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Equations of state for bicritical points. II. Ising-like ordered phases
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Calculations of bicritical crossover scaling functions are extended into the Ising-like bicritical ordered phases.
Closed-form expressions are derived to first order in a = 4 —d for the specific heat, nonordering susceptibility,
and longitudinal susceptibilities in this regime. Scaling functions in ordered and disordered regions are
displayed graphically and compared with series-expansion results.

I. INTRODUCTION

In a previous paper, ' henceforth referred to as
I, the crossover scaling functions appropriate to
the disordered phase of systems with bicritical
points were calculated to first order in e =4-d.
In particular, closed-form expressions were ob-
tained for the free energy, specific heat, nonor-
dering and longitudinal or parallel susceptibilities.
The results for the parallel susceptibility, when
compared with series-expansion work, ' were found
to give a qualitatively good description of bicritical
crossover behavior, and represented a significant
improvement over expressions derived from mean-
field theory. Independent work by Kosterlitz and
by Horner, ' who have also calculated certain dis-
ordered-phase bicritical scaling functions to O(e),
should be noted. Since it is expected that bicriti-
cal points will occur in uniaxial antiferromagnets
such as GdA10, and Mnp, which exhibit spin-Qop
transitions, ' there is hope that experimentally de-
termined bicritical scaling functions may become
available to compare with these calculations.

In this paper, we extend the calculations of I to
regions of the phase plane for which series results
are not available. The Hamiltonian

gram as a function of the temperature variable
t, =(T —TP/T, (which is related to the parameter
r,), and of the anisotropy g, is shown in Fig. 1
(for n = 3 and m = 1). Although both ordered phases
shown in this figure are readily accessible in ap-
propriate experiments, conventional series expan-
sions at present offer little information about
crossover behavior in this interesting region.

There are technical difficulties in calculations
with the Hamiltonian (1.1) when go» 0 and n &m ~ 2.
For example if n = 3 and m = 2 (which should be ap-
propriate for MnF, ), then the upper ordered phase
in Fig. 1 would have n~i =m = 2 or XY-like symme-
try. It is known, ' however, that the parallel sus-
ceptibility, and certain other thermodynamic de-
rivatives, are infinite everywhere in an ordered
phase of continuous rotational symmetry; this fact
considerably complicates the analysis. Although

go

ordered

(Ising)

I/xiii',

+-'~.(l en I"ls, l')

—(g /2n)[(n —m) le„ l
—m ls, l']

~ .(Is l" le, l')',

ordered
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depending on the m- and (n —m)-component spin
fieldss~~(R)ands~(R), is believed appropriate for
the description of many real bicritical points, ' and
was discussed in I. The corresponding phase dia-

FIG. 1. Bicritical phase diagram (to scale for g =3,
m =1, and d =3) in the |to,go) plane. The present or-
dered-phase calculations are limited to the unshaded re-
gion of the Ising-like (or m =1) ordered phase.
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it has been possible to treat the analogous prob-
lemsarisinginaferromagnet when n ~2, ' we will,
for simplicity, exclude them here by considering
only m = 1, so that s ~~(R) will represent a scalar
or Ising-like field.

Real antiferromagnetic crystals will not display
ordered phases with full rotational invariance.
Symmetry breaking due to crystal fields destroys
the rotational invariance and stabilizes the fluctua-
tions and thermodynamic susceptibilities against
incipient divergences within the ordered phase.
One way to allow for such effects when m ~ 2 is to
add a symmetry-breaking perturbation of the form

(1.2)

to (1.1). However, we will defer a, detailed discus
sion of the effect of (1.2) on bicritical scaling func-
tions to a future publication. ' Bruce and Aharony'
have shown that, although the perturbation (1.2)
does not affect the bicritical phase diagram of Fig.
1 for v —0, the bicritical point becomes tetxacriti-
cal in nature when v is positive.

Unfortunately, there remain technical problems
in approaching the bicritical first-order line (bold
in Fig. 1) even under the restriction m = 1. Indeed,
the first-order line is a boundary of coexistence of
phases of higher symmetry than m =1, and ther-
modynamic functions again diverge as this bounda-
ry is approached. For example, the nonordering
susceptibility X, discussed in I, should diverge
as g-0 at fixed T & T, according to

X,-g " (e =4-d).

This divergence is reminiscent of the coexistence-
curve behavior of the longitudinal susceptibility
of Heisenberg ferromagnets as the magnetic fiel~
tends to zero." For the present we will again
bypass the difficulties connected with this behavior
by excluding from consideration the shaded region
in Fig. 1 (the explicit restriction will be specified
more precisely in Sec. III). Similar limitations in
fact apply to the original analysis of Brezin, Wal-
lace, and Wilson' of the equation of state of a
ferromagnet for n ~ 2 (although they were not ex-
plicitly emphasized; see, however, Ref. 8).

Even with the two restrictions discussed above,
the results presented are of definite theoretical
and experimental interest. The behavior of the
bicritical thermodynamic functions will be deter-
mined [to O(e)] in crossover regions which have,
thus far, eluded theoretical analysis.

In Sec. II we recapitulate the techniques de-
veloped in I for calculating bicritical scaling func-
tions. The derivation of scaling functions for an
isotropic system in the ordered phase" is reviewed

in Appendix A. A detailed discussion of the
"matching" analysis which leads to thermodynamic
functions in the bicritical region is given in Sec.
III and Appendix B. Closed-form expressions for
the bicritical ordered-phase scaling functions are
derived in Sec. IV. Finally, in Sec. V, we sum-
marize the investigations reported here, exhibit
the scaling functions graphically for E =1, and

compare with series-expansion calculations. '
Some readers may wish to proceed directly to

the results reported here, bypassing a detailed
account of the calculations. To this end, we sug-
gest that the reader pass directly from Sec. II to Sec.
IV. Explicit formulas for the bicritical magnetiza-
tion, susceptibility, free energy, specific heat, and

nonordering susceptibility are given in (4.5), (4.9),
(4.29), (4.32), and (4.42), respectively. These
formulas are expressed in terms of g„ the anisot-
ropy field, in terms of the deviation from the bi-
critical temperature, t, =(T T,)/T„and utilize
the normalized crossover variable

y flight&/e (1.4)

which takes the value unity on the critical line
t,'(g, ). Here P is the standard anisotropy cross-
over exponent'" with expansion

g =I+-2en/(n+8)+O(e'). (1 5)

In a real uniaxial antiferromagnet, to and go would
correspond to linear combinations of the physical
deviations from the bicritical point, (T —T,)/T,
and (H —H~)/H~.

