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We present a theoretical study of the propagation of surface acoustic waves on a ferromagnetic crystal in the
presence of magnetoelastic coupling. For parameters characteristic of YIG, with the sample magnetization and
Zeeman field parallel to the surface, we examine the dispersion and attenuation of waves propagating in an
arbitrary direction relative to the magnetization. In addition we detail the behavior of the polarization of the
lattice motion and the demagnetizing fields set up by the wave. We study two distinct kinds of magnetoelastic
surface waves: one is in essence a Rayleigh wave modified by the magnetoelastic coupling and the second a
shearlike magnetoelastic surface wave that exists only in the presence of magnetoelastic coupling. These waves
provide a short-wavelength probe of the Damon-Eshbach surface spin waves and of the nature of the bulk
spin-wave eigenmodes near the surface.

I. INTRODUCTION

Rayleigh waves are the surface bound excitations
of the elastic strain field of a solid and, in the
presence of any small coupling, provide the oppor-
tunity of probing by acoustical means the nature of
elementary excitations near the crystal surface.
Consequently it is of interest of inquire into the
coupling of surface acoustic waves on solids with
other elementary excitations accessible to the
Rayleigh-wave frequency range. This is of interest
for two reasons. First of all, the wavelength of
Rayleigh waves can readily be made small com-
pared to the sample dimensions, and this is true
also of the penetration depth, into the crystal, of
its strain field. Thus, the Rayleigh wave can
probe the nature of elementary excitations near
the surface of a crystal under circumstances in
which the medium may be regarded as semi-infin-
ite. Also, if the Rayleigh wave couples to other
low-frequency excitations, its properties may then
be altered or manipulated (i.e. , the attenuation
rate or the dispersion of the wave may be altered
through variation of external parameters).

We have examined the theory of surface acoustic-
wave propagation on ferromagnetic substrates in
the presence of coupling between the elastic strain
field and the ferromagneticany aligned spins. It
is via this magnetoelastic coupling that elastic dis-
turbances in the solid excite the spin system giving
rise, when supplemented by the appropriate bound-
ary conditions, to the magnetoelastic surface
modes to be discussed here.

We assume a geometry in which the magnetiza-
tion and an externally applied dc magnetic field are
parallel to the sample surface and the wave propa-
gates in an arbitrary direction relative to the mag-
netization. We consider here a stress-free sur-
face, unloaded by a conducting film. '

The propagation characteristics we find are
highly geometry dependent, the angle between the
sample magnetization and the wave vector being
the critical parameter. We find that magnetoelas-
tic waves of two sorts can be propagated. The
waves of the first kind may be characterized as
Rayleigh-like in terms of their lattice displace-
ment patterns (they reduce to the Rayleigh wave in
the limit of vanishing magnetoelastic coupling).
The second solution, a quasishear mode, has no
correspondence in elasticity theory and depends
on the presence of magnetoelastic coupling for its
existence. A striking feature of our results is the
presence of nonreciprocity in the propagation
characteristics, i.e., for a given frequency, the
wave vector and attenuation length for propagation
from right to left relative to the magnetic field
differs from that for propagation from left to right.
This we show to be a general feature of surface
wave propagation with a magnetic field parallel to
the surface.

We have calculated numerically the dispersion
and attenuation lengths of these modes as well as
the elastic displacement fields and magnetic field
components associated with them. These calcula-
tions were done for material parameters charac-
teristic of YIG.

Two particularly striking features are the strong
interaction between the Rayleigh wave and the bulk
spin waves as well as its coupling to the Damon-
Eshbach surface spin waves. These are surface
spin waves on a semi-infinite ferromagnet that
exists at long wavelengths where dipolar coupling
dominates the exchange interaction. ' Thus the
study of magnetoelastic surface wave propagation
offers the unique possibility of studying the bulk
spin-wave mode structure and the Damon-Eshbach
surface spin waves with a probe of short wave-
length, in contrast to microwave resonance studies
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which probe only geometrical resonances of the
entire sample. This may prove a useful method
for studying the nature of the spin-pinning inter-
actions near the surface of a ferromagnet. In
principle, while we do not consider the effect of
spin pinning here, both the coupling to the Damon-
Eshbach wave as well as the interaction with the
bulk spin-wave modes should be sensitive to its
presence. Thus, we have here an example of the
potential utility of Rayleigh waves as a short-wave-
length probe of elementary excitations near crystal
surfaces.

II. GENERAL THEORETICAL CONSIDERATIONS

We assume a semi-infinite ferromagnetic crystal
which is taken to be elastically isotropic. The
system of coordinates is oriented sp that the crys-
tal occupies the half-space y& 0 with the magneti-
zation M and an externally applied dc magnetic
field Ho lying in the z direction. Note that the z
axis is parallel to the surface. The wave then
propagates with frequency 0 and wave vector Q
(Q is parallel to the surface) at an angle 8 relative
to the magnetization vector (Fig. 1).

In the absence of magnetoelastic coupling the
spin system obeys a Bloch equation:

dt
=y(Mx H) —M .

T
(2.1)

Here y is the gyromagnetic ratio and

H=Hoz+ h~, (2.2)

h~ being the demagnetizing field associated with the
spin motion. The quantity 7' is the transverse re-
laxation time of the spins.

