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Equations of state for bicritical points. III. Cubic anisotropy and tetracriticality
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Crossover scaling functions for a two-component spin system with quadratic anisotropy g and cubic

anisotropy & are calculated to first order in a = 4-d and in 8, near the transitions within the ordered phases

below the multicritical point (T = T„,g = 0). Emphasis is placed on the mechanism by which the system is

driven to bicritical or tetracritical behavior by the dangerous irrelevant variable v. Explicit expressions and

graphs for the various thermodynamic scaling functions are presented.

I. INTRODUCTION

In two previous papers, "henceforth referred
to as I and II, the crossover scaling functions of
an n-component spin system with a bicritical (or
tetracritical) point were calculated, to first order
in e =4-d, for the disordered phase (in I) and for
the Ising-like (m =1) ordered phases (in II). How-

ever, the calculations presented in D lose validity
asymptotically as the vicinity of the flop line is
approached (i.e. , near the transition line in the
ordered phase). Here we present calculations of
various thermodynamic functions for a two-com-
ponent (n =2) system, that are valid in this pre-
viously excluded region.

Physical systems described by the present study
include uniaxial antiferromagnets like GdA1O„
and the planar ordered or XF-like antiferromag-
nets, such as Cr,TeO„' and KCuF, . Since experi-
mental data of increasing accuracy are becoming
available for these systems, ' we believe that the
various scaling functions obtained here will be of
both theoretical and experimental interest.

As in I and II we consider a Landau-Qinzburg-
%ilson-type Hamiltonian but with the addition of a
term of cubic symmetry, specifically

and Aharony, ' and by Mukamel, ' the system will
exhibit either bier itical or tetracritical behavior,
according to the sign of 8p. For z7p)0 bicritical
behavior is expected but for 8p&0 tetracritical.
This result is also given by mean-field theory' ";
however, mean-field theory predicts an incorrect
shape of the tetracritical lines (see Fig. 1). The
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where vp is the amplitude of the cubic term'which
breaks the n-component isotropy even when the
quadratic anisotropy parameter gp vanishes. As
has been pointed out by various authors, "the
stable fixed point (when g, = 0) is isotropic, with
v*=0 provided n(n" (d) =4 —0(e). 'Ihus 8 is ir-
relevant in the regime of interest to us here:
however, it must be classified as a dangerous
irrelevant variable. ' Its effect is most prominant
in the ordered phase, near the region of quadratic
isotropy (small g, ). As demonstrated by Bruce

Tc

(b)
FIG. 1. Bicritical (a) and tetracritical g) phase dia-

grams with t = (T-T~)/T, where T is the multicritical
temperature, while g is the anisotropy parameter. The
dotted lines indicate the mean-field predictions.
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correct form of these critical lines was obtained
by Bruce and Aharony' who used scaling arguments
and Feynman-graph expansions. However, the
associated scaling functions have not been calcu-
lated previously.

It is of interest to note, ~ that when an antifer-
romagnet is viewed in a space of the uniform mag-
netic field R=(H~~, ff~), and temperature T, one
can obtain for a given system (i.e. , fixed 0, ) both
bicritical and tetracritical behavior, as illustrated
in Fig. 2. The present calculation is limited to
the dotted planar regions of Fig. 2.

The cubic term plays an additional important
role which is independent of the bjcritical nature
of the problem. For n =2, gp=0, and 8p=0 we
obtain an isotropic XY system. Since there are
no ordering fields present in (1.1) the system be-
low the multicritical point 7'. is on the coexistence
surface (in the full space that includes ordering
fields). However, isotropic systems with n &2
possess singularities at the coexistence surface"
associated with spin wave or Goldstone modes.
These have been treated by Nelson. " %e will en-
counter the effects of these singularities as the
flop line is approached in the bicritical case:
however, the incipiently divergent fluctuations
will be damped by the presence of the anisotropic
cubic term and no singularities actually appear
for nonzero 8p.

our analysis differs significantly from that of
Nelson"; while he combined trajectory methods
with parquet-graph summation techniques, we have
been able to obtain the results using only trajectory
integral methods.

The techniques of calculations used in this paper
are similar in spirit to those of I and II. However,

II. SCALING ANALYSIS OF MULTICRITICALITY

Ke are interested in a system described by the
Hamiltonian (1.1), asymptotically close to the
multicritical point. ' The temperaturelike scaling
variable will be

t 0 ~p ~p &p++yQp+Q2 Vp ~ (2 1)

As usual t = 0 and gp = 0 locates the multicritical
point. In this work we are interested in the or-
dered region t&0. Later on we shall make a spe-
cific choice for gp, so that we need consider only
the additional scaling variables 8 8p and g
(We will assume g, &0, with no loss of generality
since n =2.} The scaling or homogeneity assump-
tion for the singular part of the free energy takes
the form'4

the presence of an additional operator requires
the solutions of certain differential equations that
were not previously handled.

