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Solitons in the continuous Heisenberg spin chain
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Solitons in the continuous Heisenberg spin system are studied in one dimension. We present results for

soliton-soliton scattering in the isotropic case. For the anisotropic results we derive the functional form of the

solitons. In both cases we investigated the linearjzed stability equations and found no evidence of instability.

1. INTRODUCTION

In recent years there has been considerable in-
terest in solitons and their relevance to some phe-
nomena of classical and quantum physics. ' ' We
study in this paper the solitons in a continuum ver-
sion of a classical linear Heisenberg chain of
spins. In a subsequent paper we will discuss the
relation between the quantum and classical solu-
tions. ~ The classical system for the isotropic in-
finite chain was studied by two groups"; however,
they did not present the most general single-soli-
ton solutions. We will study in some detail the
isotropic chain including the stability of single-
soliton solutions and soliton-soliton scattering.
We were unable to solve these problems analyti-
cally, but the solution of the equations on a com-
puter presented no particular difficulty. The
single-soliton solutions seem quite stable and the
two-soliton scattering takes place with only a time
delay to signify that any interaction occurred.

W'e also present single soliton solutions for the
anisotropic chain and study their stability. For
one sign of the anisotropy there is the possibility
of two kinds of solitons, depending on the boundary
conditions. The isotropic case corresponds to a
background of spins pointing in the 3 direction and
a localized traveling spin excitation. For the an-
isotropic case there is a corresponding soliton,
but in addition there may be a background of spins
in the 1-2 plane. In this paper we discuss only
the solitons with spins pointing in the 3 direction
at x = infinity. We will discuss the other case in
a separate publication. '

In Sec. II we present for completeness the equa-
tions and solutions for the isotropic case. Section
III is devoted to a brief discussion of stability.
Section TV is a discussion of the results of soliton-
soliton scattering, and Sec. V presents the solu-
tions for the anisotropic solitons analogous to the
isotropic ones.

II. EQUATIONS OF MOTION

The system we consider is an infinite linear
chain with spin-density S,(x, t) (i = 1,2, 3}. The
spin densities satisfy the Poisson bracket rela-
tions

[S,(x, t), S,(y, t.)]= e,,P,(y, t) &(x -y),

which give for arbitrary functionals A and 8,
6A 68

[A, B]=e„, ~

5 ( ) 5 ( )S,(x)dx.

The length of the spins is denoted s,

(2.1)

(2.2)

Q S',.(x}= s'.

The Hamiltonian for the system is given by H
= f&(x) dx,

J &S J 8S3 Js
3e(x) =——+

2 y ' —
2 (S,' —s') —(S, —s)n .

(2.3}

In this section we restrict ourselves to the iso-
tropic case, y = v = 0 and to boundary conditions at
X=+~

S3= s; S~, S2= 0. (2.4)

The constants in the density have been chosen to
make the total energy finite. The equations of
motion are given by

ds,(x}= [S,(x), H],
(2.5)

dS - aS—=JSx +Sxg .
dx ax2 0

The Hamiltonian is obviously invariant under
space translations and under rotations in spin
space. It is useful to use the generators of these
operations in solving the equations of motion, how-
ever, the translation operator is not simply given

347Q



SOLITONS IN THE CONTINUOUS HEISENBERG SPIN CHAIN

in terms of 8. We therefore introduce angle den-
sities 8(x), g(x),

S,(x) =scos8(x) =-sU(x),
Q 2 S SU 1

err()
="=8 8(rr')

S, =s sin8(x} sin@(x),

S, =ssin8(x) cosQ(x}.

(2.6) U(sU/sx)'
(1 —U2)' 8»

The variables S, and p are canonically conjugate
variables

sy—SQO —SQ +SV-
Sx

(2.14)

or

[y(x), S,(y)]=5(» —y}
(2.7)

plus the equations of constraint. If we compare
with the equations of motion

[y(x), U(y)]=(1/s)5(x —y) ~

In terms of Uand P, K becomes

JS2 SU+x) =—— + —(1 —U') +sQ,(1-U).2 Sx 1 —U Sx

1 6H ~ 1 ~a
p =-—and —U=- —,

s &U s &ft)
(2.15)

we see that we are essentially finding solutions
such that

U(x, f) =U(x vt), @(—x, ~) =Q, ~+j(» —v~), (2 16}

The generator of translations (momentum op-
erator) is easily verified to be given by

(2.6) and so the I agrange multipliers have a simple in-
terpretation as the angular and linear velocities.
It is convenient to define

Z=s d, ' [1-u(x, t)],sy(x, f)

[y(x), S]=-—, , [U(x), P]=-—, .sy sU
(2.9}

Q=(QO+Q, )/Js

V=v/Zs.