The demagnetizing field h„ is to be calculated
from the Maxwell equations. In typical surface
acoustic-wave systems we are restricted to fre-
quencies of a few 0Hz or less corresponding to
wave vectors on the order of 10' cm '. Then we

have cQ»0, where c is the speed of light. Thus
retardation effects can be ignored and we may use
the magnetostatic approximation. Then Maxwell's
equations become

V' ~ B=V'x H=O. (2.8)

In the absence of magnetoelastic coupling the kth
Cartesian component of elastic displacement u~

obeys

(2.4)

yh„= x(b, /M-, )(e„,+ e ) -y(b, /M, )(e„+e,„) .
(2.6)

The contributions of the magnetoelastic coupling
to the lattice equation (2.4) are found by adding to
the right-hand side the piece

where the e„are the elements of the strain tensor
and X the Hamiltonian density appropriate to an
isotropic elastic continuum, with mass density p
and transverse and longitudinal sound velocities
c, and c„respectively.

The equations of motion (2.1) and (2.4) are now

to be modified by including terms representing
the contribution of the magnetoelastic coupling.
For a ferromagnetic material of cubic symmetry,
in the spin-wave regime where only the terms
linear in the transverse magnetization are re-
tained, the interaction Hamiltonian density is given
by3

X» = (b,/M, ) [M,(e,~+ e„)+M„(e„,+ e )] . (2.5)

Here 52 is a phenomenological coupling constant
and M, the saturation magnetization. M, and M,
are the transverse components of the magnetiza-
tion. The contributions to the spin equation of mo-
tion Eq. (2.1) can be calculated by noting the mag-
netoelastic coupling is equivalent to an additional
effective magnetic field which drives the spin sys-
tem. This effective field is h„, where

ay, . ax, ae„ (2.V)

(2.8a)

The fully coupled equations of motion are then
given by

= y[M x (H+ fjg~)] —M,

0 ~ B=0.x H=O, (2.8b)

FIG. 1. Propagation geometry considered in the pres-
ent paper. The magnetization of the ferromagnet is
parallel to the surface, as is the externally applied mag-
netic fiel.d.

a2
(Z+R„) .&t' p, 8x, 8e, (2.8c)

The effects of exchange have been ignored in the
foregoing discussion, since here we are concerned
with wavelengths sufficiently long that the dominant
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source of excitation energy of the spin system is
the Zeeman energy along the demagnetizing fields
generated by the spins.

At the surface of the crystal we require that the
usual electromagnetic and mechanical boundary
conditions be satisfied. These are the conservation
of normal components of B and tangential compo-
nents of H across the surface, and the condition
that the surface be stress free.

In order to examine the equations of motion Eq.
(2.8) and boundary conditions for surface wave so-
lutions, we take the y variation of the lattice dis-
placements and all other dynamical variables to be
exponentially damped away from the surface with
rate Q. Thus, for example,

u =u e "e"~&"'~)e '"'u„-u~e (2.9)

u~= ug y (2.10)

u, =u, sin8+u, cos8 .
Upon making these substitutions and expanding

It is convenient to transform to the lattice dis-
placement coordinates, u„u„u„defined below.
The two quantities u, and u, are the displacements
in the sagittal plane parallel and perpendicular to
the surface, while u, is the displacement perpen-
dicular to the sagittal plane.

u„=u, cos8 —u, sin8,

Eq. (2.8c), one obtains a system of equations de-
scribing the motion of the lattice which also con-
tain the magnetization components:

(Q + cga —cgQ(( )ggg i(c', c—', )aQ((MJ

+ (b,/pM, )(iQ„sin28M, —a sinHM, ) = 0, (2.11)

'g(cg —cg)aQ„ggg —(0 + cga —cgQ„)ggJ

-i(b, /pM, )Q„sinHM, = 0, (2.12)

(0 + cga —cd(()ggg

+ (b, /phd, )(iQ„oc2sH M, -a cosHM„) = 0 . (2.13)

From Eq. (2.12) it is evident that, in the presence
of magnetoelastic coupling, u, 0 in contrast to the
case of pure Rayleigh propagation, where the dis-
placement is confined to the sagittal plane. '

The Maxwell equations in Eq. (2.8b) may be com-
bined to form the single equation

i(Q'„—a')ig, + 4ggQ„(iQ„sin8 cos8M„-a sinHM, ) = 0 .
(2.14)

Here we have chosen to designate the z component
of the demagnetizing field h, as the fourth dynami-
cal variable.

Finally, the Bloch equation, Eq. (2.8a), provides
relations between the components of the rnagneti-
zation and of the displacement:

gJ= „,""&, ((„tm(s g( csee J,„,*&) (g(as n(( ((~„8 ge],

+ t ~ ~~ AQ cos8 —~H@, cos28 u, +, '
~, Q„sin8u,

yb 0
0'„-A' H II t g2 Q2 II

M =z, "+ 0 —csc8 —Qcot8 h,+, '+ 0 Qsin8 —QQ„sin28 u,A~ -O' Q„ 8 g2 QZ, H

+, ', (Q„acosH-QQ„cos28)ggg -i, , Q„sin&ggJ .. yb2~a
H H

(2.18)

(2.16)