In our discussion we treat the cubic term as a
small parameter. " Thus the various scaling func-
tions are derived to first order in q =4- d, and
first order in vp. This limitation should not be
serious in many practical cases where the cubic
terms are indeed relatively very small. .

Even with this approximation the analysis is
quite involved technically. A short discussion
based on scaling assumptions is presented in Sec.
II as a preview of the form the results must take.
The final expressions for the various crossover
scaling functions are presented in Sec. V, to which
some readers may prefer to proceed directly.
Section III summarizes the solutions of the differ-
ential equations generated by the renormalization-
group procedure. The matching conditions and the
reduced Hamiltonian are derived in Sec. IVA,
while the matching relations for various thermo-
dynamic functions are given in Sec. IV 8. Section
VI summarizes the results.

/(t g g) b-dy(bx~t bx2g bksg) (2.2)

where X„A,„and A, , are the appropriate scaling
exponents. With the choice b =) t

~

' ~& this takes
the form

caL
face f(t,g, g) =a~ t~ "W(z, y}, (2.3)

FIG. 2. Three-dimensional phase diagram with one
tetracritical planar section and many bicritical sec-
tions. For fixed-positive cubic anisotropy 8, the sec-
ond quadratic anisotropy field g' may be taken as cou-
pling to a cross term s)~ s~ in (1.1). In application to
a cubic antiferromagnet (Ref. 4), g corresponds to
(H))-Hj. ), whileg' corresponds to (Hj~)+Hi) Our pres-
ent results apply asymptotically in the planar regions
shown dotted.

where, as usual 2 —a = 1/X, with a, being the XY-
like specific-heat exponent, while

z ~A~go/( t(e, p =X2/X~&0,

y =A v/I tl~", y„=~./x, «,
(2 4)

(2.5)

and W(z, y) is the scaling function of interest 'Ihe.
scale factors a, A„A, are nonuniversal, and in
higher order vary analytically with t, g, etc. [We
may choose to normalize by W(0, 0) = 1, (sW/sz),
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=1, etc.] We must note that v is irrelevant; as
such, one would expect, asymptotically close to
the multicritical point, to have

W(z, y) =W(z, O), (2.6)

z+Cye= 0. (2.8)

Qur calculations show that 8=1, which, in turn,
implies that the critical locus can be characterized
by an exponent g through

(2.9)

with v entering only through the various scale
factors. However, since v is a dangerous ir-
relevant variable the asymptotic equality (2.6}
fails for the derivatives of W(z, y). Thus, we
have to formulate the scaling hypothesis with v

explicitly displayed. For p &0 we expect bicritical
behavior, and for v&0 tetracritical. This will be
obtained if W(z, y) has a singularity on a locus in
the (z, y) plane, given by some equation

(2 q)

which has no solution for y & 0 (or I) & 0).
For small z, y we expect an expansion of this

equation of the form

Sll 0'+ Mo y (3 1)

where M, is the exact parallel spontaneous mag-
netization. Qn writing s~ =s we then obtain

X=- d C -ho+2' rllo +r&s + Vg + Vs '

+u(a +s )'+vs c2+ u)))@~+ u) os2],

(3.2}

phase the recursion relations are such that r, (l}
& r))(l), for all l (where l is the continuous vari-
able that describes the extent of renormalization).
Thus, in the disordered phase the s~ spin vari-
ables are integrated out. In the ordered phase we
can identify two regions that require different
treatments. In the vicinity of the paramagnetic
critical line the situation is similar to that in the
disordered phase. However, in the vicinity of the
flop line (or the critical transition lines T', and

T, } the components s)) are to be integrated out.
This second case is the subject of the present
treatment. A more detailed discussion of this
point was presented in II.

Since we work in a region where (s))) =Mayo, it
is convenient to introduce a shift by defining

Thus we expect the free energy to have the form

f(t,g, u)=at' [x' "W,(z, y)+W, (z, y)], (2.10)

which is, in fact, in agreement with our results.
(Here o. is the Ising-like specific-heat exponent
on the critical lines. )

III. RENORMALIZATION-GROUP DIFFERENTIAL
EQUATIONS

where

+ 12ulo r = r + 4uMo+ 2vMo,

u))) =4uMO, u)~ =(4u+2v)MO,

C = —,'r llMD+uM'o -hMo,

h h rll Mo 4uMo

1 1
rll =ro 2t y ri =ro+2g.