' The function R(x') entering in the
final expressions, is defined in (4.2); in addition
one has K, =I/8w', and

X, =2 2e/(n+8)+O(e'). (1.8)

II. THEORETICAL TECHNIQUE

The calculations reported here follow the pro-
cedures developed in I. Two distinct length scales
enter the problem, namely, the parallel and per-
pendicular correlation lengths $

~~
and $,. These

lengths both decrease under the application of the
renormalization-group transformation but, in gen-
eral, at different rates. Our analysis relies on
approximate solutions of differential renormaliza-

Ising critical exponents, to first order in &, enter
most of the expressions: explicitly, these are

(1.7)

although more accurate results for d =8 (e = 1) are
probably obtained if the series-expansion esti-
mates nr = 11, P~ —- -', and'Yr= 1- are utilized in the
scaling-function expressions. We hope the nota-
tional summary presented above will help readers
not interested in the technical details of the cal-
culations to appreciate and utilize the results.
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tion-group recursion relations which are them-
selves exact to order c =4-d. The solutions re-
main sufficiently accurate to yield scaling func-
tions exact to order e, as long as the quadratic
coefficients, r~~ and r„ in the renormalized Ham-
iltonian 3C(l), which are related to $~~ and $„do
not become too large. We first employ these ap-
proximate solutions to integrate the recursion re-
lations up to a value I = I» chosen such that $,(l»)
=O(1). We must require, in addition, that the
parallel quadratic coefficient r

~~
not exceed order

unity at this stage. This requirement (which was
satisfied automatically in the calculations reported
in I) imposes a restriction on the region of the

(t„g,) plane over which our analysis is valid, as
indicated in Fig. 1. This restriction is examined
in detail in Sec. IIID.

Having renormalized the full Hamiltonian up to
I =I», we then integrate out the perpendicular spin
components s,(R). Since the perpendicular corre-
lation length $,(l») is of order unity, this can be
achieved to sufficient accuracy by using straight-
forward perturbation theory to yield a reduced
Ilamiltonian that depends only on the parallel spin
components. This X,~ is then written in a form
which has been treated in detail by Rudnick and
Nelson, "allowing their analysis to be taken over
directly.

Working in a bicritical ordered phase gives rise
to several difficulties not encountered in I. As
usual in ordered-phase calculations, ' we must

shift the parallel spin component (we consider now

only the case m = 1, g~ 0) by the exact magnetiza
tion M, namely we put

s)) =o+M, (2.1)

which gives rise to three-spin interaction terms
in o spins in the shifted Hamiltonian. This pro-
cedure has been employed by Rudnick and Nelson"
to obtain ordered-phase recursion relations; their
approach for an Ising Hamiltonian is reviewed in
Appendix A.

There is a second technical difficulty: upon in
tegrating out the perpendicular spin components at
l =l~, we are left with a reduced Hamiltonian de-
pending only on the parallel spin components.
However, we must relate the various coefficients
(or field para, meters) in this reduced Hamiltonian
directly to the initfsl, unshifted parameters which
occur in the Ising Hamiltonian treated by Rudnick
and Nelson. " This is done in Appendix B.

As was discussed in detail in I, renormalization-
group theory relates thermodynamic quantities
calculated close to the bicritical point to the cor-
responding quantities calculated with the Hamil-
tonian X,~. This "matching" procedure leads di-
rectly to the bicritical crossover scaling functions.

III. DERIVATION OF THE REDUCED HAMILTONIAN

A. Integration of the recursion relations

Let us return to the Hamiltonian of (1.1). Intro-
ducing a shift via (2.1) we obtain

X= dR ~@~~M +QM AM+ z Vcr '+
& V s, '+ m)(lP+ ~rJ sJ +KJF sJ +$U))0 +Q 0 + s PEG'

y 3 1

where

r~~ =ra g, (n -m)/n, -r, =r, +g~/n, r~~ =r~~+12uM', r, =r, 4+Mu', m~~ =u, =4uM', h=h —r„,M —4uM',

(3.2)

and we have allowed for a, magnetic field term hsI in (1.1). In general, we must also allow for quadratic
couplings of the arbitrary form Z, &u, &s', s2&. The differential recursion relations for these s' coupling coef-
ficients u, &

take the form

q, =q~~
—-1/(I+r~~), i =1

=q, = 1/(1+ r,), i = 2, . . . , n (3.3)

where E, = 1/8v'. This complicated set of equations
simplifies considerably, provided we take the ini-
tial coupling constants'" all equal, namely u~z
= u, (all i,j), where, as usual, u, is supposed of
order e. In this case, the solutions can be writ-
ten'" to leading order in e as

u, ~(l) =u(l) + 0(eu(l), u'(I) ), (3.4)

where

u(l) =u,e"/Q(l), Q(I) = 1+4K,(n+ 8)u,(e" I)/e,

(3.5)
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2rg + 12K4 uq~~ +4(9? 1)K~uq~
dl

—18K4tv((q ((, —2(n —1)K~ut,q& &
(3.6)

dr, 2= 2r + 4(n + 1)K4uq, + 4K,uq
~~

—4K4se,q,q t,

provufed ri(l) and r, do not become too large.
When the r do become large, the isotropy of the
solutions u, &(l) implied by (3.4) will be broken.
Within the domain of validity implied by the condi-
tion r,~(l), r, (l) O(1), u(l) remains bounded and of
order E.

Within the single-coupling-constant approxima-
tion based on (3.4), the remaining recursion re-
lations are found to be

dl
= (3 —z e)1l —3K4u& [g g

—(u —1)K4 u&&q& (3 10)

r
g (l) =r g(l) + 12u(l)M2(l),

r,(l) =r,(l) + 4u(l)M'(l),

SUE�

(l) =w, (l) = 4u(l)M(l) =ut (l },

lE(l) k(l) rp (l)M(l) 4u(l)M
g (l)

(3.11)

(s.12)

(3.13)

(3.14}

where q~~ and q, were defined in (3.3). Following
the approach reviewed in Appendix A, we look for
solutions of these equations of the form

(3.7) where we have set

dl
' = (1+—,e)u&, —12K4uzv lq ((

—4(n+ 1)K4uu,q ,' M(l) =M, exp[(1 —2e)l] . (3.15)

—16K4utvtq llq i+ O(lV llu& J) &

de
II 2

dl
= (1+ 2e)u,

~

—36K4uso Hq g

—4(n —1)K,uut, q', +O(n)'„, zo,'),

(3.8)

(3.8}

Note that the equality between ~v ~~(l) and w, (l) is
accurate only to first order in E. Qn substituting
(3.11)-(3.15) into (3.6) (3.10) one obtains equations
for rp(l) and r,(l) quite similar to those encoun-
tered in the disordered phase, ' namely

dl
=2ri+4(n+2)K~u —12K4 urp 4(u 1)K~ ur

12K~ ur~~ 4(n —1)Kqur~ 2 18(rv+2r~~} r +2r~
(s.16)

' =2r, +4(n+2)Ku —4(n+1)Kur, -4K,ur~~ 4+(n 1+)K,u " + ' ' +4K, u', ' ' „'1+r, 1+r~~ j1+r~~ jj1+r,j ' (s.17)