(2.17)

The generators of rotations (magnetization} are
given by

M„= S, x dx,
wQQ

ay t/'

Sx 1+ U'

Equation(2. 14) then simplifies to

(2.18)

Equation(2. 13}can be directly integrated to give

and we are mainly interested in

M, -=s (U-1)dx, (2.10)

s8 1 —U 1+U V

Introducing P= 28, and

(2.19)

P= po, M3=M;

which gives the form

(2.11)

l(G„,U, P)= f3')dx —A,(M, —M) — (P —P);

where we subtract a constant to make M, finite.
The operators P and M are constants of the mo-

tion and it is useful to take advantage of this in
solving the equations of motion and investigating
the stability. Of course just as in quantum me-
chanics we can only specify the value of one com-
ponent of M which we have chosen to be M, . We
thus look for minima of the Hamiltonian subject
to two constraints

cos'P, = V'/4Q=1 —b',
the equation becomes

=Q , (cos'P —cos'P,).(
dP ' sin'P
dx cos p

(2.20)

(2.21)

At x=+ p=o and p obtains the maximum value
p, at some arbitrary point x,. Equation(2. 21) is
easily integrated to give

sinp=b sech[be(x-x, )],

cos8=1-2bl sechm[bvQ(x-x)],

$=$0+2V(x —xo}

the equations are

(2.12)
b2 1/2+~'

1 b, "~[bun(x-x, )] . (2.22)Q, s s@, sU=0= —Js' ——(1 —U') —sv — (2.13)by(x) s» sx s»
The constants of motion E= f +x) ~, ~ ~d M,
are easily calculated to be
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E= 4''b~A+ (4Jsb/VA)Qo,

M =4bs/&Q, P=4s sin '(b) =4sP, .
The energy can be written

E = 8Js'[1 —cos(P/2s)]/M+ MQ, .

(2.23)

(2.24)

III. STABILITY

The stability of the solutions to the con-
strained minimization problem [Eqs. (2.12)-
(2.14)] was studied by expanding I [Eq. (2.12)]
about the soliton solution and calculating nu-
merically the eigenvalues of the resulting quad-
ratic form. Writing U Up+ p and f fp+ (d the
quadratic form is given by

X„gx)= —,(1 —U') ——2U, 'q ———d4o d& ~' d4o
dx dh dx 2 dx

d(d SU2o+1 dUo ' 1 dq ' 1
dx 2(1 —U',}' dx 2 dx 1 —U',

2
d1 dUo 1

"dx ' dx (1 —U',)' (3.1}

For simplicity we have chosen Z= 1 and s = 1. The
constraint that M = constant requires

qdh= 0 (3.2}

and P = constant requires

q
' —(d

' dx=0. (3.3)

There was one negative eigenvalue and it was
therefore necessary to calculate the eigenvector.
In all case the eigenvector violated the constraint
that I is constant. Therefore that eigenvalue and
eigenvector can be ignored in a stability analysis,
since if it were included Iwould change as the
system evolved in time. As a check we calculated
directly the eigenvalues in the equation of motion
and there were none which would cause any insta-
bilities. The numerical problems were quite se-
vere when using this more direct method and the
sign of the small eigenvalues somewhat less cer-
tain. In either case we conclude that for infini-
tesimal perturbations in the solution, the motion

Referring to Eq. (2.20} we see that as v-0
either b-1 or Q-O. If Q-O, the soliton disap-
pears as E,P-O. The point b=1(P, =-,' x) has

P=2sx and E=16Zs'/M+ MQ, ,

with V= 0. However, this point is a singular point
in that there is no turning point in the differential
equation and de/dx must develop a discontinuity
of magnitude 4&0. The solutions as given in Eq.
(2.22} are continuous at this point.

is of an oscillatory nature.
We solved the eigenvalue problem by two meth-

ods. The first method was only satisfactory for
the Hamiltonian form and involved evaluating the
Hamiltonian at a sequence of mesh points resulting
in a large matrix with a nonzero band along the
diagonal. The second method was to use a set of
trial functions of the form

x"sech2bvg x.
To test stability under large perturbations we

introduced changes in the initial conditions and
observed numerically the evolution in time. One
cannot of course do this systematically, never-
theless we obtain a strong indication of stability.
The collisions of solitons with different param-
eters also provides a test of stability. We conclude
from our investigations that the solitons are very
likely completely stable and behave as those in
exactly soluble systems such as the nonlinear
Schrodinger equation.

