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The generalized atomic hopping problem —particle correlation functions*
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We extend the formalism of the preceding paper to include a description of the hopping of specific particles.

The formalism is used to calculate frequency- and wave-vector-dependent two-particle correlation functions

for specific particles on lattice sites in sc, bcc, and fcc Bravais lattices and on octahedral interstitial sites in a

bcc lattice.

I. INTRODUCTION

In the preceding paper' we developed a formalism
for calculating two-point occupancy correlation
functions for the generalized hopping problem.
The purpose of this paper is to extend that formal-
ism to include calculations of the correlation func-
tions for specific particles and to exhibit the use
of the formalism by including calculations for a
number of simple cases.

The rate equation for the occupancy of a site by
one specific particle is

where Greek letters denote lattice sites, E'
~ is

the hopping rate for a particle at the site o to jump
to a vacant site P, n denotes the occupancy of the
site n(n =1 if the site n is occupied by any parti-
cle and n, =0 if the site a is vacant), and p de-
notes the occupancy of the site n by the one spec-
ific particle (p =1 if the specific particle is at
the site e and p, =0 otherwise). As discussed in
Paper I, the notation (d/df)0 does not indicate a
true time derivative but rather the change in prob-
ability of the quantity operated on in a small time
4t, divided by ~t. Since the right-hand side of
Eq. (1) is quadratic in occupancy variables, the
problem is nontrivial even if I'~ —f'~ . That is,
the equation cannot be iterated analytically in a
simple fashion.

Various aspects of specific particle-correlation
functions have been extensively studied for the
special case where there is a vanishingly small
concentration of vacancies in a substance with only
one type of site (I' ~=F~ ). The effects of correla-
tions on vacancy hopping was first pointed out by
Bardeen and Herring' and correlation factors or
effective diffusion coefficients for vacancy or
impurity migration have been worked out for many
different lattices. ' Because vacancy migration
plays an important role in a number of NMR re-

laxation phenomena, there have been a number of
calculations of specific particle- correlation func-
tions convoluted with spin dipolar interactions. 4

Recent work on this subject has tended towards
computer simulations of the motion of a single
vacancy. Qn the other hand, our formalism is
not restricted to small concentration of vacancies
and is not restricted to cases where I' ~=1~ .

However, in this paper we discuss only the cor-
relation functions for a single specific particle
while most NMR applications require the correla-
tion functions for a pair of specific particles.
While we believe that our methods can be general-
ized to this more complex problem, we have not
yet attempted to do so. Qn the other hand there
are some interesting physical phenomena which
depend only on single-particle correlation func-.

tions. One example is the diffusion coefficients
measured in tracer or NMR experiments. Another
example is the nuclear spin relaxation of interstit-
ial deuterium in metals due to the fluctuating elec-
tric field gradients seen by the nuclei as they hop
from site to site. '

In Sec. II we shall develop a diagrammatic rep-
resentation of all of the moments of the single
pair-correlation functions and discuss methods of
obtaining the time-dependent correlation functions
from these moments. The arguments of this sec-
tion are simple generalizations of the arguments
of Paper I. In Sec. III we obtain some results for
the special case of I' ~= I'~ for sc, bcc, and fcc
Bravais lattices and for octahedral interstitial
sites in a bcc lattice.

II. METHOD

The arguments in this section of the paper are
very similar to the arguments in Paper I and thus
many details will be omitted. Following Paper I
it is convenient to use variables whose average
values are zero and that are in some sense ortho-
normal. Since (n ) =c and (p ) =c /N, where c
is the concentration of particles at site & and N is
the total number of particles in the system, the
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desired variables are

=(n, —c )/a

a =[c (1 —c )P",
p. = (N/c. )'~'P. ,

where terms of order 1/v N compared to one have
been neglected. Equation (1) can be rewritten in
terms of these new variables as

a pa)
ap

b)
7

c)

7a~
~p

where

Q ~as Ps Q ~asr Ps &~ ~

B Br

7
Mp Qap7

ttap8ay+ tiay8ap

j, /2P I' „(1—c„)—Fs (1 —c ) —s

ttt

(4)

g)
a a
p~p
a a

3Cp Vapap = Vap&aa&pg

In deriving these equations we have used the equil-
ibrium condition Eq. (I-10). Further, the meaning
of (d/dt), is literally defined only in terms of the
p's and n's.

By neglecting the last term on the right-hand
side of Eq. (3) we obtain a linear equation in the
p's or p's which can be iterated indefinitely with-
out complications. This is the mean-field or
effective-field approximation which is the best ap-
proximation that one can expect from a linearized
theory. Essentially the approximation consists of
replacing all ns's in Eq. (1) by cs. In the special
case where I' B=I'B, there is only one type of site
and thus only one concentration c. In this case,
we have

s
= (1 —c)~

where z s is given by Eq. (I-8). Thus, in the
effective-field theory, the particle correlation
functions can be obtained from occupancy correla-
tion function by substituting (1 —c)u s. In fact this
approximation has been used in the literature. '
We note, however, that if I' Be I'B, the frequency
spectra and diffusion coefficients associated with
the particle and occupancy correlation functions
are not so simply related even in the mean-field
approximation.

