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Calculation of electrical resistivity of highly resistive metallic alloys
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The new feature in an otherwise standard calculation is the inclusion of the temperature-dependent Debye-

%'aller factor. At low temperature a resistance minimum is predicted which is not of the logarithmic form,

such as occurs in the Kondo system, but is instead a polynomial in T. Its magnitude scales with the residual

resistivity p(0) and is unobservably small unless p(0) is very large. At higher temperature a contribution linear

in T is predicted with coe6icient small in magnitude and possibly of either sign, becoming more negative as

p(0) increases. Behavior almost in line with these predictions has been observed for many metallic glass alloy

systems containing transition-metal atoms. But two drawbacks are the uncertain validity of the model for

these systems and the prominence of compc;ting efFects due to the d electrons.

I. INTRODUCTION

It is well known that in phenomena in which par-
ticles scatter off of lattice ions, a large set of
scattering terms add coherently and should all be
considered simultaneously. Each successive term
represents a higher-order process, i.e., higher in
the number of phonons involved, which fact nor-
mally makes it negligible with respect to the pri-
mary low-order sca'.tering process. However, co-
herent summation makes their resultant significant.
They produce a measurable effect on scattering of
x-rays and of particles in an externally introduced
beam, ' as well as on the recoil of nuclei which are
y emitters, in particular on the recoilless emis-
sion known as the Mossbauer effect. ' Mathemati-
cally these effects yield a multiplicative factor,
known as the Debye-Wailer factor, which acts to
decrease a scattering rate. Since it is sensitive
to the state of excitation of the lattice, thi. s factor
is temperature dependent.

It is a natural extension to consider the effect of
these same terms on the scattering of nearly free
band electrons off of the lattice. The electron-lat-
tice mutual scatterings are primarily responsible
for acoustic attenuation and electrical and thermal
resistivity in many materials in a wide tempera-
ture range. This paper considers electrical re-
sistivity p(T) in metals.

At low T the main contribution to p is the resi-
dual resistivity due to defects, which is substan-
tially temperature independent. At higher T the
main contribution comes from single-phonon emis-
sion and absorption processes. Called the ideal
resistivity, since for most metallic systems it is
relatively unchanged by the introduction of defects,
it has a well-known temperature dependence, whose
leading terms are proportional to T' below the
Debye temperature and to T near or above the De-

bye temperature of the sample. ' By combining the
calculation of the Debye-Vfaller factor with these
accepted results on resistivity, one can quickly
conclude that the corrections to the leading terms
are negligibly small in the usual cases. However,
if the residual resistivity is unusually large coin-
pared to the ideal resistivity, then the corrections
to the one become significant compared to the other.
This outcome requires a heavily alloyed and dis-
torted structure; i.e., one with an unusually high
density of defects, and this is the situation to be
considered here.

One last point deserves mention before the cal-
culation is outlined. It would be incorrect to in-
troduce the zero-point motion into the primary pro-
cesses of defect scattering and real single-phonon
excitation by electrons. Ziman' points this out and
it is not in question. However, it is demonstrably
correct to include the zero-point motion as part
of the higher-order scattering terms whose co-
herent sum yields the Debye-Vfaller correction to
the primary terms, the reason being that these
terms involve virtual phonon excitations.

II. CALCULATION

The processes considered in this calculation are
multiple scattering of an electron by a collection
of randomly situated nonmagnetic defects, elec-
tron-induced real single-phonon emission and ab-
sorption, plus the infinite series of virtual phonon
or polarization corrections to these primary pro-
cesses. Vertex corrections are neglected.

The equations for resistivity which emerge from
summing all of these terms are written as'

where

p,...(T) = p. + p&(~)
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and'"'

T)=, , + —zdz.
2Mkgo p

e' —1 2
(3)

obey Matthiessen's rule, and that p(0} is not the
same thing as p, . In the same way Eq. (5) may be
rewritten for high T:

p, is independent of T and is the "bare" residual
resistivity. p, (T) i.s the bare ideal resistivity. The
bare resistivities obey Matthiessen's additivity
rule. The exponential is the Debye-Wailer factor.

In the usual way, '"' a sum over virtual phonon
wave vector q has been replaced by an integral
over a reduced variable z, where z = R)d,/kzT and
the Debye model has been used. K is the electronic
wave-vector transfer; that is, it is the difference
between final and initial wave vectors for the real
scatterings. Important values of K are expected to
be slightly different in po and p, . In po, electron-
defect scattering gives typical values of K roughly

K~, the Fermi wave vector. In p„electron-phonon
scattering gives typical values of K roughly K~,
since probably only normal scatterings occur, with
umklapp scatterings being suppressed due to struc-
tural disorder.

Below we use the conventional forms for the lead-
ing terms in p, and p, (T) at low and at high T,
which have been validated by experiment. We
evaluate the leading terms in an expansion for the
Debye-Wailer factor in those temperature ranges,
a rather simple calculation. The results follow:
Low T:

p(T) =- p, [1—2W, —3.290W,(T/0)'] + 124.4p, (T/6)'.

(4)

High T:

Pt&) = P () —P)P
O

+ P8= P. + )P, —P,)PP ) 8 . (P)
—T T T

In these equations W, (K) = 35'K'/2Mkz8, W,(K)
= & W, (K); that is, the factors are originally func-
tions of of momentum transfer SK. The bars over
W, and W, in Eqs. (4} and (5) indicate that averages
over K have been taken. In retaining just leading
terms, it turns out that only the corrections to p,
are of low enough power in T to be significant.
Therefore, as discussed above, we will take the aver-
age value of K to be K~ in those correction terms.
Judging from representative values of M, 0 and
K~ (taking M =10' times the mass of a free elec-
tron, 0 = 300 K and K~ = 10' cm '), we estimate the
value of S', to be roughly 0.01. Equivalently, we
find 2W, =0.005 and therefore Eq. (4} may be re-
written for low T:

p(T) = 0.995p, —3.290W, p,(T/8)' + 124.4p, (T/6)'.