(3.3)

Qur method of calculation is based on the re-
normalization-group trajectory integral procedure
developed by Rudnick and Nelson. " The applica-
tion of the method to bicritical systems has been
discussed in detail in I and II. The basic idea is
the following: under application of the renormali-
zation-group transformation~ (generated by in-
tegrating out modes with q vectors in an infinitesi-
mal shell near

~ q l =1) the Hamiltonian of (1.1)
flows in its parameter space. Various thermo-
dynamic functions can be derived once these flows
are known. The flows are obtained in practice
from approximate solutions of the differential re-
cursion relations, that are accurate to O(e) as long
as the quadratic coefficients rll and r, of the re-
normalized Hamiltonian do not become too large.
When either r)) or r~ (assumed to be initially
small} become of order unity, the respective spin
variables can be integrated out, leaving a reduced
Hamiltonian that depends only on the remaining
(possibly still critical) spin variables. Our con-
vention ensures r~ & rll initially. In the disordered

—18K4soll qll
—2K4u) ~ q» (3.4)

dr~
l

= 2r +12K uq +4K vq„—4K4m'q ql„

(3.5)

2= (1 + 2 E) u)~ —12K4uu)))q))

—6 K4 vill qll
—12K4me ~q~

—16K4gge~qllq~ —8K4 var ~qll q~,

dell 2I+ g 6 u)) 36K u) )q

(3.6)

—4Ã4uu ~q~ —2K4uvse (3.7)

For convenience we have introduced an ordering
field& into (1.1) coupled to s)) Applying the mo-
mentum shell integration renormalization group
now yields the recursion-relations correct to
O(e),

drll = 2r„+12K,uq)) +K,(4u +2v) q
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dh
dE

= (3 ——e)h —3K4w()q)) —K w ~qj. , (3.6) dl
= eu —4K, (10u'+uv), (3.13)

dl
=eu —4K (10u +uv+ —,

" v ),4

dl
=e8 —&K, (12u8+-,' v'),

where

I/(rH + 1) gj I/(rg + 1)

(3.9)

(3.10)

(3.11a)

d8=-
dl

= g v —48K4u8.

The solutions of these equations are found to be

(3.14)

v(l) = 80e"/q' ', u(l) = u(l) ——,
' 8(l),

u(l) = u0e" /Q, Q(l) = 1+4 OK» u0( e" —I)/z, (3.15)

as may be checked by substitution. In what fol-
lows, we shall choose u, =e/40K, = u, which elimi-
nates an irrelevant transient, and yields

K, = I/Bv'. (3.11b)
It should be noted that (3.9) and (3.10) are obtained
from the recursion relations exact to O(e) by re-
placing q][ and q~ by 1: this approximation intro-
duces an error of only O(e') into the subsequent
solutions. "' We shall further simplify the anal-
ysis by assuming

f (( v0«u0-O(e) ) (3.12}

and, as explained, by neglecting terms of O(v0).
Then (3.9) and (3.10} reduce to"

v(l) =v0e ' '', u(l) =u, ——,'v(l). (3.16)

wii(l) =4u(l)M(l),

w, (l) = [4u(l) +28(l)]M(l),
with

M(l) =M

and u(l) and v(l) given by (3.16), and

(3.17)

(3.16)

In solving (3.4) to (3.6) we follow the procedures
outlined in II. The solutions, correct to O(e),
obtained this way are

h(l) =he' '~' ' —[t(l) ——,'g(l)]M(l) —4u(l)M(l)'

+K4[2u(l) +(l8)] M(l)[1 T~(l) In [1+T~(l)]} +6K~ u(l) M(l)(1 T~~(l) In[1+ T~~(l)]]',

~~(l) T[~(l) 6K4u(l)(1 Tg(l) In[1 +T[[(l)]j K4[2u(l) +8(I)]f1 —T~(l) In[1 +T~(l)])
+ 9K4wg (l) (ln[ I + T~~ (I)] + Tg (I)/ [I T+~~ (l)]j +~K ~w(l) fIn [I + T~ (I)] + ~T(l)/ [I + T~ (I)]J

r, (l) =T,(l) B,K—(ul)(1 —T, (l) In[1+T,(l)])
-K [2u(i)+8(l)](I —T (I) I[InT+(I)]) 2K+w2 Tg(l) R[ +T)((l)] —Tj.(l) [ + Tg(l)]4 +

ll II 4 I-
Tii (1) —T, (l)

Tg(l) = f(l) —2g(l} + 12u(l)M(l)', T~(l) = t(l) + 2g(l) +[4u(l) +28(l)]M(l)'.

(3.19)

(3.20)

(3.21)

(3.22)

In these results we have introduced

f(l) =t, e~~', t, = r, +BK,u, [I-r, in(1+ r, )],
with

quiring that rR(l*) be of order unity. As wi11 be
shown later, r~(l*) can still be small at this
matching point. Explicitly the matching condition
we will use has the form

A. ~=2 —
5 e,2 (3.23) T, (l*) =1+0(e) . (3.25)

%2=2- 5&.1
(3.24)

Note that to leading order we have rg Tg(l) and
r~(l) = T~(l).