Jn order to go beyond the mean-field approxima-
tion we define two-point particle correlation func-
tions and their moments as in Paper I. The cor-
relation functions are defined as

FIG. 1. Diagrammatic
representations of the var-
iables p~ and (~.

FIG. 2. Basic event diagrams and their corresponding
analytical expressions in configuration space.

D(a, P; t}= P R„(a,P) e(t) . (Vb)

Since all of the moments of the correlation func-
tions are defined in the limit as t-0, one can re-
late the nth moment to the nth-order hopping prob-
ability

(8)

However since (d/dt)", p involves products of one
p and up to n of the $'s, we must be able to cal-
culate d/dt, acting on products of p and arbitrary
numbers of $'s.

The derivation of the rules for calculating d/dt,
on products of p's and $'s and thus the derivation
of the rules for calculating the moments of D is
so similar to the analogous derivation in Paper I
that it is superfluous to repeat it here. Again the
rules for the moments are best described dia-
grammatically. As shown in Fig. 1, we associate
solid lines with $ and dashed lines with p .
Further, consider the basic event diagrams dis-
played in Fig. 2 and the analytical expressions
associated with them. The quantities ~ B, 0 B,

D(a, p; t) = (P, (t)P (0))8 (t),
where the angular brackets (x) denote the ensemble
average of x, and 8 is the step function. Since we
expect exponential-like solutions, the moments of
5 are defined as

37„(a,p) = —„, D(a, p; t)
i

-d"—
$=0
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Qa)

b) --~--~-- &y ~ayea y P

obtaining solutions for the specific particle-cor-
relation functions.

A. Notation

c)
a

FIG. 3. Diagrammatic representations and analytical
expressions for (a} the one diagram that contributes to

M~{0., P) and (b} and (c}, the two diagrams that contri-
bute to M2(0. , P}.

As discussed in Sec. III of Paper I, it is much
easier to work in reciprocal space or q space than
in configuration space. For lattice structures with
more than one site per unit cell we denote basis
indices by Latin letters which go from 1 to b where
b is the number of lattice sites in a unit cell. Then
all functions f(u, P) can be transformed as

and V ~ are defined in Eqs. (1-8), (I-9}, and
(I-22), respectively, and

V.,—.,=- &.—.&„[r.,(1 —c }+1„(1+c —2c,)]

(9)

The rules for calculating M„(u, P) are as follows:
From the set of basic event diagrams, (i) form all
distinct connected diagrams with n events that
start on the left with a single dashed line labeled
a and end on the right with a single dashed line
labeled P. These diagrams will be made up of n
basic event diagrams and will contain n dots since
each dot signifies one event. (ii) Label all internal
lines with dummy site indices and associate the
proper analytical expression with each diagram
that is the product of the analytical expressions
associated with each event. (iii) Sum over intern-
al dummy site indices with the restriction that no
two sites at the same "time" (or horizontal posi-
tion} can be equal. In Fig. 3 we have displayed
the only diagram that contributes to M, (o, p) and
the two diagrams that contribute to 37,(o'., P) along
with the appropriate analytical expressions. At
this point essentially all of Sec. III of Paper I can
be taken over and applied to the present problem
since the results of that section depend only on the
diagrammatic expansion of the moments. Thus we
define a self-energy or memory function K(o, P;t)
with moments Z„(n, P) and all equations in Sec. III
of Paper I apply if we replace D, K, and I. by
5, K, and 5, respectively.

III. RESULTS

In Sec. IIIA and GIB we use our formalism to
calculate frequency-wave-vector-dependent par-
ticle-correlation functions for the special case
where there is only one type of site and thus I"

~
= I"~ . In particular we consider simple cubic
(sc}, bcc, and fcc Bravais lattices and octahedral
interstitial sites in a bcc lattice. In Sec. IIIA we
develop the necessary notation for these specific
lattices. In Sec. III 8 we investigate methods of

(10}

bcc: I'(q} =91;cosg„cosg„cosQ, ,

fcc: 1(q) =41;(cosg„cosQ,+ cosQ, cosQ,

+ cosQ, cosQ, )

(11b)

(11c)

where a is the length of a cube edge and the short-
hand notation

Q] = 2q]a (12)

has been used for the bcc and fcc lattices. The
three octahedral (oct) sites in a bcc unit cell can be
chosen to lie at the points (~, 0, 0)a, (0, ~, 0)a, and

(0,0, -', }awith respect to the origin. With this
choice, we get

I'(i, i, q) =0,
oct: I'(x, y, q) = I'(y, x, q)'

= 2~o cosQ e~(o„-Q (11d)

with cyclic variations in x, y, and z. In this case
the basis indices i = j., 2, 3 can be associated with
the cartesian directions x,y, z, respectively.