In these equations 0= 0+ i/v.
We may eliminate M, and M, form Eqs. (2.11)-

(2.13) and from Eq. (2.14) to obtain four equations
in the variables u„u„u~, and h,. These equations
have a nonzero solution only if the determinant of
the coefficients vanishes. This condition provides
a polynomial of the eight order in the decay length
Qe

The explicit expansion of the determinant is very
awkward and cumbersome. As a consequence, we
have developed a computer routine which performs
the expansion on the computer, isolating and keep-
ing track of the prefactors of the various powers
of Q in the process, to provide the coefficients of
the polynomial in the end. The roots of the poly-
nomial in Q may then be found numerically. Of

these eight roots only four are physically accept-
able, with real parts greater than zero. From
these four values for the decay constant Qy Q2,
Q 3 Q4 we construct a solution which rep resents
a superposition of waves having as decay param-
aters Q„Q„Q„Q4, respectively. For example,

(k) e-e ky eh (Qzx+Qgg) e- i0 t

k
(2.17)

Similar superpositions are constructed for the re-
rnaining dynamical variables and it is these solu-
tions which are submitted to the boundary condi-
tions. Note that the amplitudes u,' ', u', "', u~ ', and
h,'k' are interrelated through the bulk equations
Eq. (2.11)-(2.14). Thus, if we choose a value of A
and Q, at this point four arbitrary amplitudes re-
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main, namely e,"'-u',". Further constraints on the
solution are found by submitting the solution to the
boundary conditions.

If t,&
is the i-jth element of the stress tensor,

then in the present case the stress-free boundary
conditions read

83C
t = c44ea l)-0=0

8~X3I y-0

ax
5'3f 3f&0

BX
= g4&y + M =0.

Wo S

(2.18a)

(2.18b)

(2.18c}

The presence of the term proportional to b, in Eq.
(2.18c) will play a critical role, as we shall see.
The boundary conditions that require conservation
of tangential h and normal B may be combined into
the single statement

Q„+e~ kg —i4gQ„sine M„~ =0 . 2.19

III. RESULTS OF THE CALCULATIONS

In this section, we present the results of our in-
vestigation of the nature of the magnetoelastic sur-

The factor ~Q„~ in Eq. (2.19) has its origin in the
fact that outside the substrate (y& 0}, the magnetic
field decays in free space like e'~("". This is the
source of the nonreciprocity in the dispersion re-
lations we will find subsequently. The four equa-
tions in Eqs. (2.18) and (2.19) may be written as
four homogeneous equations in the amplitudes u,'~'

by eliminating the other variables h,'~', M„'~', . . . ,
through use of the bulk equations quoted earlier.
The expressions are cumbersome, and will not be
quoted explicitly here.

The entire procedure outlined above has been
carried out automatically, by machine. In prac-
tice, one chooses the frequency 0 and guesses a
value Q,. We choose 0 real, and then Q, will be
complex, with the attenuation length the inverse of
its imaginary part. The computer routine then
provides the value of the determinant, D(A, Q)) of
the coefficients of the boundary condition equations.
Our objective then is, for fixed real 0, to seek the
complex values of Q, at which D(A, Q,}=0. This
task, complicated by the fact that D(A, Q,) is a
complex function of a complex variable, can be
programmed with sufficient efficiency and the
zeros of D(A, Q)) can be found to extremely high
accuracy. Using this procedure we are able to
calculate the dispersion relation, attenuation
length, penetration depths, demagnetizing fields
and polarizations of the lattice motion at various
angles of propagation. In Sec. III, we present our
results.

and

0„-Qo —h,

yS,+~ „. f). lA &-AsQ))l~~
H

(3.1)

M„=i 2 ~2 crQg ——0 A,

yn,+ A, ~, [oA„a-QQ„]u, .
H

(3.2}

With these relations, Eq. (2.13) may be written
in terms of the two variables g, and h„, while the

face waves. Before the general results are dis-
played, it is useful to discuss two special propaga-
tion directions, 8= —,'s (propagation parallel to the
magnetic field and the magnetization), and 8=0,
s (propagation perpendicular to the magnetic field
and magnetization). We consider each case separ-
ately.

A. Case 8 = 0 or n

When 8=0 org, M„and M„drop out of Eqs.
(2.11}and (2.12), so these equations involve the
two lattice displacements in the sagittal plane only.
Furthermore, these two displacement components
contribute only to the elements e„„,e„„, and e of
the strain tensor. As a consequence, the boundary
conditions Eqs. (2.18a) and (2.18b) are the only two
that involve u, and u, . This set of equations just
describe a Rayleigh wave uncoupled to the spins.
Thus, for propagation perpendicular to the magne-
tization, the Rayleigh wave is uncoupled to the
spin system. This may be appreciated from Eq.
(2.5), where one sees no terms linear in both the
transverse magnetization and the strain field set
up by the Rayleigh wave.

But as Parekh' has pointed out, for propagation
perpendicular to the magnetization, a shear polar-
ized magnetoelastic surface wave may propagate.
This wave owes its existence to the presence of
magnetoelastic coupling, and is a magnetic analog
of the Bleustein-Gulyaev wave which may propagate
on the surface of a piezoelectric crystal. ' Here
the situation is considerably more interesting than
in the piezoelectric case, in that the spin system
may exhibit a resonant response to the strain field
Which drives it. For completeness, we briefly
sketch the dispersion relation of this wave.