These solutions of the recursion relations will
be used for l ~l*, where l ~ is determined by re-

g(l) =g0e~2'[I —38(l)/Bu, ], g, =g,(1+38,/Bu, ),
with

IV. REDUCED HAMILTONIAN AND THERMODYNAMIC
FUNCTIONS

A. Reduced Hamiltonian and explicit matching conditions

Since T~~(l~) depends on M(l*), it is necessary
to determine the latter also in solving the match-
ing condition (3.25). This is achieved by recalling
that Mp was chosen as the exact magnetization;
thus the shifted Hamiltonian must satisfy the re-
lation
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(4.1)

To evaluate this condition at l =l* we first integrate
out the noncritical o components. (We may re-
mark that the present treatment differs from most
of our previous work in that the spin variables that
are integrated out appear not only in X, but also
as the variable whose expectation value is to be
calculated. This situation was encountered before
only in the calculation of the perpendicular sus-
ceptibility ~, in I and II.) First we define the
reduced Hamiltonian by

36 [I* o] =
ascii [I* o]+36it [I* o]

where

36ii [I*io'] = '[(~o)'+ r (1*)o'l.

Now we may expand to get

(4.3}

(4.4)

dlS] -e3.gP ~ S)

x e ]]~ ' 1+ X(] l+, p' ++X l+, p, s
S

+2(&ll [I" o']+36x[1 o' s]}'

+ ~ ~ ~ (4.5)

The various integrals can be performed and when
the contributions are reexponentiated, we obtain
an explicit expression for 36„d[s]. Before carrying
this out, however, we shall determine the match-
ing condition based on (3.25) and (4.1).

The condition (4.1) may be expressed diagram-
atically as shown in Fig. 3. The solid lines rep-
resent the propagators of the o variables, which
are to be integrated; the dot represents the ex-
ternal g,. The broken lines represent the s vari-
ables; these remain unintegrated: the closed loop
denotes the last term of Eq. (4.6). Thus we ob-
tain

1 3d
a(I*}—3K,w (l*)

0

e+fed'~ = exp, ]
l*;o +3{'.~ l*;s +3/„ l*;g,s

a

(4.2)

where X(l*) has been decomposed into three kinds
of terms according to the dependence on p only,
on s only, or on both s and 0. We also have

dq(s, s, )dd

=E, (t„d,u„,) + d Kd [1 —t„d ln(1+t„d)],

1
&, (tred, used) ~4 tred

4' ured

X/3
x 1+ '""' (t-„',~" 1)—

E'

(4.7)

If E, is expanded in powers of e with u„,=O(e) we
obtain E, =O(1); thus any term that has the form
ug, will be of order g. Although we will leave E,
unexpanded, in order to preserve the singularity
associated with it, we shall bear this fact in mind
in what follows.

Now we substitute h (l ~) from (3.19), with lt = 0
into (4.6). On performing the integral in the sec-
ond term of (4.6), and using (4.7} for the third
term, we obtain

4u(l*)M(l*)'=-[t(l*) --,'g(t*)]+A,

A = —8 [u(l*) +-,' v(l*)]Z,(t„d,u„,) .
To impose (3.25) we recall from (3.22) that

Td(l*) =t(l*) ——,'g(l*) + 12u(l*)M(l~)'

=-2[t(l*)- lg(1*)]+3A,

(4.8a)

(4.8b)

(4 9)

where we have used (4.8) to derive the second
equality.

Now we define our matching condition more ex-
plicitly by

-t(l*) —.'g(l*) =-.',
which obviously ensures

Td(l*) =1+3A .

(4.10)

(4.11)

,

—,
' [(Vs)'+ r„,s']+ u„,s'+ const (4.12)

~ ~ ~

0
~ d( ~

Since by the argument that follows (4. 'l) we have
A =O(q), andrd(l'} =Td(l*)+O(e), this matching
condition is consistent with (3.25).

We can turn now to the evaluation of the reduced
Hamiltonian. It has the form

1
dd q(s s )3, = 0. (4.6)

By using (3.25} we may replace rd(l*) = Td(l*) +O(e)
by 1. The third term on the left is simply the en-
ergy of the reduced system, given by"

FIG. 3. Diagrammatic representation of relation (4.1).
The solid lines represent the propagator associated with
0; the heavy dotted line represents the integral in (4.6);
the dots denote the concentraction with the "external"
0' variable.o=o
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(b) (c)

The diagrams that contribute to r„d are shown in
Fig. 4, and r~(l ) is given in (3.21). The third of
the diagrams [Fig. 4(c)], exactly cancels the third
term on the right-hand side of (3.21}. The re-
maining iwo diagrams, Figs. 4(a) and 4(b), appear
also in Fig. 3 and (4.6), yielding

(a) + (b) = ', & (l") —3Kaw(((l*}

=2w,'(l*) (s, s, )~
red

—=4[ (( ) ~ (( )] f (s, s,&x (4.13)

where the last equality is correct to O(v), and
follows from (3.17), (4.8a), and (4.10). Qf the
various terms in (3.21) we turn now to T~(l*),
as given by (3.22), namely,

T (l*) =t(l*)+ ,'g(l')+4[ —,'u(—la)]M(l*)'.