It would be extremely convenient to express all
of the moment diagrams in q space. The reason
that this cannot be done trivially is because of the
restrictions that no two sites at the same "time"
or horizontal position can be equal. For the pres-
ent we shall ignore this restriction and Fourier
transform the diagrams. The error that this in-
troduces mill be discussed in Sec. III B. The whole
diagrammatic expansion scheme can then be put
into reciprocal space. In Fig. 4 the basic event
diagrams and their corresponding analytical ex-
pressions in q space are displayed. Since we con-

where & is the site i in the cell 1, P is the site
j in the site 1 =0, and R, is the lattice vector of
the site 1. For the three Bravais lattices with a
hopping rate I", to a single nearest neighbor, the
transforms of I'

~ for sc, bcc, and fcc lattices
are, respectively,

sc: I'(q) = 21'o(cosq„a+ cosq„a+ cosq,a), (11a)
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ed with each event. (iii) Sum over all internal
wave vectors and basis indices.
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B. Examples

In this subsection we shall investigate some ap-
proximations for the particle-correlation func-
tions. First we consider the method of self-con-
sistent integral equations. This method is de-
scribed in Paper I and is derived in detail in Ref.
V. With this method K(i,j,q; t) is expanded in a
series, each term of which is a functional of
D(i, j,g;t). Thus, we get

FIG. 4. Basic event diagrams and their corresponding
analytical expressions in q space.

sider only the special case of I' ~= I'~ in this sec-
tion, V ~and A ~ are zero. The expressions in

Fig. 4 are defined as

(d„(q) =zI;&„—I'(i,j,q),
() (~(q) = (1 —c)()))~(q) )

~ isa(4x qs qs) = u{5i, a I'(I
~j ) q2)

—&, ~I'(i, k;q, )],
7,~„(&)Q) qz) q4) =-«, , &, ,F(j)i, q2 —qs)

-2(1 —c)5, ,&~ ( I'(j, i, q, —q,),
where z is the number of nearest neighbors.

In q space the rules for forming Z (ij„q,) a, re
as follows: (i) Form all distinct irreducible
diagrams with n events from the set of basic event
diagrams that start on the left with a single dashed
line labeled (g, i) and end on the right with a single
dashed line labeled (q,j). (ii) Label all internal
lines with dummy indices q', 4 and associate the
analytical expression with each diagram that is
the product of the analytical expressions associat-

g(i, j,g; t) = K„(i,j,q; t) . (lsa)
n=

The rules for forming TC„(i,j,q; t) are as follows:
(i) Draw all distinct skeleton diagrams made up
of the basic event diagrams, starting on the left
with a single dashed line labeled q, i, ending on
the right with a single line labeled q, j, and con-
taining n events. (ii} Label the first dot on the left
with the time t, the last dot on the right by time
0, and all internal dots by t, . Label all internal
lines with dummy wave vectors q' and label all
lines where they go into and out of dots by dummy
basis indices k. Thus each internal line has a dis-
tinct basis index at each end. (iii) Associate the
appropriate analytical expression from Fig. 4 with
each dot. Replace every line going from (k, t, )
to (k', t ) along a line labeled iP by D(k, k', g', t,
—t ) if the line is solid and by B(k,k', q', t, —t ) if
the line is dashed. (iv) Integrate over all internal
times, sum over all internal wave vectors, sum
over all internal basis indices, and multiply by
(-1}"".If the diagram has only one event, mul-
tiply by 5(t).

In Fig. 5 the skeleton diagrams for D up to third
order for the case I'

~
= I'~ are displayed using the

stated rules we obtain

(14a}

~ ~

&z(i») q') t)
N fl&a&(q ) q-q )q )fl~ ($,q- q', q')D(ln, q', t)D(km, q —q', t),

K(i,), %l))=&, I f d ) (W()-q','iP)D(k, m, q', ) ))D()n, q —q', t —t'), '

(14b)

&& F„~(q- q', q', q- q, q" }D(O,r, q", t')D(p, s, q q", t') II~„(q,q--q", q"). (14c)

+t())(t j q)]D(j k q (d) =is
f

(15)

All internal wave vectors and basis indices are
summed over in these equations. In this case
(I',z= I'z }, D is trivial and in frequency space is
given by

c)

FIG. 5. Skeleton dia-
grams for D up to third
order for 1«= I'8 .
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D, = [1—nc/(2 —c)]D, , (18)

where ~ =0.419, 0.318, and 0.245 for the sc, bcc,
and fcc lattices, respectively. To third order,
the results are

D, = [1—&c/(2 —c) + pc(3c —2)/(2 —c) ]D, , (19)

where P =0.088, 0.050, and 0.030 for the sc, bcc,
and fcc lattices, respectively. From these results
it would appear that the procedure converges rap-
idly. In fact, as c-1 or c-0 (the concentration
of vacancies approaches zero), we obtain D,/D,
=0.669, 0.732, and 0.785 for the sc, bcc, and
fcc lattices, respectively. This is very close to
the accepted values' of 0.653, 0.727, and 0.781,
respectively.