In the shear polarized surface wave with 8=0
org, g, and g, vanish, as does h, . The amplitudes
u„M„and M„are nonzero along with h„and h„.
Since V && h= 0, as 8 approaches 0 or g, we have
k, =h„tane. If this relation is used in Eqs. (2.15)
and (2.16), then with a=+1 for 8=0 and o=-1 for
e=g we have
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V x h= 0 and V b= 0 equations are also readily re-
duced to a single relation between h„and u, . The
values of ~ allowed are readily found by equating
the 2 x 2 determinant formed from these equations
to zero. This leads to the simple relation

(&'-Q'„)[~'-Q'„+( A'I c', )n, ( Q)]=0,

where

q, (Q) = [1 d.—Q„'/(Q„Q, —A']-' .

(3.3)

(3.4)

In Eq. (3.4), the parameter a is a dimensionless
measure of the strength of the magnetoelastic
coupling. It will play a key role throughout the
paper. It is given by

d =yb22/pc, 'M, Q» . (3 6)

c',Q /Q'=ps(Q) . (3.6)

The expression in Eq. (3.3) admits two values of
a. For the first (o'. =

~ Q„~), one has a solution of
the bulk equations with u, =—0, but M„, M„, and h
nonzero. For the second, all amplitudes are non-
vanishing. These two solutions are mixed by the
boundary condition in Eq. (2.18c). After some
algebra, one may show that the boundary condition
is satisfied only if the dispersion relation

Also, in Eq. (3.4), Q»= Q„+4»Q».
The quantity qs(Q) has a straightforward physical

interpretation. It is the acoustical analog of the
complex index of refraction of a dispersive medi-
um. In this case, it is the effective index of re-
fraction for propagation of bulk transverse magne-
toelastic waves, with displacement in the plane
perpendicular to the magnetization. This disper-
sion relation is'

A, = ,'(-[Q„(Q„+8»A„)]'" A-„] . (3.9b)

(o)

C)

~Cs
/

/

cr = —
I

(e =7T)

We see that like the Damon-Eshbach wave itself,
the shear polarized magnetoelastic wave has a non-
reciprocal dispersion relation. This follows from
the explicit appearance of c in Eq. (3.8).

In the absence of spin damping, and in the limit
of zero magnetic field, the dispersion relation in
Eq. (3.7) reduces to the simple form

'cQ'„/A' = (A+ oA,)'/[(Q+ o Q,)' —6'], (3.10)

where p = &+~, a quantity independent of H. This
dispersion relation is illustrated in Fig. 2, for
both directions of propagation. The nonreciprocal
character of the dispersion relation is most strik-
ing. Figure 3 illustrates the character of the dis-
persion relation for both senses of propagation,
when the Zeeman field is nonzero. For each direc-
tion of propagation, there are two branches to the
dispersion relation. The cross hatched areas of
Fig. 3 are regimes where bulk magnetoelastic
waves may propagate, with wave-vector component

c',q;, /Q'= q, (Q)/[I —y'(A)] (3.7)

is satisfied, where

AQ» (Q+ oA))(A —oQ()
(A, + cA) [P —Q»(Q» —d, Q»)]

(3.8) (b)

C) ~ =+I
(8 =0)
Cs

Q)= 2 ([Q»(Q»+ 8»Q») ]' + Q»}, (3.9a)

In the limit where the spin damping is ignored
(T ~), then the surface mode exists only for fre-
quencies where 0& y(A)&1.

In Eq. (3.8), Q, = »(Q„+ A») is the frequency of
the Damon-Eshbach surface spin wave, for propa-
gation perpendicular to the magnetization. We re-
mind the reader that (in our geometry), the Damon-
Eshbach wave propagates only from right to left,
but not from left to right. It is a simple example
of a wave with a nonreciprocal dispersion relation,
a feature we will see reflected in the more com-
plex magnetoelastic waves that form the topic of the
present paper. Also, the frequencies A& and 0& are

FIG. 2. Dispersion relation for the shear polarized
magnetoelastic surface wave for propagation perpendic-
ular to the magnetization. Here the external magnetic
field is zero. (a) The propagation direction is from
right to 1eft; (b) from left to right.
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Q )I/r

cr "- —I

R BRANCH

. - - —[Q„Qa-Q„A]

o =+I
(8=0)

BRANCH

wave of Sec. HI A. Here we have a Rayleigh wave
which couples to the spins. The spins react back
on the lattice with the consequence that N, 0 in
addition to u, and zc,. Thus, the lattice displace-
ment is no longer confined to the sagittal plane.

In Fig. 4, we present results for the attenuation
constant and the real part of Q„ for the wave, for
propagation on YIG in a magnetic field of 50 G. We
comment on the parameters chosen, since these
will be used throughout the remainder of the paper.
A field of 50 G places the frequency Q„/2tt at about
100 MHz, a frequency convenient for surface prop-
agation studies. In YIG, this gives Qe/Q„=7, and
4=9.1 x 10 '. The numbers were employed in our
previous paper' and the earlier work by Parekh
and Bertoni. ' In addition we take the dimension-
less parameter I' = (0//v ) ' to assume the value
0.01. The results displayed in Fig. 4 are calculated
for this value of I', and the effect of varying the
damping rate has been explored in our previous
paper. There we found that the height of the atten-

FIG. 3. Dispersion relation for the shear polarized
magnetoelastic surface wave for propagation perpendic-
ular to the magnetization, when the external magnetic
field is nonzero. (a) The propagation direction is from
right to left; (b) from left to right.

