamine two inter-
esting aspects of the experimental data in light of
these calculations: the discontinuity in the n-orbit

data and the small [100] frequencies (¢, a’, and g).

As discussed in I, the discontinuities in the n or-
bit data [JG(H)] can be related to a protrusion on
the jungle gym arms. In Fig. 9, we show the n-
orbit areas and masses obtained from the Fourier
series fit to the bands. Although the protrusion is
not well fit by the Fourier series (most of the
error for band three came from this region), it is
still possible to see the (qualitative) effect. Only
the cusplike structure at 25 deg from the [101]direc-
tion shows up clearly although a very careful ex-
amination of the curves shows additional breaks
atabout 50 deg and between 60 and 65 deg. Thereis
probably something occurring between 10 and 15 deg
as well. The masses show clearly the discontinuity
at 26 and 51 deg with some indication of the others.
Because the orbit code automatically positions the
origin of the orbit for an extremum we also can
consider the question of whether the discontinuities
are associated with a shift of the origin. There
was observed a very slight shift in the region be-
tween 51 and ~65 deg and nowhere else. This
lends some credence to the existence of a small
discontinuity at that point which would probably be

more pronounced were the Fourier series to better
resolve the structure in that region.

The [100] orbits are quite a puzzle. Most likely
the B orbit is a breakdown and/or magnetic inter-
action frequency and the o orbit is to be associ-
ated with the minimum in the jungle gym arm.
Accordingly, the g orbit has a very limited angular
range about [100] whereas the o orbit can be seen
a very long way out.* Our calculated frequency
(0.0330 a.u.) is consistent with the calculated jungle
gym being somewhat too small. The a’ frequency
can perhaps be explained by the shallow minimum-

TABLE IV. Comparison of errors in de Haas—van
Alphen found for different calculations.

Error (%)
Calculation Average rms
( OCD-NR-MT (Ref. 19) 4.4 5.7
a=1 OCD-Rel-MT (1) 3.2 4.2
OCD-Rel-GP (1) 9.4 10.0
. SCF-NR-MT (Ref. 23)? 6.8 9.3
a=% SCF-Rel-GP [SCF(3)] 7.0 7.2
SCF-Rel-GP [SCF(1)] 6.6 7.0
«=0.705 SCF-Rel-GP [SCF(2)]® 7.0 7.9

2JG(N) orbit not available and so omitted.

®Areas and masses actually calculated from a Fourier-
series fit.
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FIG. 9. de Haas—van Alphen frequencies and masses
calculated for the jungle-gym surface. Calculations
were performed using the Fourier-series fit to SCF(3).
Points indicated by arrows are results of protrusion of
surface roughly halfway from I to H as discussed in
text. The points marked (m) indicate that the effect is
best seen from the mass data.

maximum structure we observe on the octahedron.

The minimum frequency (0.02509 a.u.) is so close
to the maximum (0.02515 a.u.) that they would not
be resolvable. These areas are too small con-
sistent with the calculated octahedron being too
small. The above areas were calculated by direct
relativistic APW orbit tracing. From these cal-
culations we find that the orbits (both JG and oc-
tahedron) are some what square shaped with the
[011] directions bulging out. The Fermi radius in

the [001] direction is a monotonically decreasing
function as one moves out the [100] directions.
The small increase in orbit area is thus due to
the increase in the radius in the [011] direction.
Although these orbits are relatively minor fea-
tures, theyare occurring from a region of the Bril-
louin zone where bands are interacting and are
thus very sensitive to inadequacies of the calcula-
tions. Thus they can be a very interesting feature
as a test of any calculation.

IV. DISCUSSION

These calculations have demonstrated that well-
known observation that a better calculation often
does not lead to better agreement with experiment-
al data. If one’s main objective is the calculation
of de Haas—van Alphen areas, a quick check of
Table IV indicates that the overlapping charge
density model with @ =1 and a muffin-tin-shape
approximation would give better results with far
less effort. Proceeding to self-consistency re-
duces that agreement no matter whether you make
the muffin-tin-shape approximation or not. Ad-
justments of the exchange scaling (a) do not ap-
pear to be able to help matters. Muffin-tin SCF
calculations®® on the group VB metals also indicate
that the more involved a(p)-type calculations do
not improve the agreement either. We ask about
two major considerations concerning the situation:
(i) Is this an observation of the fact that the de
Haas-van Alphen effect reflects an excited state
spectrum ? or (ii) Is this the result of the lim-
itations of a local density approximation ? We
believe it is the latter which is the significant
feature. After all, a nonlocal interaction
would smear out the effect of the density vari-
ations on the “potential” just like the muffin-
tin-shape approximation does. Further, from our
inadvertant computer experiment, it is seen that a
very small / or j dependence in the potential could
produce significant improvements in the results.
This is the classic “nonlocal” effect in pseudo-
potential theory. Thus, we believe we are seeing,
possibly for the first time, a concrete example
of the limitations of a local density approximation.
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