Using (4.8a} and (4.10) gives

T~ (l a) =g (l a) + 28(l *)M (l *)'+A

FIG. 4. Diagrams that contribute to r„d. The broken
lines represent the s variables, and are not integrated,
while the solid lines represent the propagator associated
with a. u(l*) s, ,s, ,s,„s,„,5(q+q'+q" +q'")

qq t tI tt tf ttt

1 (l a)2 s,s, ,s,„s,„, 6(q+q +q +q
aa'a "a"' r(( (l*) + (q+ q')

(4.17)

is generated. We may separate the second term
into q-independent and q-dependent parts by using
the identity

1/(r + Q) = 1/r —Q/r (r + Q) . (4.18)

The q-independent part yields

u„, = u(l*) ——,'w', (l')/r(l*) = —8(l*) +O(e') . (4.19)

The q-dependent part is more strongly irrele-
vant": however, since we want to match r„,
to the initial form of (4.16), we shall take it into
account in an approximate way, namely through
the decoupling

sa~ s'(s') (4.20)

which will further feed into r„d. After some minor
approximations, this procedure yields r„d in the
form of (4.16) with

r„~ =t„a 6-K au,.a[1 —t„a in(l+t„a)]+O(t a) .

(4.16)

By comparing with (4.15) we see that the most
obvious candidate to play the role of t„a is g(la)
+ v(1")/4u(l*). However, we must first identify
u„d. The four-spin term in the reduced Hamil-
tonian will contain, in addition to u(l*), a con-
tribution" from the diagram of Fig. 5(a). Thus
a four-spin term of the form

(4.14)
t„, g(l*)+8(l*)/4u, ,

where u, is defined just before (3.16), and

(4.21)

Finally, substituting in (3.21) and using (4.13),
(4.7), and (4.8b) in the equation for r„, of Fig. 4,
we find

r„~ =g(l*)+ +2Ka[u(la)+v(l*)]

u„, = —v(l*) . (4.22)

These relations together with (4.10) fully define
red'

x{1—T,(l*) ln [1+T, (l*)])—6K,u(l')

x(1 —T~(l*) ln [1+T~(l*)]]+ 2K,w' (l*)

T(((l*) in [1+T)((l')] —T,(l*) ln [1+T,(l*)]
T(((l a) —T, (la)

(4.15)
Note that the terms containing A. cancel exactly.

Now, in order to map onto an Ising-like model
and use known results we want' "r„d to have the
form

(a) (b)

FIG. 5. (a) Diagram that contributes to &&ed; e}) sixth-
order terms (in s) generated by integrating the 0' vari-
ables.
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B. Discussion of X«d and solution of the matching condition

Before going further into the calculation of t„d
and Q„d, a few general conclusions can already be
drawn. The way in which the sign of the irrelevant
cubic variable determines the behavior in the or-
dered phase is revealed by (4.21). We have as-
sumed, (with no loss of generality) thatg, ~0.
Thus when v0&0, t«d has a positive lower bound.
Thus no critical line (corresponding to t,«=0} is
expected. However, in this case we also have u„d
negative; thus we have apparently mapped onto an
Ising-like model in the region of a possible first-
order transition. Also, keeping only the terms
up to fourth order in s seems to have led us from
a stable two-component Hamiltonian to an unstable
one-component system. However, we have to re-
member that on integrating out the g variable, we
will also generate terms (of order e') of the form
u8s~ [see Fig. 5(b)]. These terms are positive,
and serve to stabilize the reduced Hamiltonian. It
is easy to show, that K,«(t„d, u„d, u, ) lies m the
disordered part of the phase diagram; the first
order transition occurs when r„,= r, -u,'„/u„and
while our r„d is of first order in v„u'„d/u, is of
order (80)', so that r,«»ro. This point, and its
implications for the scaling functions will be dis-
cussed further below.

On the other hand, for v0&0 we can map onto a
critical one-component system. (The critical point
can be approached from the disordered phase. )
This, of course, leads to tetracritical behavior,
with a critical line given by

&0= (2+z) '[1+3yz/(2+z)],

y, = —[5(2+z)] ' (4.28)

x{-',(2+z) ln(2+z) —-', zy [1—-', Ln(2+z)]] .

Next we may determine t,«and u,« from (4.21)
and (4.22) as

t„, zq~2(1 —3yy ' ')+2yy '/',

Qed=

= —8u, y+O(e') = —ey/5K„
which yields

Z [1+2y(z —1}/(z + 2)J

(z +2) [1+O(e)]

with

Z =z + 4(2) /roy

(4.29)

(4.30)

(4.31)

(4.32)

C. Thermodynamic functions related to Z«d

(a) The perpendicular susceptibility is defined
as

Xi= 0 oe e =
0 0g(: (4.33)

and is related to that of the system at l* by""

The O(e) term in (4.31) is lengthy and will not be
presented explicitly. Also, in order to keep the
various scaling-function expressions tractable,
we have, in the amplitudes, dropped terms of or-
der &y, keeping only terms of first order in e and

f,« =g(l*) + r'(1*)/4u. = 0. (4.23) X =e"'X [36(1*)]=e"*XX-]. (4.34)