O.OI 0--

Q„parallel to the surface and arbitrary component
normal to the surface.

We call attention to the fact that the scales in
Figs. 2 and 3 are exaggerated to give a qualitative
feel for the nature of the dispersion relations. We
shall see for material parameters used below that
y(Q) is very close to unity, so the dispersion
curves lie much too close to the bulk magnetoelas-
tic wave dispersion curve to illustrate on graphs
with this scale, except for frequencies very close
to 0,.

= 0.005--

E

O

0.0 I
"

I.O
Q/Q H

2.0 s.o
(Qe/QH)

B. Case 0 = +~ w
1

1 IWe next consider the case 8=+&g or 8= - ag,
i.e. , propagation either parallel or antiparallel to
both the magnetization and the external magnetic
field. This case has been considered previously
with neglect of spin damping by Parekh and Ber-.
toni, and previously by us with spin damping in-
cluded. ' We present a brief summary of the re-
sults here for completeness.

For propagation in the direction 8= + &g, the dis-
persion relation is an even function of Q„. We
shall see that this follows from very general con-
siderations. For 8= + &g, all the amplitudes are
nonzero and coupled. We find a Rayleigh wavelike
mode in this propagation geometry, but no analog
of the shear-polarized magnetoelastic surface

DETAIL NE

(Qs /QH)

2.5

(QB /QH )

Q/QH
2.6 2.7

0.5

Q/QH

I.O 3.0
&/2

8/QH)

FIG. 4. Frequency variation of the (a) attenuation con-
stant and (b) the real part of the wave vector for a Ray-
leigh wave which propagates parallel to the magnetiza-
tion. In (b) the quantity plotted on the vertical axis is
hatt=(Czgt /Q)-l, where qt(a~ ie the real partofQtt. The
parameter F =(0~7), while A, QH, and Gz are chosen
for YIG in a 50-G magnetic field.
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uation was sensitive to I", but its width is insensi-
tive. This is because, as discussed before, the
broad attenuation peak has its origin not primarily
in dissipation in the spin system, but in leakage of
energy to bulk magnetoelastic waves. The attenu-
ation constant of the Rayleigh wave is quite large
at the peak. It assumes a value roughly 30 cm '
at its peak value. Note that in the attenuation con-
stant, the large peak lies a bit above A~, while
there is a considerably smaller peak near
(Q»Q»)'~', as shown in the inset. A physical argu-
ment which explains this behavior may be found in
our earlier work. '

We next turn to presentation of the results for the
case of general propagation direction. Before we
do this, we pause to comment on the origin of the
nonreciprocity in the surface-wave dispersion re-
lation. We have seen two examples of this nonre-
ciprocal behavior. The first is provided by the
Da.mon-Eshbach spin wave (the surface spin wave
present in the absence of magnetoelastic coupling)
and the second is the shear polarized magnetoelas-
tic surface wave. A third example is the propaga-
tion of surface polaritons in a doped semiconductor
placed in a magnetic field parallel to the surface,
for the case where the mode propagates perpendic-
ular to the magnetic fielc.'.'

In all these cases, the surface wave dispersi-on
relation is nonreciprocal, while the dispersion re-
lations of the corresponding bulk waves are de-
scribed by a function even in the wave vector.
There is a simple symmetry argument that leads
one to appreciate the reason why this is so.

Consider a cubic material, infinite in extent,
with magnetic field parallel to the z direction. Let
Q„(k,k,) be the dispersion relation for a bulk ex-
citation (a polariton, a magnetoelastic wave, . . .).
We show that Q„(k,k,) is an even function of both
k, and k,. First reflect the whole system through
the x-y plane. This changes k, to -k„but does
not change the direction of the magnetic field,
since it transforms like a pseudovector under re-
flection. Since the operation reverses the sign of
k, and leaves both the crystal and magnetic field
invariant, we have Q„(k„k,) = Q„(k„, -k,). A re-
flection in the y-z plane changes the sign of k„.
But since the magnetic field is a pseudovector, re-
flection in a. plane parallel to the magnetic field
changes its sign. The operation is thus not a sym-
metry operation of the system. Now if we next re-
flect in the x-z plane, k„and k, are unaffected,
while the magnetic field is restored to its original
direction. Thus, the combination of the two oper-
ations is a symmetry operation, and leads us to
conclude that Q„(k„k,}= Q„(-k„k,), i.e. , the dis-
persion relation is reciprocal for the bulk mode.

Now consider a surface mode with dispersion re-

lation Q, (k„k,). Again a magnetic field is parallel
to the z axis, as in Fig. 1. By precisely the argu-
ment given above, we may prove Q,(k„k,) = Q,(k„
-k,). However, we cannot prove Q,(k„,k,} is even
in k„, because the reflection through the x-z plane
is no longer a symmetry operation. It takes a
crystal initially in the half-space y & 0 and flips it
into the half-space y& 0. Thus, Q,(k„k,) 4 Q,(-k„k,)
because of the surface.