Following I, it is now convenient to define new variables

[r II
+ (n —1)r&j /n, r =r, —r

II

which decouple the recursion relations in leading order. For these we obtain

(3.18)

S' =2r, +4(n+2)K~u —4(n+8)K4ur, +
4(n+ 2)K,u re, (n 1)r',

+
n 1+x~~ 1+r,

18(r~~ +2r~~) 2( 1}
r + 2r

4( 1) r~~r r&~~ +r, +
(s.18)

and

&d ~r ~~r, +r
~~

+r, r
~~

+ 2f.
~,

r', + 2x,=2r, —8K, ur, +8K,u — +K,xv .
( }( )

—18,—2(n —1) (3.20)

As in I, the solutions of these equations are conveniently expressed in terms of special combinations of the
temperature and nonordering scaling fields, namely

fo=r, (0)+2(n+2)K~ ua, go=r~(0). (3.21}
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The solutions of (3.1S) and (3.20) may be expressed in implicit form by defining

2())-=r, ())+nil( ~ 2)n())(( ——(r ()9))9[1+89())[r(n—Vr(l)ln[1+r(ill])1

(l)In'(l)( '(nr)n)[9 (rr( ))]r " +2(n —1)l [1+r (1)]

r, (E) r[[(l) +r, (l) I+r [[(l)+(n 1)
1 (l)

+(n 1
(l) (l}ln ()

= t &2[/[Q(E)](nnm& /&2)n([&

and

g(l) r~(=E—) —4K4u(l) {r,(E) ln[1+r, (E)] —r[[(l) In[1+r[[(l)]]'

+ 18K 9'(l)M'(l)(8ln[1 ~ i'1(l)l+9 +( 2)ln[1+r, (l)]
+1 [[

r,(l) r[[(l) + r, (E) 1+r[[(l)

(3.22)

(3.23)~g 82&/[Q(E)]2/ [))n8&

The final step is to solve these implicit expressions for r[[(l) and r, (l) expressed in terms of the simple
functions t(l) and g(l). On setting

T [[(I)= t(l) (n —1)g(l)/n+ 12u(l)M'(l),

T,(l) =t(l)+g(l)/n+4u(l)M'(l),

(3.24)

(3.25)

(3.27}

we finally obtain

r[[(l) =
T [[ (l) 2K4(n + 2)u(l) + 6K4u(l)T[[(l) in[1 + T [[(l)]+ 2K4 (n —l)u(l)T, (l) In[ 1 + T,(l)]

+ 144K4u'(l)M2(l) in[1+ T[[(l)]+ " + 16K4(n —1)u'(l)M'(l) in[1+ T,(l)]+ ', (3.26)
T'„(l) T,(l)

II

r~(E} = T,(l) —2K4(n+ 2)u(l}+2K'(E) T[[(l)in[1+ T[[(l)]+2(n+ I)K~u(E)T, (E) in[1+ T,(E)]

T [[ (l) in[1 + T[[(l)] T) (I) In[ 1 + T( 2)]E

Note that r[[(l) = T[([)I+ O(e, u( )I}and r, (E) =T,(E)+O(e, u); thus, the correlation lengths are determined, to
a leading approximation, by knowledge of T[[(l) and T,(l).

The solution to the recursion relation (3.10) for Iz(E) may now be found straightforwardly. To 0(&'/') it is

E&(E) =E&oexp[(3 ——,'e)E] —[t(l) —(n —1)g(l)/n]M(l) —4u(l)M'(l}+2(n+2)K, u(l)M(l)

—6K4u(l)M(l)T[[(l) In[1+ T[[(l)] 2(n 1)K~u(E)M(E)T~(E) 1[&[1+ (T)]I. (3.28)

B. Reduced Ising-like Hamiltonian

The leading-order solutions of the recursion relations just obtained are valid, as explained after (3.5),
provided both r[[ and r, remain bounded. Thus we will use the solutions up to a value l =l (to, go, MO) which
may, in view of the discussion following (3.27), be defined explicitly by

T,(l*)= t(l*) +n 'g(l*) + 4u(E*)M'(I*) = 1. (3.2S)

Of course, it would suffice to set T~(E } equal to any number of order unity in order to integrate out the per-
pendicular spin field: the number 1 is chosen here purely for convenience. In addition, we must require
that r[[(l*), and, hence, T[[(l*), is not too large. The region of the (t„go) plane where this requirement is
met will be discussed in Sec. IIID.

At the value l =E~ (which is determined explicitly in Sec. IIIC), we may perform the trace over the per-
pendicular spin components, treating the nonquadratic terms by perturbation theory. Taking the partial
trace, we generate terms in the new, reduced Hamiltonian which involve only the parallel spin components.
The first of these is a constant, which will enter only the free energy. Contributions corresponding to the



$498 DOMAN Y, NELSON, AND FISHER

(3.30)

diagrams of Fig. 2(a) modify the quadratic coefficient rp(l~), while the field h(l*) is changed via terms
arising from the diagrams in Fig. 2(b). Further contributions which modify h(l*) and w(l~) are of higher

order in e and u(I~) and will be neglected. In this way, we obtain a reduced Hamiltonian of Ising type,
namely

X,~=- dR ~ V'o '+ m~, ~cr'+sv, ~o'+u„p~-h, ~+const,
where

and

1 S q'dq
y', ~=r~~(I*) —32(n —1)K4u (l*)M (I*) . . . „2 +4K (n —1)g(l~)

= T~~ (l*) —6K4s(l )(I T g (l ) In[1 + TI (l )]]
+144Ku'(l*)M'(I*)[In[1+ T~, (l*)]+T~~(l*)/[I+T„(I )])+16K,(n —1)u'(I )M (l ),

=4u(l*)M(I~) +O(c'~2), u„=u(I*),
(3.31)

(3.32)

1 3

h, ~ =h(l*) 4K,(n —1)u(l~)M(l~)

0 W 2 ) I ) ( )g( )/ ] ( *) 44( ) (l ) + 6K& tc(l )M(l )(I Tg(l ) In[1 + Tg(l*)]]

(3.33)

We shall focus attention on the situation- where the
magnetic field h, is zero. (Note that h, being the
ordering field, would correspond to a staggered
uniaxial field in a bicritical antiferromagnetic
system. )

The reduced Hamiltonian described above can
now, in turn, serve as the initial Hamiltonian in a
renormalization-group analysis. The problem of
determining the thermodynamic functions for an
Ising system below T, has been treated by Rudnick
and Nelson. " However, their solutions are ex-
pressed in terms of parameters rz (or tz), uz, and

Mz defined with respect to an original unsifted
Hamiltonian [with no cubic interaction term such
as appears in (3.30)]. In order to utilize their re-
sults, we must thus identify xl, uI, and MI in such
a way that r„d, h„~, w„~, andu, ~ do indeed result
from shifting the spin of an appropriate zero-field