Now let us turn back to (4.10) to determine the
matching point l* as a function of t„g„and 80.
Using t(l) andg(l) from (3.23) and (3.24), and M(l),
v(l) from (3.16) we get

oocroe+ e~. (4.35}

(b) For the parallel susceptibility we likewise
have

kg — X2 ] - /3 V0
0 ~go 8QC

(4.24)
Although the corresponding formula

Xii =e"*X)i[36(1')1 (4.36)

As in Sec. II we define the scaling variables

z =go/r, (f) =A.2/X~=1+~ge,

y = (v, /8 u, ) t ~ ~~ ~ y = —e/5 E, = ——,0 e .
We require a solution to (4.24) of the form

( f )-1/k&y( y)

Substitution yields the equation

gag + 1 z (1 3yy-E/5) 1

To solve this we represent tt)' as

0'=4 (1+2e~L i+
and to first order in y or v™0,find

(4.25)

(4.26)

(4.27)

is still valid, the relation of X, ~
[36(l*)] to proper-

ties of the reduced Hamiltonian is not simple. A
careful diagramatic analysisxs yield

X (l*) =1+16[u(l*) +-,' U(l*)]Z, (t„„u„,)
+ 8 [u(l*) +8(l*)]C,(t„„u„,), (4.37)

where the energy E,(t„d, u„,) is given by (4.7),
while the specific heat is defined by

ass(fred& lCrcd)
s & red& Q red &

~ &red
(4.38)

Thus, we conclude that on approach, in the tetra-
critical case, to the locus T+, where the s com-
ponent becomes critical, the susceptibility asso-
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ciated with the g component diverges as an Ising-
like specific heat. This is to be compared with
the analogous behavior near the critical locus T,I;
there the susceptibility associated with the non-
critical component remained finite, behaving like
an Ising-like energy. '

(c) The spontaneous magnetization Mo is given
by (3.18) as

M =e-&'-'"~'*M(l ~),

where M(l") can be found from (4.8) and (4.10).
(d) The free energy is given, as in II, by the

sum of a trajectory integral and the contribution
at l*, namely,

r*
F =const + e 'G(l)dl+e ' F [3C(l*)), (4.39)

Jo

where

G(l) =
z K~(In [1+rii(l)]+In [1+Pi(l)) 1} (4 40)

while the constant term is generated by the shift
of sp The calculation of F [X(l~)] is achieved by
first performing the 0 integrals, which leaves the
free energy of the reduced Hamiltonian.

The ordinary (nonstaggered) magnetization in the
antiferromagnetic interpretation of the model is
given by the first derivative of p with respect to
g. The second derivative yields the nonordering
susceptibility X, while the second derivative with
respect to t yields the specific heat. Since the
analysis that leads to these functions is rather
messy, and differs little from that of II, we quote
only the results.

g ~go(1+ 3 vo/8uq ) .

The scaling variables are then

z -g/I tl, y=x, /x, =1+—,', z,

y =v, l t l~'~/8u„
Z =z +4(2)'aoy

(5.3)

(5.4)

(5 5)

(5.6)

while important parts of the scaling functions are

E(», y) =(I » I /24y)& I » I "[R(»,y)]' '- 1}, (5.&)

G(», y) =(I/24y)&1 —I»I "[&(» y)]'"},
where

&(»,y) =(1+—", y) I» I' t'- —", y,
from which one finds

E(», o) =--,', (I» I'-' ' -I» I).

(5.8)

(5.9)

(5.10)

Q0=1+ —,'z ——„z(3+2z) In(2+z) E(z, y), -(5.12)

Q, =i-z, P=-,'(I--,.z). (5.13)

(b) Parallel susceptibility:

When Gp(0, i.e., for y(0, the variable Z may
vanish; in fact, the equation z =0 defines the
tetracritical line on which Ising-like exponents
are observed. The thermodynamic functions then
have the following scaling forms:

(a) Spontaneous magnetization:

M', =(1/4u, ) I
tl' (Q, +yQ, )+O(z', zy, y'), (5.11)

with

Xf( =I tl (Qz+yQs)+O(& i&yiy ) (5.14)
V. THERMODYNAMIC SCALING FUNCTIONS

t = r, +8K,u, [1—O(ro)],

uq = z/40K4 =uo+ 8 vo ~

(5.1)

(5.2)

Our calculations are, in fact, valid to first or-
der in c =4-d, and in 80 independently. For reas-
ons of simplicity, however, we have retained only
terms of first order in either g or 80 in the various
amplitudes (discarding terms of order zvo). For
convenience we recapitulate here the various vari-
ables that enter the scaling functions, expressed
in terms of the parameters of the initial Hamil-
tonian (1.1): these are

(c) Perpendicular susceptibility:

xi =I tl "z "'[R(z, y)]'"(Q, +y), (5.17)

With

Q4=1 ——', z In(2+z), y =y(n =1) =1+6 e. (5.18)

(d) Free energy (singular part):

with

Q2 =[I/(2+z)](1 ——,
' z In(2+z)