This argument applies to all three examples
cited above, and leads to an understanding why the
bulk wave dispersion relations are even functions
of wave vector in the magnetic field, but the sur-
face waves are described by a nonreciprocal form.

With this in mind, we turn to the case of general
angle of propagation.

C. General angle of propagation relative to the field

In this section, we describe the results we have
obtained for propagation at general angle to the
magnetic field. In all the calculations reported
below, the parameters used to generate the curves
in Fig. 4 have been employed. We shall comment
on the sensitivity of the features to the presence
of spin damping, although the results presented
apply only to the case (Q»r) '= I'=10 '.

For each angle of propagation, we find a solution
of the equations which may be described as a Ray-
leigh wave modified in character by the magneto-
elastic coupling. That is to say, in contrast to the
shear polarized wave examined in Sec. III B, this
wave reduces to an ordinary Rayleigh wave in the
limit of vanishing magnetoelastic coupling. As we
saw in our discussion of propagation parallel to the
magnetization and external field, the presence of
magnetoelastic coupling introduces a contribution
to the lattice displacement perpendicular to the
sagittal plane. For 8=&g, calculations of the mag-
nitude of this displacement are displayed in our
earlier paper.

In Fig. 5, we show the variation of the attenua-
tion constant of the wave with frequency, for a
large number of angles between 8=0 and e=g. In
Fig. 5(a), we show angles in the range 0& 8&-,'v,
and in Fig. 5(b), —,v & 8&». The ordinate is the di-
mensionless quantity c» Im (Qg)/Q» where cs is
the Rayleigh-wave velocity, in the absence of mag-
netoelastic coupling. Recall from the symmetry
argument given above that the curves for ~ & 8& 0
are the same as those for 0& 8&g.

There are several striking features of these re-
sults. First, the nonreciprocal nature of the at-
tenuation constant is evident. For example, one
sees sharp spikes (with origin to be discussed be-
low) just above the (Q»Q»)'I' in Fig. 5(b}, while
these features are absent in Fig. 5(a}. Also note
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FIG. 5. Attenuation constant for the Rayleigh-wave-
like mode, calculated for the parameters used to gen-
erate Fig. 4. We show results for propagation angles
9 (see Fig. 1) for (a) 0 & 8 & w. The nonreciprocal charac-
ter of the attenuation constant is evident.

the magnitude of the attenuation constant. The
heights of the main attenuation peaks between the
frequencies Q„and (Q„Qs}'~' are also very asym-
metrical (note the scales on the vertical axes),
with the Rayleigh wave much more strongly atten-
uated at the angle e=&g+ $ when compared with the
angle e=&g —$. %e comment now on the origin of
the various features in the attenuation constant.

The sharp peaks above the frequency (Q„QB)' '
evident in Fig. 5(b) arise from the coupling of the
Rayleigh wave to the Damon-Eshbach surface spin
wave. Since it is hard to follow the curves in this
region as they are presented in Fig. 5(b), we pre-
sent an enlarged view of these peaks in Fig. 6.
Before we interpret these results in detail, we re-
mind the reader of the properties of the Damon-
Eshbach surface wave.

The Damon-Eshbach wave propagates on the sur-
face of a semiinfinite ferromagnet, when the mag-
netization lies parallel to the surface. It propa-
gates in the long-wavelength regime (of interest
here} where the exchange energy is negligible. '
Its propagation characteristics are highly nonre-
ciprocal, in that it propagates only when its wave

FIG. 6. Enlarged view of the coupling between the
Rayleigh wave and the Damon-Eshbach surface spin
wave. This is a blow up of the region just above the
frequency (0+&) / of Fig. 5(b), with many more values
of 8 included. The values of 0 are near the critical
angle 8, where the Damon-Eshbach wave breaks off
from the bulk manifold.

vector lies in the regime e=g a p„where y,
= cos '(H/B)' '. The dispersion relation of the
mode is

Q,(y) = g (QH/cosy+ Qs cosy) . (3.11}

Thus, at y=y„Q, (y,)=y(HB)'~', the top of the
bulk spin-wave manifold, and as y is decreased
from y„Q,(y) increases to the value 2(Qs+ Qs) at
y=0. 'We call the reader's attention to Fig. 3 of
the original paper by Damon and Eshbach, which
is a very beautiful illustration of how the Damon-
Eshbach wave splits off the manifold of bulk spin
waves as y is lowered through p, toward zero
(note their definition of y differs from ours by 90').

The attenuation peaks in Fig. 6 are caused by
coupling of the Damon-Eshbach wav'e to the Ray-
leigh wave. One sees the Damon-Eshbach wave
split off from the bulk manifold just after the cri-
tical angle 8, = 0.62+, and move up in frequency to
produce a sharp attenuation peak. The width of the
peak in frequency is proportional to 1/r, so as spin
damping is decreased each peak sharpens up and



15 PROPAGATION OF SURFACE MAGNETOELASTIC WAVES ON. . . 3553

increase in intensity in a manner typical of Lorent-
zian absorption lines. For the value of v we have
used (again Q„r= 100), the width of the absorption
line at half-maximum at 8= 0.6+ is found to be
&A= 0.010„. One striking feature of these results
is that as 8 increases beyond 8, towards z, the
strength of the attenuation peak from the Damon-
Eshbach wave falls off very rapidly with 8. None-
theless near 8„ the attenuation from the Damon-
Eshbach wave is strong, and the propagation of the
Rayleigh wave can readily be manipulated by vary-
ing either the magnetic field strength or direction
for frequencies near this peak.