/

/
/

(a)

Ising Hamiltonian by an amount M~. If we try a
representation of the form

T„~=ri+12uMi,

u'r~- uI Iy

3 3h, =k, -~,Mi - 4uzMg = —~IMg —4uIMI

(S.34}

(since we take h, =0, it follows that hz = 0), it is
straightforward to make the leading-order identi-
fications

(3.36)

In order to determine the reduced variables to
first order in e (as we require) we postulate the
forms

t, =f(1+x'),
(3.36)

uz=u(l*)(1+ac), M&=M(l~}(1+be),

where x, a, and b are numerical coefficients. In
Appendix 8 we determine these coefficients and
find

x=— e, a= &, b=--

(b)
(S.SV)

FIG. 2. Feynmann graphs needed in the calculation
(~) of F«q and (b) of h«q. The broken lines represent
transverse propagators [~& (l*)+@2) '.

C. Determination of I~

For given t„go, and M„we can determine
l~(fo, go, M,) from the definition T,(l~) = 1 by meth-
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4u(l «)M'(I «) = 4N/NP/. (3.38)

Then to zeroth order in E, we can simply replace
MI by its mean-field value, namely

M, = (- f,/4n, )'/2,

which gives, finally,

4u(f «)M'(I «) = —t

(3.39)

(3.40}

gubstitution of the expression (3.35) for t/ into
(3.29} gives a very simple condition determining
l~, namely,

g(l«) =1. (3.41)

ods developed in I. However, M, is not a known

initial parameter: hence we must determine I,
as a function of t„g„and uo. We need only do
this approximately here; the full expression for
M, is given in Sec. IV.

We will solve (3.29) by approximating the term
4u(I«)M'-(I«). It follows from (3.38} that, to leading
order in e, we can make the replacement,

z =ggt« =z,
where

i =n'/(n —1)',

(3.46)

(3.4V)

determines the upper critical line. " The vari;*,ble
y ranges from + 1 on the boundary between the or-
dered and disordered phases, i.e. , the critical
line f,"(g), to —~ on the first-order flop line (g,
=0, f, &0). The region of large negative y, how-
ever, will be excluded from the analysis by the
restriction discussed in the following section.

The condition (3.42} determining l«can, of
course, be solved trivially to give

(3.48}

With this expression for /*, the temperature-like
variable entering the effective Ising problem fol-
lows from (3.36) and (3.3'I), as

t, = t(l ")(1t — t}

We have, of course, neglected 0(&) corrections to
this result throughout. However, as discussed
following (3.29), the precise choice of the matching
condition is immaterial, so these terms at l =l~
cannot alter our scaling-function results in order
E.

(te' '* —=( -, t)tt, e&"/ ] tt("
—1( )(

—1 t} (3.49)

namely the fixed joint value of u, for the isotropic
case (g, =—0). With this special choice, (3.41) sim
plifies further to

goe")" =1, L =2 —2E/(n+8)+O(t ). (3.42)

In addition, the function t(l} now behaves simply as

t(l«) =t,e"&', X, =2 —(n+2)e/(n+8)+O(e').

(3.43)

The results in I were presented in terms of the
variable

z =g,/t,', (f = In+~ /(n28+) + O(e') . (3.44)

However, in the bicritical ordered phase there is
a line on which to-0 for finite go (see Fig. 1), and
z —~. Accordingly it will be convenient to exhibit
our new results in terms of the complementary
variable which remains finite in the region under
discussion, namely,

y f g -1/t)t/s-1/«(z/z)-1/(t)

The relation

(3.45)

So far we have allowed a general initial (isotrop-
ic) quartic coupling constant u, of order e; the
analysis, however, simplifies considerably if we
take

u, =u«(n) = ~/[4K, (n+ 8)],

D. Restriction T&(l*)(o(1)
We now determine analytically the region of the

(to, go) plane excluded from our analysis by the re-
striction T))(l«) ~O(1). At I =I«, we have

g(l«) =1, t(l«} =t,g,"' = (n —1)y/n,

while T), (l«) was defined in (3.24). Using (3.40),
we find that T)((f*) may be represented to leading
order by

T I (I ) 2(n 1)(1 y)/n (3.51)

Provided that y &- ~y „~, where (y „~ is a con-
stant of order unity, T), (l «) is bounded above and
of order unity. This constraint excludes the shaded
region shown in Fig. 1. Our calculations break
down asymptotically as this region is penetrated.

It is interesting to note that precisely in this
region Bruce and Aharony' found distinct new be-
havior when they introduced the cubic interaction
term (1.2). For the appropriate sign of this term,
a new, "intermediate" ordered phase appears,
swithin the Ising-like ordered phase shown in Fig.
1, in which the perpendicular components of the
spin also ordered and the bicritical point takes on
a tetracritical aspect. "

Difficulties similar to the large negative y re-
striction were encountered Py Brezin, Wallace and
Wilson, ' in their original Feynman-graph calcula-
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tion of the isotropic equation of state for n ~ 2.
Indeed their analysis also breaks down asymptot-
ically upon approaching the ferromagnetic coex-
istence curve. The difficulties they encountered
were later resolved by a parquet-graph resumma-
tion procedure, ' and it is likely that the same sort
of analysis could be utilized here. However, we
will defer such an analysis to the future, ' and pro-
ceed to a description of the ordered-phase results
obtained thus far.

IV. THERMODYNAMIC FUNCTIONS

A. Spontaneous magnetization

In order to determine the spontaneous magneti-
zation, we recall from (A22) in Appendix A that
the magnetization of the reduced Ising-like system
is

~r

M, = ~ R'~'(- tz)[1 —6K,uz ln2/R(- tz)],

with (choosing uo=u~=uz)

(4.1)

R(x) = x'.'+, P~ = —,
'

—,e +0(&') . (4.2)n+8 n+8'

Using the relations (3.36) and (3.37) for t„uz, and
MI then yields

behavior as the critical line is approached from
below at fixed g, &0.