+[2/(2+z)) E(Z, y)+CQ', y)}, (5.15)

Q3 = 3z/(2+z), y = y(n =2) = 1+—,
' z . (5.16)

2-af 2 1 —2z cF, = —
I t I (2+z) 1+2y64u, 2+z 10

——ln(2 ~*))
2

+ 3 z [1—9y —~~z In(2+z)]+ 1-~~& In(2+2) ——f [ll(z y)] /3- I} I I I

~
6y

(5.19)

(5.20)
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(e) Nonorderisg magnetization:

8go &6u,
( ~ —,z —2v — — (2+@)ln(2+*) — {ri ((}(*,()]'~' —(}),2 10 8y

with P =2- ~ —p.
(f) Nonordering susceptibility:

(5.21)

(5.22)

XII (oo } & X& (00 } (5.22)

u

FIG. 6. Phase diagram of an Ising-like system in the
(t,&) plane with a line of critical points (t,,~= 0, u„~& 0),
and a first-order transition (bold line). The integration
over ~ maps X[s,o] onto Hamiltonians „q[s], lying in
the shaded region.

with y =2- n -2())).
These results have to be considered in bvo dif-

ferent cases. When 80 is negative, they apply only
for z ~0 and the various thermodynamic functions
exhibit Ising-like singularities on the line z =0.

When go is positive, the reduced Hamiltonian has
t„&~0, with u„&&0. As was discussed in Sec. IVA,
the reduced Hamiltonian is, in fact, stabilized by
terms of the form u, s'. We also have u„,=0[i)(l*)j
=O(zy}, with t„&~O(y). Thus K„,corresponds to a
single-component Hamiltonian, and since t„,» u,',~/
u, we are in the region of the (t,.~, u„,) plane that is
shaded in Fig. 6. As the bicritical point is ap-
proached along the flop line (z =0) the various scal-
ing functions in terms of the reduced variables,
degenerate into those of a Gaussian system. "
However, the divergences of the various suscepti-
bilities on the coexistence lines are again damped
by the cubic term; specifically we find from (5.15}
and (5.17) the magnitudes

on the first-order line. This is in agreement
with the predictions of Wallace. ' However, when
i) =0 (y =0), Gaussian singularities are seen in the
limitg-0 (z-0) as is evident from (5.10), where
the term

~
z(' {'i'} corresponc's to ag' o smgu-

larity in which n~ =-,' & is the Gaussian specific-
heat exponent. This behavior corresponds, of
course, to the isotropic (n ~2) coexistence curve
singularities associated with the so called Gold-
stone modes (or spin waves).

A graphic appreciation of our results can be
obtained by plotting the various scaling functions,
evaluated at z = 1, against the variable z -g/

~
t

~

e

for fixed y. This corresponds essentially to vary-
ing the quadratic anisotropy field at fixed cubic
anisotropy and constant temperature below the
multicritical point. (However, in a general situ-
ation this may not correspond precisely to con-
stant temperature owing to linear and nonlinear
corrections to the scaling axes.")

Figure 7 displays the variation of the spon-
taneous order Mo, with z at values of y equal to
0.1 and 0.01 corresponding to bicriticality (dot-
dash curves), at y =0 describing limiting iso-
tropic bicriticality (solid curve), and at y =-0.01
and -0.1 which corresponds to tetracriticality
(dashed curves). The vertical dotted lines rep-
resent the critical lines T+(g) marking the tran-
sition to the mixed phase which occurs for y&0
at z =0. Note that the plots of Mo should continue
smoothly into the mixed phase but the present
calculations do not extend to the mixed phase re-
gion. It can be seen from the graphs that the plots
for y =0 and y &0 terminate at z =0 with an infinite
slope (vertical tangent). This represents the ex-
pected Gaussian or Ising-like singularities, re-
spectively. It should be noted, however, that the
vertical scale in Fig. 7 is considerably magnified
(and excludes the zero) so that these singularities
will not be easy to detect experimentally.

Figure 8 shows corresponding plots of the scal-
ing function for the nonordering magnetization M
(which would correspond to the ordinary uniform
magnetization in the case of an antiferromagnet).
The singularities on the phase boundaries T,'(g)
and g =0 (for the isotropic case) are comparatively



BI CRITICAL POIN TS. III. CUBIC AN I SOT ROP Y A N D TETR ACR ITICA LIT Y 8519

3.2-

I I

& y=-0. 1

Mo

It/P

3.0

2.8-

I

0.4
I I I I I I I

0 0.2 0.6 0.8
z-g]Ic(&

FIG. 7. Scaling function for the spontaneous order
Mo (evaluated at e= 1 as a function of s ~/ItI and fbted,
scaled cubic anisotropy y -a0/I tI & =v J tII eJ ). The dot-
dash curves represent bicritical conditions (Go, y &0);
the solid line corresponds to the limiting isotropic case
(~ 0

—= y =—0); the dashed curves represent tetracritical
situations (v o, y & 0). The dotted vertical lines corre-
spond to the Ising-like criUcal lines T~+ (g) marking the
boundary of the mixed phase regions in the tetracritical
case.