We next turn to a discussion of the broad attenu-
ation peaks that lie between the frequency A„and
( Q„Qs)'~' W.e first remark that the peak from
coupling to the Damon-Eshbach wave arises be-
cause the Rayleigh wave drives the spin system in
a resonant manner for frequencies near A,(8), and
the presence of the damping leads to local dissipa-
tion of energy (heating) by the spin system. The
frequency region between Q„and (A„As)'~' is a re-
gime where bulk spin waves may propagate. Here
the Rayleigh wave is attenuated because the energy
in the wave is radiated into the bulk of the crystal,
with the energy carried off by the bulk spin waves.
(This language is somewhat loose; the energy is
radiated into the interior, and carried off by bulk
magnetoelastic waves; the process is most effec-
tive in the frequency domain where these bulk
waves have a strong admixture of spin-wave char-
acter. ) We discussed this process in our first
publication, where we showed that shape and in-
tensity of this feature (for 8= &v) are relatively in-
sensitive to the magnitude of t.

A simple argument leads one to understand why
this main attenuation peak is broadest at 8= &g,
and narrows in width as 8 approaches either 0 or
z. The Rayleigh wave radiates its energy to bulk
spin waves, to speak crudely. The only bulk spin
waves a Rayleigh wave of wave vector Q„coupl, es to
are those with (three dimensional) wave vector Q
=Q„+yg„where Q„ is fixed, but Q, is arbitrary.
This follows from the fact that translational invar-
iance parallel to the surface remains, but the
translational symmetry normal to the surface is
broken. The spin-wave dispersion relation for a
bulk spin wave of wave vector Q=Q„+ yg, is given
by the well-known expression' (adapted to our no-
tation)

(3.12)

As Q„varies from zero to infinity, Q„(Q) ranges
from a minimum of

A„'~'= [A, (Q„+4vQ„cos'8)]' '

to a maximum of Q~" ~ = (QsQs)'~'. Thus, as 8 ap-
proaches either 0 or g, the frequency regime with-
in which the radiation process can occur shrinks
to a narrow band just below (Q„Qs)'~', so we ex-
pect a peak there. For 8=2', the radiation damp-
ing can occur throughout the range Q~& 0
& (QsQs}'~', and in our previous paper we present
a physical argument which shows the largest peak
should lie near 0„, with only weak structure near
(QsQs)'~'. This physical reasoning leads us to un-
derstand the principal trends in the computer re-
sults.

Our final comment concerns the physical origin
of the strong asymmetry about 8= &g in the height
of the attenuation peak in the "radiation damping"
region between Qz and (A+As)'~'. At any point in
space, the transverse magnetization vector xM„
+jM„ traces out an ellipse. The same is true for
the displacement field associated with the Rayleigh
wave. The attenuation peak is strongest when both
the magnetization and displacement fields trans-
verse their respective ellipses in the same sense.
This happens for &g & 8&g. For 0& 8&-,g, the two
vectors precess in the opposite sense, with the
result that the Rayleigh wave couples less effi-
ciently to the spins.

When the attenuation constant is strongly fre-
quency dependent, general considerations lead one
to expect the presence of anomalous dispersion in
the wave. We have calculated the frequency varia-
tion of the real part of the wave vector of the Ray-
leigh-like surface magnetoelastic wave, and we
turn to these results next. In Fig. 7, we show the
frequency variation of the real part of the wave
vector of the Rayleigh-wave-like mode. The dis-
persion introduced by coupling to the bulk spin-
wave modes, and that introduced by coupling to the
Damon-Eshbach mode is evident. The quantity dis-
played on the vertical axis is the dimensionless
variable (c„QI"'/Q) —1, where QI

' is the real part
of the wave vector of the mode. In Fig. 8, we show
an expanded series of plots which illustrate the be-
havior of the real part of the wave vector near the
angle and frequency range where coupling to the
Damon-Eshbach wave exists.

In our previous paper, ' for 8= 2g, we presented
graphs of the magnitude and frequency variation of
u& and h, at the crystal surface. We have extended
these calculations to the case of arbitrary propaga-
tion angle. The details are presented elsewhere. '

The final topic we discuss is the behavior of the
shear polarized surface wave discussed in Sec.
IIIA. For 8 near g, we have explored the behavior
of the branch in Fig. 3(a) which lies between
(Q„Qs}' ' and Q,. We remark that this is a most
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e*m

FIG. 9 ~ Schematic representation of the dispersion of
the shear polarized wave for angles of propagation near

For angles 8'& 8& ~ the branch is qualitatively simi-
lar to the upper branch in Fig. 3 (a). For 8'&8, the
curves exhibit gaps of width 8'(8). For the parameters
of YIG, 8' ~0.984~.

(a)

occurs at the high-frequency extremum of the dis-
persion curve. This is hard for us to resolve nu-
merically, because the upper hairpin is quite
sharp; one is far from the bulk ferromagnetic re-
sonance frequency (in terms of the presumed line-
width}, and the hairpin is hard to trace and follow
with our routine that searches for wave vectors
associated with a fixed frequency.