X(t„g,) =g," X,((y), (4.9)

where y„ is the isotropic (Heisenberg like) sus
ceptibility exponent entering here in the form

=—+0(c ),QH 2 g 2
(4.10)

while the crossover scaling function is given by

Xj((y}= — (1 —y) ~IR '(1 —y)
1 n
2 n —1

(n —1) 3[3+ln2(1 —n ')]
2(n ~ 8) 2(n ~ S(B(1-y) ) '

(4.11)

B. Susceptibility

Upon using the simple multiplicative recursion
relation' "

(4.8}

for the parallel susceptibility X, in conjunction
with (A23}, and substituting for tz from (3.49),
and for e'~ from (3.48) we obtain the result

SE ln2
2 +8R -tl*) ' (4.3)

where R(x) is defined in (4.2). (The tilde on the
scaling function indicates use of the scaling vari-
able y is place of x: see below. ) The factor
(1-y) & with Ising-like susceptibility exponent

The spontaneous magnetization M, can now be
found using (A11) in the form

(4.6)

where P„ is the isotropic (Heisenberg-like) mag-
netization exponent appearing here via

M,(t„g,) =M(l*) exp[- (I - —,'e)t*] (4.4)

where M(t~) is given by (4.3) and by (3.48). In
terms of the normalized scaling variable y =Btggo'~~
defined in (3.45) (which takes the value 1 on the
critical line) we finally have

Mo(fo, gg= go~& 'w(y),

y, =1+—', ~+ 0(e'), (4.12}

yields correct behavior on the approach to the
critical line.

Now we may check this result for the crossover
sealing function, X(((y), describing the ordered-
phase susceptibility by computing the amplitude
ratio of susceptibilities calculated above and below
the transition. " This ratio should be a universal
constant independent of the details of the model,
and, in particular, independent of n. The result
derived in I for the disordered-phase susceptibility
may' be written

P„2—e+0(~') 2e +0 f'
2Q ' n+8

while the scaling function is

(4.6) I(ta, go) =t, »X(i (x),
where the scaling function is

X;(x)=(1 —x)-~zR~'(x)

(4.i3)

j. /2
W(y) = m (1 -y) R' (1 -y)n

3(.'In[2(1-n ')]
2(n+ 8)R(1 y)

(4.7)

Note the factor (1 y) ~, where P, is the Ising-like
magnetization exponent, which ensures correct

x 1 —fez x

m+2
+ — In[1+mx/(u —m)] R(x)2 n+8

(4.i4)
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with where

G(l) = —,'K, (in[1 + r(((l}]——,
'

+ (n —1}{in[1+r~(l}]—~)}. (4.23)

+ xln, 4.15

while the normalized scaling variable is now

(4.16)

with

C-(t (-(- ( +2)/2(4+8)(» 1) Yg (4.1L)

1 9
C 1- 6&ln2 —2c

2 n+8

n+2 n 1
2 .n+8 n-1 n+8

The algebra involved in taking the limits g-1 and
»-1 in (4.11) and (4.14) is straightforward but
tedious. In the ordered phase we find for this
limit,

This trajectory integral can be evaluated along
lines devised by Nelson and Rudnick. " It consists
of pieces that are regular or cancel against con-
tributions from e " F(L~), and of a piece that gives
the leading singular behavior, namely

l = —~ [rm(l}+(n —1)r (l)]e 4(dt. (4.24)
K

0

This integral can be evaluated to yield various
regular terms, a term that cancels the terms
,'r((M',—+u,MO in (4.22), and the contribution

(i) = t2 (4 ff)& & l(f1+8)

4du() 4

2 (ff+a)&& l(f1+8)
n(n +4)

—e4' [u M (L~)+—,'t(L~)M'(L*)],

+3 ln (4.18}

—E(i) +E('
1 2 (4.25)

while in the disordered phase we have

C+t ( 4(4+2&/2(++81(1») yI

with

(4.19)

C. Free energy and specific heat

The free energy is given in terms of a trajectory
integral by"

g
4(

F =~r((M0+uoM'+ dl e 4'G(l)+e 'F(L*),
0

(4.22}

n+8 2 gn+8 n —1

—...--: (. ,)'I
(4.20)

The amplitude ratio on the critical line is hence
given by

C'/C = C+/C„=2[1 +~4e In2 +-,'e +O(e')], (4.21)

in precise agreement with the results of Brezin
et aI."for Ising-like systems. It is especially
gratifying that this agreement is obtained from
the very elaborate functional forms for the cross-
over scaling functions displayed in (4.11) and
(4.14). The appearance of the scaling functions
will be discussed in Sec. V.

t(l*)M'(l*) = t, M' (4.26}

u, M4(l*) =u, M4. (4.27)

These equations can, in turn, be used to find a, &,
and» in (3.36). As shown in Appendix B, one ob-
tains fou& equations for these three parameters,
thus providing a consistency check on this ap-
proach. The remaining part of F(L4) is the Ising-
like free energy first derived by Nelson and Rud-
nick 'i namely

F, = -(1/3d)u '(-tI)' ' 'R' '(-t~)

x [1 —6uzK4 ln2/R(-tz)]. (4.28)

Again substituting for uI and tI we obtain finally

%'e have also dropped certain regular terms needed
to give a finite result here in the limit n» 4. The
factor F(L~} in (4.22} may be calculated by first in-
tegrating over the perpendicular components,
which yields a fluctuation term that serves to can-
cel parts of the trajectory integral not included in
(4.24). This leaves the free energy of the reduced
Ising-like Hamiltonian, which contains the terms
--,'I', M', —u, M,'. These must completely cancel
I,"' in (4.25). (Otherwise the free energy would
contain spurious terms like tM'-t'", which are
more singular than t' .) Specifically, we must
have
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y -g(» +e-~~*y
I I

K4(n+8) 2 «844&/8«+(» n —1 '
4e n

&&[Q,(y)+(1-j&)' '"Q (y)]

where

(4.29)

(4.30)

expression for the specific heat given in I. Spe-
cifically, we verify that

A '/A = —'[1 + O(e)], (4.39)

which is independent of n along the critical line.
This result agrees with work by Brhzin et aL."
to lowest order in &. Because the specific-heat
amplitude ratio is undefined to zeroth order in e
(mean-field theory gives a jump discontinuity),
A'/A is determined correctly to one less order
in e than is C /C . This peculiarity was, indeed,
noted by Brezin and co-workers. "

(4.31)

The specific heat can be obtained by calculating
(O' F/s-t~o) using (4.29). We find that the leading

singular part may be written

D. Nonordering susceptibility

Xg— (4.40)

In order to calculate the nonordering suscepti-
bility,

«(t., g.)=g-. "0 z (y), (4.32) it is convenient to use (4.28) and (4.24) in the form

where the isotropic specific-heat exponent is given
by K, (n+ 8} n f2&(4-(2&8&4/(22+(»

n —4 0

c(„=(4 —n)e/2(n+8) + O(e'),

while the crossover scaling function is

(4.33)
2e(4+ft) ~ & /(ft+8)

n(n+4)

+ e "'F,( t, ) .-- (4.41)

6+O(e ) (4.36)

(4.34}

where the Ising-like specific-heat exponent is

On differentiating this expression, ignoring the
g dependence of &* (since F must be independent of
the precise choice of &~), we find

X,(t., g.)=g, "/~Y (y), (4.42)

while Q, (y) is defined in (4.31).
For to&0 we can express the specific heat in

terms of the scaling variable &(', defined in (4.16)
as

where the isotropic exponent is

1 n+4
&

= —(2 —a —2 (j&) = — ~ + O(e')n+8 (4.43)