0
0 0.2

I

04
z-9/'I tl

0.6

FIG. 8. Scaling function for the nonordering magneti-
Eationl, at a=1, as a function of z at fixed y. The solid
line represents the isotropic limit, v o=y —=0.

P*(T) =t —lnM(T, g =0, 8c) (5.24)
stronger than in M, . The visibility of the singu-
larities is improved by differentiation with respect
to the anisotropy field g as evident from Fig. 9,
which shows the corresponding scaling functions
for the nonordering susceptibility X . The diver-
gences correspond to specific-heat-like singu-
larities. The parallel ordering susceptibility

g, -a'F/ah~', -aM~~/ah~~ [where h=(ht, h, ) is the
ordering field], displays on the phase boundaries,
singularities of the same character, but of ap-
preciably smaller amplitude. The appropriate
plots are displayed in Fig. 10. In the bicritical
situation (ge, y &0) both response functions peak on
the first-order boundary, or flop line, but the
sharpness of the kink there depends strongly on
the value of the cubic anisotropy.

Experimental observations of the variation of
the nonordering magnetization M on the first or-
der, or flop line in the bicritical situation, offer
a direct route to measurement of the crossover
exponent p since the exponent for M(T) is p =2 —o.
—+""'"However, the presence of cubic aniso-
tropy adds a component to the variation of M(T)
which could affect such a determination. To gauge
this effect we plot in Fig. 11 the effective expo-
nent

as a function of

lny =/ @„/ in] t/+in] vs[+const. , (5.25)

as given by the scaling form with g=z =0. Since

Xp

Itl ~

'I I I

I

I

I

6- I

. I

. I

I

4j

x ye-0.01

2-

y = 0.01

I
I

I
'I

I

I

1

I

. I

I
.

I

1

: I
\

y = —0. 1

0
0

I

0.2

y =0.1

I I I I

0.4 0.6
z-g/I tl~

0.8

FIG. 9. Scaling function for the nonordering suscepti-
bility x~ as a function of z at fixed y. The singularities
are specific-heat-like.
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I
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FIG. 10. Plot of the scaling function for the parallel
ordering susceptibility yI~ as a function of & at fixed y,
displaying weak, specific-heat-like singularities. Note
that the parallel spin components are already ordered:
it is the perpendicular spin components which are start-
ing to order as the critical line T; (g) is approached
(when S-0).

0
0

I

0.2 04 0.6 0.8
z-g/ltl~

FIG. 12. Plot of the scaling function for the perpen-
dicular ordering susceptibility XL as a function of ~ at
fixed y, displaying strong Ising-like susceptibilit di-
ve rgences, which correspond to the ordering of the
perpendicular spin components which occurs in the
mixed phase.

1
~ y„~ = —,0e will be small in realistic cases, it can
be seen that the effect is not a large one. How-

ever, it must be recalled that our result is only
va1id to first order in 8, and may thus be some-
what misleading for larger values of y.

Finally, Fig. 12 displays the scaling function
for the perpendicular susceptibility y~ eF/Bh ', -

/gg~. Since the perpendicular spin compo-
nents described by M~ are ordering as the critical
lme T+(g) is approached below T, we expect this
response function to diverge strongly in the tetra-
critical cases. Indeed, the exponent of divergence
y is just the Ising-like susceptibility exponent
y(n =1)=1+—,

' e. In the isotropic limit 8=0 this
y

goes over to a Gaussian or classical divergence
with exponent yc =1 as can be seen from (5.17).

P"~y~ -P

-0.01—

-0.02—
log y1P 10

I I

-2

FIG. 11. Plot of the effective exponent P*(y) for the
nonordering magnetization relative to its asymptotic

e= 1(d= 3).
value P vs log&oy, which varies as (—~lo jt) fis~ ogto

VI. SUMMARY

We have extended the calculation of crossover
scaling functions in the ordered phases of bicriti-
cal and tetracritical systems to the region of
small quartic symmetry breaking. This regime is
of particular theoretical interest, because of the
central role played by a dangerous irrelevant vari-
able. ' We have clearly demonstrated, in the con-
text of the trajectory integral approach, the me-
chanism by which such a variable determines the
nature of the phase diagram and the thermody-
namic functions. Our calculations have yielded
explicit crossover scaling functions for various
thermodynamic quantities of interest. We expect
that these expressions will be useful in analan yzmg
current and future experimental data.

There are various worthwhile extensions f
ese series of calculations. First, no theoretical

results have yet been obtained for the mixed phase
(i.e. , on the "shelf" in Fig. 2). Second, extension
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to the general three-dimensional space of Fig. 2

would be most interesting, since this corresponds
to the experimental situation where complete align-
ment of the fields with appropriate symmetry axes
is often very hard to achieve. ' We hope in the
future to undertake studies in these and related
directions.
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