In Fig. 11, the upper branch is shown for 8
= 0.9+. Here, 0.9+( 8' of Fig. 9 and it is clear
that the mode cuts off at finite wave vector. In our
numerical calculations, which calculate the com-
plex wave vector of the mode in frequency incre-
ments &0= 10 'Q~, the termination of the disper-
sion relation is sufficiently abrupt that with our
search routine, we do not find a root at the first
frequency increment beyond the cutoff frequency.
The reason for the abrupt cutoff is that the surface
mode dispersion relation intersects the dispersion
curves for the bulk magnetoelastic waves at finite
wave vector, when 8 differs only a small amount
from z. We illustrate this in Fig. 11 by superim-
posing on the figure the bulk magnetoelastic wave
dispersion curve in the form of a dotted line. This
curve describes the shear polarized bulk magneto-
elastic wave, with lattice displacement parallel to
the magnetization. This dispersion curve is a plot
of frequency versus the magnitude of the wave vec-
tor of the mode, for the case where the bulk wave
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FIG. 10. Dispersion curve for the shear polarized
magnetoelastic surface wave, at 8=0.99m'. Here, 8' &8.
The parameters used are those employed to construct
Fig. 4. We show (a) the frequency variation of the real
~art of the wave vector, and (b) the imaginary part.

FIG. 11. Upper branch of the shear polarized mag-
netoelastic dispersion curve for 8=0.95m'. Here, 8& 8'.
Note that the upper end of the dispersion curve cuts off
suddenly at finite wave vector. Superimposed on the
graph is the upper branch of the bulk shear polarized
magnetoelastic wave (displacement parallel to 2) with
Q =0, and wave vector parallel to the surface with 8
=0.95r.
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show the angular variation of the cutoff frequency
and the frequency at which the dispersion curves
reemerge.

In Fig. 3, for 8=0, there is also an upper branch
of the shear polarized magnetoelastic surface-wave
dispersion relation illustrated. In this case, the
curve approaches A=e,Q„as Q„-~. We find for
propagation angles near zero, this branch also cuts
off at finite wave vector, after intersecting the
bulk magnetoeiastic wave band. In Fig. 12(b), we

plot the angular variation of the cutoff frequency
for this branch.

Our conclusion is then that while the shear polar-
ized magnetoelastic waves exist at 8=0 and g very
clearly, they have propagation characteristics very
sensitive to small deviations from either 8= 0 and
e=, .

T
Cg

CP

Cg

3.0-- IV. CONCLUSIONS

(GB/QH)
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earn
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FIG. 12. Angular variation of the cutoff frequency Q~,
and the frequency of the reemergence of the upper
branches of the shear polarized magnetoelastic surface
wave. We show (a), for 8 near 7t, the angular variation
of the cutoff frequency (solid line) and the angular var-
iation of the frequency at which the mode reappears
(dashed line). In the shaded region the dispersion
curves are uninterrupted while those dispersion curves
to the right of the shaded region eWibit a gap of width
W(8). The right-hand boundary of the shaded portion
corresponds to 8' which is approximately 0.984m for the
YIG parameters employed here.

propagates parallel to the surface, with wave vec-
tor along the line 8= 0.95z in the x-z plane. (As
with the surface wave, the mode is purely shear
polarized only when 8=&. For 8= 0.9+, it is pre-
dominantly a shear mode, however. ) In our nu-
merical work, we have compared the cutoff wave
vector of the surface mode with the wave vector of
the bulk wave of the appropriate frequency, and two
agree very well.

We find this cutoff behavior a general feature of
the transverse magnetoelastic surface wave
branch, when 9 differs from v. In Fig. 12(a) we

In this paper, we have traced out the behavior of
magnetoelastic surfaces on a ferromagnet with
magnetization parallel to the surface, for arbitrary
angle between the magnetization and the propaga-
tion direction. The calculations reveal a rich com-
plex of behavior. In the case of the Rayleigh-like
magnetoelastic surface wave, we have seen the
striking nonreciprocity in the frequency variation
of the attenuation constant. This is evident from
the behavior of the "radiation damping" that re-
sults from leakage of energy to the bulk magneto-
elastic waves, and from the attenuation peak pro-
duced by coupling to the Damon-Eshbach mode. We
have also found the propagation characteristics of
the shear polarized surface waves to be very sen-
sitive to the propagation direction.

These waves should prove a most useful probe of
spin dynamics in the near vicinity of the surface of
a ferromagnet. We believe this should prove a
most interesting area of experimental research.
One has here a short-wavelength probe of the na-
ture of spin excitations very near the surface that
offers advantages complementary to microwave
studies, which require thin film samples for the
study of spin pinning near surfaces. It is our hope
that the present paper will stimulate further
thought in this area by experimentalists.

*Work supported by the Air Force Office of Scientific
Research, Grant No. AFOSR 76-2887, Office of Aero-
space Research, U.S.A.F.

1There have been several discussions of surface magneto-
elastic waves in the literature, but until the present
work, no discussion of the propagation of the waves at

arbitrary angles to the field has been presented, for a
free surface. We shall see that very rich structure
emerges in this case. In earlier papers, Parekh and
his collaborators explore a variety of propagation
geometries with boundary conditions that presume a
perfectly conducting but massless film on the magnetic
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