However, this fast convergence hold only for
qa «1 and does not persist over the whole Bril-
louin zone. In fact, in the limit c-1, the con-
vergence is so bad that the approximation gives
unphysical results for the sc lattice for large q
along a [111]direction. In the limit c-1 one can
talk in the language of the hopping of a single vac-
ancy. In this limit the only diagrams that contrib-
ute to K are those like Figs. 5(b) and 5(c) but with
an arbitrary number of Q events. Each term cor-
responds to a term in a Born scattering series.
Clearly, what happens here is that the Born series
converges rapidly for small q but very slowly for

However, Eq. (14) must be solved self-consistent-
ly with the equation

&oD(f, k, q, v)+i g K(i,j,q, &u)D(j, k, q, &u) =f 5,

(16)
We have not solved Eqs. (14) and (16) self-con-

sistently. We have solved them for various values
of g and e by using the effective field or first-
order solution for D in Eqs. (14). This is rigor-
ously correct only in the limits c-0 and c-1. It
is correct when c- 0 because if c = 0, then D =D.
Thus the procedure gives D correctly to lowest
order in c. If c-l, K(i,j,q, a) is proportional to
c=1 —c and thus D(t) is essentially constant over
the time it takes D(t) to decay to zero. Thus in this
case we obtain D correctly to lowest order in c.

In particular, we have calculated the diffusion
coefficients for the four lattices under considera-
tion. In the effective-field or first-order approx-
imation we obtain

D, (sc) =cI',a', D, (bcc) =cI;a',
(17)

D, (fcc) = VI;a', D, (oct) = —', cF,a', c =1 —c .
For the three Bravais lattices we have calculated
the D„ the second-order approximation solving
the equations non-self-consistently. The results
to second order are given by

large q. Thus, in order to obtain good results,
when c is near 1, one has to sum the entire Born
series. This program is now under way.

For the octahedral problem, we obtain

D~ = 0.32D, ,

D, =0.55 D, ,

(20)

(21)

in the limit c-0. Here even the convergence at
small wave vector is poor and the entire Born
series will have to be summed for even an accurate
diffusion coefficient. At lower concentrations the
convergence is much better, sealing approximate-
ly as c.

Ne have briefly investigated the effects of re-
moving the rest'rictions and Fourier transforming
the diagrams. Analytically we have been able to
include the effects of the restrictions by comput-
ing the change in' if the restriction was taken into
account once. The effects are zero at zero and in-
finite frequencies and the effects were at most 8%
of K, at any frequency or wave vector for the sc
lattice. The effects on the other Bravais lattices
were even less.

Finally, we have briefly investigated the results
obtained with Pade approximates as described in
Eq. (I-35). The lowest order or [1,0] Pade ap-
proximant yields

K(i,j, ur, q) = V&u(i,j,q)[1 - 5,/(I - ib, u)],
5, =2c/[z(2 —c)+(3c—2) —2(2 —c)&(fcc)], (22)

5, = I/I', [z(2 —c) + (3c —2) —2(2 —c) 5(fcc)],
where z is the number of nearest neighbors and
5(fcc) equals one for the fcc Bravais lattice and
zero for the other three lattices. The reason for
the extra term with the fcc lattice is that three
sites can be mutual nearest neighbors.

In the limit of small wave vectors, Eqs. (22) give
a reasonably good approximation to the results
obtained from the self-consistent integral equa-
tions. For example, the diffusion coefficients ob-
tained are D/D, =0.714, 0.7'I8, 0.818, and 0.600
for the sc, bcc, fcc, and octahedral cases, re-
spectively, in the limit c-1. The results for fin-
ite frequencies and/or lower concentrations were
even closer to the results obtained from the self-
consistent integral equations. At larger wave vec-
tors the results obtained from Eq. (22) diverge
considerably from the results obtained from Eqs.
(14).

We have also tried the second order or [2,1]
Pads approximant in the limit c-1 and for small
wave vectors. With all four lattices the diffusion
coefficients obtained were almost exactly midway
between the values obtained from Eq. (22) and the
values obtained from the self-consistent integral
equations.
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