/&. C(t„g,) = t;"n Z (x), -
(4.36)

+(x —1} '/'Q, (x) (4.37)

where

Q, (x) =&[ft(» —1)] '

36 SX
2( ~ 8)K(2- () 2(8 —1))

K, (+8) 8 1 22 8 —1 82)z x = ln2e 4-n 3 3 n+8 n-1

while the scaling function is given by

)
K (n+8) n —1 (n —1)'

2c n(n+4) 3n'

(n —1)' ne
+ „. 1- „,8 y'Q, (y),

(4 44)

with Q, (y) again defined as in (4.31). For t, &0
this may be written in terms of the alternate scal-
ing variable introduced in (4.16), as

g =t &Y (x),
where

n+8 2 n —1 (4.38) Y (g) = Q (~)+(&&' 1) IQ (&)
K, (n+8) n —1

It is now straightforward to compute the specific-
heat amplitude ratio from the disordered-phase where

(4.46)
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«(««) ( « ~««(« ~ 8) 2 (« —1) 8(««) «8 2 (« —1)'
36 nx ne ne n+4

3 nx g 2(n+8)R(x —1) 2(n -1) n+8 n+8 n+8 2 n —1

(4.48)

Note that the nonordering susceptibility diverges like the specific heat on the critical line t, (go), i.e. , the

scaling function diverges at x =1 with exponent o, By comparison with I we may again check that the am-
plitude ratios above and below t,(g,) obey (4.39). The graphical appearance of the X, scaling functions will
also be discussed in the next section.

E. Disordered-phase transverse susceptibility

%'e take the opportunity to present here the scaling functions for the transverse susceptibility in the
disordered phase. (Horner' has also calculated X~

' to order e for the special case m =1,n =2.) The deri-
vation of this function was sketched in Appendix B of I. The transverse susceptibility is defined by

X' '= „&s,(q)s, (q )} 5(q+q') (4.49}

and can be represented' as

X' ' =e" [1 —4u(l*)E„(r„d,u(l*))]

where

(4.50)

(4.51)

After some tedious but straightforward algebra, we obtain

X' '(t„g,)=t, SX' '(x),
with scaling function

(4.52)

X~ '(x}=Q,(x)+ (1-x)' "
Q, (x), (4.53}

(4.54}

(4.55}

with

to first order in e, where x is still defined as in (4.16), n is the specific-heat exponent for an m-compo-
nent system, and

Q.(x) =[4.(x)]'[1+et(x)],

Q, (x) =[/, (x)]' [R(1 -x)]' ~ 1 —e ' +en( )x+2'( )x—(1-x)"~[1+ed,(x)+21'(x)],
4 —m lng, (x)

1 2x —n-2 m ng nS,(x) =-— ln 1 + x + ln2 n+8 n-m n+8 n —m
1 —x), (4.56)

-[4.(x)l'
$(x}

2 ( )( )
nmx ln

m
g, (x) = 1+ x

n m
+[(n —m)(n +2) + 2mx] ln 1 + x

n —m n —m (4.5 V)

(4.58}

Now the susceptibility X& '(t„go) in the disordered phase for g, 0 should be just the analytic continuation
«Xi) (to«go) [obtained when the "perpendicular" (n —m)-component field is dominant] to g, &0; the same
should apply to the scaling functions X' '(x) and X~(" '(x}. However, the two functions are obtained in our
calculations by using different procedures in different regions of the (t, g,) plane. Nevertheless, since all
our calculations are correct to first order in &, we expect the two functions to be identical when completely
expanded in powers of e for fixed x (not equal to x or 7) and when terms higher than first order in e are
neglected. This is indeed the case; in terms of the variable z =zx =g,/t, we find



SSQ4 DOMAN Y, NELSON, AND FISHER

' n m+-2 m m m n —m n —mX&"(z) = 1- 1+—z ln1+ —z + 1- ln 1- z
1+mz/n 1+mz/n q n+8 n n n+8 n n

+ O(z'),

= X!n- ™)(-z) + O(.*), (4.59)

as expected. It is interesting to note that although the two functions do differ at O(s') the differences are
quite small numerically even at z =1. Thus graphically (see Fig. 3 below) the two plots join quite smoothly
through x =0. Specifically me find

X~( '(z ) —X~ "'(-z) =K, (n, m)ssz -Ks(n, m}s'z +O (s zs, s'z)

mhere

(4.60)

n n
K (n, m) = (n —m) ln ——n ln

m n —m
(n +8}', (4.61)

while K, (n, m) is given by a similar but much longer expression. For n =3, m =1 we have the surprisingly
small numerical values

K, (3, 1)=+, , ln —,
' =0.00405,

Ks(3, 1) = —sn»s —,~, ln3 —
+s, (ln3)s+ s' ln s + 4s', (ln~s)s =0.0542.

(4.62)

(4.63)

V. SUMMARY AND DISCUSSION

We have demonstrated that thermodynamic func-
tions in the ordered phase of relatively complicated
multicritical systems can be determined from re-
normalization-group recursion relations, trajec-
tory integrals, and a "matching" approach. Al-
though the calculations presented here are re-
stricted to Ising-like ordered phases, they never-
theless have produced detailed information about
a region of the bicritical phase diagram not pre-
viously explored by other theoretical techniques.
Explicit expressions, correct to order & =4-d,
have been obtained for the crossover scaling func-
tions of spontaneous magnetization, ordering sus-
ceptibility, free energy, specific heat, and for the
subdominant or nonordering susceptibility. [These
results are contained in Sec. IV, Eqs. (4.5), (4.9),
(4.29}, (4.32}, and (4.42). j We have also reported
calculations of the transverse susceptibility in the
disordered region.

Our results are essentially complete in the or-
dered region above the bicritical point (to&0; see
Fig. 1}but they must be expressed in terms of the
modified scaling variable y =Bto/g~~e if their ana-
lyticity across the line to=0 (or T =T~} for g &0
is to be made evident. However, as the first-order
bicritical phase boundary is approached below T,
(shaded region in Fig. 1) the scaling variable y
approaches — and our results asymptotically lose
validity. This experimentally interesting region
has to be handled separately since the appearance
of "massless Goldstone bosons" considerably com-
plicates the analysis; however, the appropriate
calculations mill be postponed for later publication. '
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FIG. 3. Scaling functions, X„g) and X~ (j)t,'), for the
ordering and transverse susceptibilities, as a function
of x = (ga/t$)/(s)e for crossover from Heisenberg to
Ising and XY behavior (n = 3, m = 1,2) evaluated at e = 1
(d =3). The dot-dashed lines at k =1 and i=- 2.20 cor-
respond to the Ising-like and XY-like critical lines
(see Fig. 1).