(6)

It is clear that the "dressed" resistivities do not

p(T) =—p, +(p, —0.02po)(T/8)

= po+ op(293 'K) T,

where ~ is called the temperature coefficient of
resistivity at room temperature and has meaning
when the variation of p(T) is linear.

Examining Eq. (7), we see that for samples hav-
ing p smaller than or comparable to p„ then p(T)
increases monotonically at high T with a large co-
efficient n. For these samples Eq. (6) says that
their dominant behavior at low T consists of re-
sidual resistivity plus a T term. This is the be-
havior observed for all "normal" samples, which
are those for which the ideal resistivity becomes
comparable to the residual resistivity at T near
or even very much below room temperature.

However, for "anomalous" samples having p,
much larger than p„ i.e. , highly resistive metal
alloys, interesting predictions follow. At high T
the coefficient a is comparatively small and may
even be negative, providing p, &50p, ; in other
words, p, » p, by a factor of two orders of magni-
tude, allowing for uncertainty in our estimate. At
low T p(T} has a minimum which is not of the loga-
rithmic form, such as occurs in the Kondo system,
but is instead a polynomial in T. To estimate
where the minimum occurs in p(T}, let us set u = 0
in Eq. (7), which has the effect of setting p, W, =-,' p,
in Eq. (6}. Then

p(T) —= 0.995po —1.645'(T/6) + 124.4p, (T/6)~.

(6)

This expression possesses a minimum at a value
of T a certain fraction of O, namely at T „
=0.180. Thus if 6=300'K, then T „=54K. The
value of p „is = 0.9945p„so that the relative
depth of the minimum [p(0) —p „][p(0)] ' is a con-
stant = 0.0005. By extending this analysis, we can
easily show that & decreases with p, while T „
and the depth of p „increase.

III. DISCUSSION

We wish now to numerically compare p, to p,
for actual metallic alloys, in order to decide which
ones are expected to show the predicted behavior.
We will use experimental results for p„since its
sensitive structure dependence makes theoretical
estimate uncertain. However, owing to the way
contributions to p, are normalized, i.e. , because
it is multiplied by powers of T/0 in the various
formulas, we can easily estimate p, using Ziman's
theory of high-temperature resistivity. '
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We have for the ideal resistivity p, , in terms of
an ideal mean free path A, ,

hk T
ne'A. '6

i

with n being the density of electrons and kF their
Fermi wave vector. Now a fair estimate of A,. is

A,. = 50aT„/T,

where a is the lattice parameter and T is the
melting temperature. Thus

p, = hkz6/50ne'aT

and we estimate for typical materials that these
relations hoM:

T = 36, ke= w/a, n = 2/a', a = 2 x 10 ' cm.

This yields p, = 10 "sec. Since the conversion be-
tween cgs and mks units has 1 0= 1.139 x 10 "sec/
cm, we have p, =10' Qcm.

Observations over many years have shown that
p, is much smaller than this estimate of p, for
crystalline metals, while p, is at most of order p,
for highly doped crystalline alloys. Therefore,
these materials should exhibit "normal" behavior,
something which they are known to do. The type of
system for which p, is much greater than p, is the
amorphous metal alloy, also known as the metallic
glass. This material should exhibit "anomalous"
behavior. It is known to do this, ' but the question
is: Are the observed anomalies in agreement with
the predicted ones'P

The metallic glass systems most studied contain
a significant fraction of one or more transition
metals, including Pd-Ni-P, ' Pt-Ni-P, ' and a num-
ber of others for which the relative proportions of
constituents may be varied within limits. Their
room-temperature resistivities, as also their re-
sidual resistivities, take values generally in the
range (100-300) x 10 ' 0 cm, in other words
100-300 times p, (if 6 is approximately equal to
the room temperature) These .are metallic ma-
terials with p, » p, by a factor of two orders of
magnitude. The theory presented above predicts
that, for these materials, at high T p(T) is linear

with coefficient ~ small and of either sign, while at
low T there is a resistivity minimum of polynomial
form.

Boucher' has published detailed results of mea-
surements of p(T) for the metallic glass system
(Pd„-Ni„)„, ,P, with x varying from 15 to 27.5
at. /o. Indeed he finds that at high temperature p(T)
does vary linearly, with small coefficient which
may be of either sign and which depends systema-
tically on concentration x in such a way that z = 0
at x= 24. He also finds a resistivity minimum
whose characteristics depend systematically upon
x, with T „in the range 10-30'K and relative
depth =0.001. These numerical values are different
from but not far off the values estimated above.
Moreover, theory and experiment are in agreement
in finding that g„and depth of minimum increase
with p, while + decreases.

However, it must quickly be added that closer in-
spection of the data reveals temperature depen-
dences (log T at low T and combinations of T and
T' terms in slightly higher temperature ranges)'
which disagree in important ways with our pre-
dictions. Furthermore, there are two serious cri-
ticisms in principle of the application of our theory
to this type of system. First, these materials have
such short mean free paths that a model of nearly
free electrons interacting with defects and lattice
vibrations may not be valid. It may be invalid both
for the electrons and for the phonons, and the con-
cepts relied upon, such as mean free path and wave
vector, may lose their meaning. Second, there are
expected effects from the d electrons and from
the amorphous "structure. " Several have been
predicted" and presumably some have been de-
tected in the experiments which measure the T de-
pendences. ' Possibly the predictions of this paper
are present experimentally but are partially
masked by these stronger effects.
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