As explained in Sec. I, small symmetry-breaking
terms of cubic or similar character may play a
crucial role close to the phase boundary and, in
particular, tetracritical behavior may be realized.

It is interesting to combine the present calcula-
tions for the Ising-like ordered region with the
previous work in I for the disordered phases, and
to examine the related scaling functions. In Fig. 3
the crossover scaling function, X„(x)=t,"X(t„g,),
for the longitudinal or parallel susceptibility is ex-
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hibited for n = 3, m = 1, and E = 1, as a function of
the variable xox'-ga/fae, which has been normalized
to 1 on the Ising-like critical line, to(ga) [see (4.9)
and I]. Note that by using the results of Sec. IV E
the plot for XI(x) may be extended smoothly to
negative x (go &0, fa & 0} where it represents the

transverse suscePtibility in an XY-like system,
which does not diverge. In this region it is, of
course X' ="o- X„which diverges as the XY-like
critical line t x"(ga) is approached. In terms of

the scaled variable x (normalized by x = 1} this
critical line occurs at x =x = —(n —1)e = —2.20
[using the results (2.47}]. This should be con-
trasted with the best series estimates, ' namely,

!X, !
= 2.51. In a complementary fashion the longi-

tudinal susceptibility scaling function X~x, "(x) for x
&0 extends into the transverse Ising susceptibility
Xsl(x) as displayed in Fig. &. It should be noted
that although they do not diverge, the transverse
susceptibilities display energylike singularities,
proportional to (f —t,)' 'I as t -I,. At fixed ga
these terms will give rise to maxima in X, above

t, and a vertical tangent at t = t, for a & 0. These
singularities appear in the expressions in Sec.
IVE for the crossover scaling functions. How-

ever, owing to the numerically small values of o.l
and a» and the small amplitudes, they are not
easily visible. This may be checked by inspec-
tion of Fig. 4 which exhibits the appropriate re-

Y(x)
Y(0)

disordered

Q 1

-2
I I

Q

x o(: go/to

FIG. 5. Normalized scaling function Y(x)/Y(0) for the
nonordering susceptibility for XY to Ising crossover
(n =2, m =1) evaluated at e =1. Note the symmetry
about x=0.

gion of the scaling function XI(x) on a large scale.
The scaling functions for the subdominant or

nonordering susceptibility X = O'F/ega' may be ex-
amined in the same way. In Fig. 5 the correspond-
ing scaling function I'(x), normalized by the value
at x=0, is plotted at e =1 for the case n=2, w =1
where crossover occurs from XY to Ising-like be-
havior symmetrically for positive or negative g, .
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I
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FIG. 4. Detail of the scaling function for the transverse
susceptibility near the Ising-like critical point at x =k
=1, displaying an energy-like singularity (with a vertical
tangent at the critical point). The straight dashed line
is purely for comparison purposes.

FIG. 6. Normalized scaling function for the nonorder-
ing susceptibility for Heisenberg to Ising and XY cross-
over (n=3, m=1, 2), evaluated at a=1 (solid curve,
right-hand scale). In the disordered region the dashed
curve (and left-hand scale) shows the series-extrapola-
tion results of Gerber and Fisher (Ref. 15) while the
dotted curve shows the e-expansion results on the same
enlarged scale (left-hand axis). The XY critical line
corresponds to x=x3 for the series-expansion results
but to x=x, to first order in z.
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In considering the size of y~ in the ordered region
it must be recalled that the ratio A /A' has the
value 4 in leading order in e [see (4.29)], where-
as in reality the ratio for d = 3 should be'4 about
1.6.

A complementary plot is displayed in Fig. 6 for
crossover from Heisenberg (n =2) to Ising-like and
XY-like behavior for positive and negative g„re-
spectively, as in Fig. 3. Our calculations at f =1
(solid and dotted curves) in the disordered region
may be compared with the recent calculations of
Gerber and Fisher" (dashed curve) who extrapo-
lated the high-temperature series expansions for
the anisotropic classical Heisenberg model. For
0~x &1 the agreement is fairly good —better than
6 or 7% for x» 0.9 —although the critical expo-
nent n, is given as —,

' in the truncated E expansion
in place of or=0.125. On the other hand for x &0
the main error is in the value of xee which deter-
mines the critical line. (For x&0, of course, this
problem is obviated by the normalization chosen. )
In addition the series results, which are probably
reliable to within 2%, exhibit a less pronounced
minimum which lies correspondingly closer to the
origin. Over-all, however, the agreement is quite
encouraging considering the first-order nature of
our calculations.

Finally in Fig. V we plot the crossover scaling

function for the specific heats. Because the value
of o~ at d = 3 is negative it is convenient to write
the specific heat in the modified scaling form

tRC(to, go) =A'to H+to &Z (x),

a,nd to plot the "subtracted scaling function" Z*(x)
normalized by (d'Z /dx'), , so that the leading be-
havior at smallxis R x'+O(x'). The dashed curve in
the disordered region represents the series-ex-
trapolations of Gerber and Fisher. " Significant
numerical discrepancies arise in the region x
&- 1. In comparing the ordered and disordered re-
gions, the low accuracy of the leading-order c-ex-
pansion estimate A /A'=4 should again be borne
in mind.

When sufficiently extensive data from experi-
ments such as Rohrer's striking work" on GdA103
become available, it should be possible to test
our various calculations directly against real anti-
ferromagnetic behavior. We may also hope that
other physical systems which display accessible
bicritical points will be studied in detail and corn-
pared with our theoretical predictions.
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APPENDIX A: ORDERED-PHASE SCALING FUNCTIONS

FROM RECURSION RELATIONS

Consider the Hamiltonian

SC[ ] = —f dR[-,'r s' —,'(Vs)'sss'-h s]. (Al)

On setting s = o+M„where M, is the exact mag-
netization, we get

r, = rp+ 12uMp, 'Kp 4up Mpy

h =h —r M -4u M'.
(A2b)

SS[s]=—fdR[- r, M,',M', —h',,M, + —,r, ts'

+ R (&o)'d. e[]oo'+use —ho(r], (A2a)

where

Xs X~ 0
X oC go/t

FIG. 7. Plot of the "subtracted" specific-heat cross-
over scaling function Z*(x) [see Eq. (5.1)] evaluated at
e =1 (solid curve). The dashed curve represents the
Gerber- Fisher (Ref. 15) numerical-series-extrapola-
tion results for d=3.

12K4u 18K4so'
dl I+y (I+r)' ' (A2)

It is important to note that at this point M, is con-
sidered a known parameter; it will be calculated
at the end of the procedure (and turn out to be of
order e ' '). The recursion relations for the shift-
ed Hamiltonian are"



BICRITICAL POINTS. II. ISING-LIKE ORDERED PHASES 8507

dw, 36 K4 wu 36 KK w'
1+26)w — ', +

dl (1+r) (1+r)
(A4)

u(l) =u,e"//6t(l),

q(l) = 1+36K,u, (e"—1)/e,

(A8)

(A9}

Note that 33(l) remains of order u, for all l. Then
it is not hard to show that M(l), the solution of Eq.
(A5), is given by

u(l }=23(l) +0((.', Cu(l)), (A10)

provided r(l} remains bounded above Now .define
functions M(l), w(l), r(l), h(l ) by

M(l) =M e0

w(l} = 4u(l)M(l),

r(l) =r(l) —12u(l)M(l)2,

h(l) =h(l) +r(l)M(l) +427(l)M(l)3.

(Al 1)

(A12)

(A13)

(A14)

Substitution of (A12) into (A4) yields

du 36K, u2 216KKw2u 162K4w
( )dl (1+r)' (1+r)' (1+„)' '

—=(3 —2 }h- (A6)
dl 1+x

The terms retained in these recursion relations
are such as to include, for all functions, the lead-
ing power of e and one higher power. [Note that

=O(e ) 23 =O(t} w =O(c ).]
These equations are now solved as follows. Con-

sider first the equation

—= 6Q —36K~Q (A7)

with initial condition Fi(0) =u„ the solution is easily
found to be

where

T(l}= t(l) + 12u(l)M(l)',

t(l) t e2![q(1)]1/3

t, = r0 6K' Q0.

(A19)

T(l*) =1.

When this is used in conjunction with

(o&.-(r*) = o

(A20)

(A21)

we get, for h0=0, the spontaneous magnetization
and e~* as functions of t, and Q„ then the various
thermodynamic functions are obtained. The ex-
plicit results to first order in f for magnetiza-
tion, susceptibility, free energy, and specific
heat are

0 2Ql/ 2
0 0

,
( 1) K, l, 1

61(, , 1 2 16K, ,
}X=a —0 I

0 R R

(A22)

(A23)

(A24)

C = —2FK/(- t2) 2

with

(A25)

R, =R(- t,) = [1—36K,(u, /e)](- t,) '/'+ 36K,(u, /a) 2

These solutions are used until r(l*) =O(1). Since,
by (A17), r(l) =T(l}+O(e), this means T(l ) =K
=O(1}. Since the results are independent of the ex-
act value" of K we choose for convenience K=1,
yielding the condition

w(l) =3()(l)[1+O(e,u)]. (A15)
(A26)

Substituting r(l) from (A13), with (A15) and (A10)
for w(l) and u(l) into (A3), we get an equation for
r(l} correct to O(e), namely,

dr 12K~ur'—=2r+ 12K,c7(l —r) +
dl 1+x

and

r, = 1+-3'~, tt, = '(1 2~),-- (A27)

(A16)

(A17}

288232M(l )'(r'+ 2r)
(1+r)'

The solution, correct to O(e), is

r(l) = T(l) —6K,27(l)[l —T(l) in[1+ T(l)]]

~ 144K, (1)'M(l)' 16[1+T())] ).Tl)
1+T(l)

APPENDIX B: THE REDUCED HAMILTONIAN

After integrating the recursion relations to l*,
and taking a partial trace over the perpendicular
spin components one is left with the reduced, Is-
ing- like Hamiltonian

X„,=- dR —,'r„P R'+-,' &0 '+Q„,o R'

In a similar manner we get

h(l) =h,et3 [3/"~' t(l)M(l) —4u(-l)M(l)'

+ 6K, u(l}M(l) (1—T(l) in[ 1+T(l)) ), (A18)

+w„,o(R)'- h„,o(R)],

with, as follows from (3.31)-(3.33),
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r„d = T„(l*)—6K,u(l*) {I—T„(l*)in[1+ T„(l*)])
+ 144K, u(l*)'M(l*)'(In [1+T„(I*)]

+ T„(l*)/[I+T„(l*))]

+ 16K,(n —I)u(l*}'M(l*)', (B2)

T„(l*)=I + 12u(l*)M(l*)',

u„„=u(E*)=u, m„,=4u(l*)M(l*),

and, in zero external field,

h(l*) = —fM(l*) —4u(l*)M'(I*)

(as)

(B4)

+ 6K, u(I*)M(l*)(I —T„(l*)ln [1+T„(l*)]}.
(B5)

These parameters resemble closely the initial
parameters of an Ising Hamiltonian, whose spin
variable has been shifted by M(l*}, and whose
temperaturelike variable is t.

To make this idea precise we thus look for pa-
rameters tr, ur, and Mr such that an Ising Hamil-
tonian defined initially by tr and ur and then shifted
by M, will yield a Hamiltonian whose parameters
agree with (B2)-(B5) to appropriate order (that is
to order f for r„~, to order E' ' for sv„d, and or-
der e for u„d, and order c '~' for h„~). On using
(Al I) we thus find the conditions

16K,(n —1)u'M(l*)' = [fx+ 12uM(l ~)'(a+ 2b)]E',

(alo)

0 = [- tx —tb —4uM(l*)'(a+ Sb)]t. (all)

1 n-1
x =— c =a+2b.S + (a is)

This yields t, and is sufficient to calculate the
susceptibility.

In the calculation of the free energy in Sec. IVC
we obtained two further conditions that should be
satisfied, namely (4.26} and (4.27), which state

tM(l*)2 = t~Mg', (B14)

(B15)uM(l*)~ = u z Mz.

These reduce simply to

We now invoke the sa~e argument that led to equa-
tion (S.S9}, namely, the fact that in (Blo) and (Bll)
we may replace 4uM(l*)' by its value to zero order
in 4, which is

4uM(I } =4u~MI= —t~ ——t (B12)

Substituting this in (Blo) and (Bl1) yields again
two equations for a, b, and x; but since a and b
enter only through the combination a+2b, we can
solve to find

j„~=Tz —6K,ur[l —Tzln(I +T~)]

y144K4uz'Mr[in(1+Tz)+Tz/(1+Tz)], (B6)

h„,~= —tIMz —4uz M~&+ 6K, uzM~[1 —Tzln(1+ TI)],

0=x+ 2b,

0 =a+4b,

the first of which with (B1S) yields

n-1
n+8 '

(B16)

(al'I)

(B16)

Tr=tr+12urM

(BV)

(as)
1n —1

b
4 8 (B19)

t~ = t(1 f +}, x

u, =u(l+ ea), M, =M(l*)(1+eh).
(B9)

On equating terms of next highest order in E or u,
in the r and h equations one finds

If we now equate the right-hand sides of (B2) and
(B6), and of (B1) and (B I), we see that the equali-
ties are satisfied in leading order if

Note that (Bl I) ls then also satisfied identically.
The importance of calculating a can be seen in the
free energy,

E=(-t,)' "/u„ (aso)

E=(-t)' ' '/u (B21)

which upon substitution of tz and uz from (B9} (with
the calculated values of x and a) reduces to
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