IV. SOLITON-SOLITON SCATTERING

%e were unable to find analytic solutions for
scattering so we simulated the collision on the
computer. Insofar as we could detect numerically
the only effect of the collision is an effective in-
crease in the velocity during the collision. After
the collision the soliton's shape and velocity were
the same as before the collision. We used periodic
boundary conditions on a finite chain and hence
introduced a very slight error as we only know an-
alytically the answer for the infinite chain.

In Fig. 1 we show the initial configuration, Fig.
2 shows a typical time during the collision, and
Fig. 3 a short time after the collision. Figures 4
and 5 show a three-dimensional plot as a function
of both space and time. In the upper corner a
piece appears which is just the continuation due to
the periodic boundary conditions. The negative
time delay can be seen quite clearly in these pic-
tures. Figures 6 and 7 show more of the struc-
ture of the actual collision. Finally in Fig. 8 we
show the 1 component of the spin. From these
pictures we observe that the solitons pass through
each other with no effect on their size, shape, or
velocities.

V. ANISOTROPIC MODEL

We consider in this section the effects of the
terms proportional to 7 and y in Eq. (2.3). If the
continuum limit of an anisotropic chain with near-
est-neighbor interactions is taken, these terms
occur. We restrict ourselves to anisotropy in the
3 direction only. The analysis proceeds exactly
as in Sec. II except that Eq. (2.19) becomes
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FIG. 1. Initial configuration for two solitons. Energy
density and cess =S3/s are plotted. in Figs. 1-8 the
soliton parameters are all the same. One soliton has
velocity V =0.5 and amplitude sin20 = b =0.8. Second
has velocity V =-2 and amplitude b =0.3.
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FIG. 3. Short time after the collision.

88 ' . , 1-u 1+u r(1+u)' V'
(1+y sin'8) =40

ex 1+ gg 2 4Q 40+

(5.1)

—=cos P +—cos P .y', v.

4n '0 (5.2)

Since the left-hand side of Eq. (5.1) is positive,
we can infer some constraints on the parameters.
We rewrite Eq. (5.1) as

(1+y sin'8) =, (cos'P —cos'P, )
dp 2 ps~ p
Ch cos'P

x (cos'p+ cos'p, + ft!r) . (5.2)

We will only consider y& —1. We define the maxi-
mum deflection angle p, ( = a8) by

Eliminating 0 from the constraint we have

V'/4 cos'p, & —r . (5.4)

d~- dP —,

Two colliding solitons

with vl, bi=0.5, 0.8 anH v2, b2=-2.0, 0.5

Thus if v &0, there is a lower limit to the velocity
for fixed maximum deflection angle unlike either
v&0 or the isotropic case. Also if ~&0, Q must
be positive. If 7&0, it is possible to have 0&0
provided cos'P, + rt/r & —l.

Although we can not write the solution to Eq. (5.1)
in terms of elementary functions, we can easily
integrate it numerically. By changing
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FIG. 2. Plot of cose and energy density at a typical
time during the collision.

FIG. 4. Two-dimensional perspective plot showing
cos8 vs x and t. By following the ridge line of one sol-
iton one can easily see the time shift.
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P=4s cosPp 1+—cos'P, dPP cosP B P

4sM=~ ~ sinp(cosp) —.
In the above

A=(1+y sin'8)'~'

(5.6)

(5.7)

we can easily express the energy, momentum, and
magnetization in terms of elementa ' tary in egrals.

E=Js v 0 dpcosp(sinp) 1+—cos p-
p

+—cos P

(5.'5)

and

B= co2&=[cos p+(v/0) cos4p —cos'p, —(r/0) cos p P ~

The plot of cos[8(x)] for the anisotropic case

tro ic case
cannot of course be much diff erent from the iso-
ropic case since there is only one zer f

rivative.
zero o a de-

We show in Fig. 9 sqme ty
' al

ons. There are some significant differences in
the energy-momentum relations with the m
zation fixed. In Fi

i e magneti-
ig. 10 we show energy versus

momentum with M=1 and spin = —' fspin s = & for the iso-
tropic case and for ' . e ad for one anisotropic case. We ha
plotted E vs cos P

e ave
s& since the isotropic answer '

E= (1/M) [1 —cos(P) ]. (2.24)

For v & 0 it is possible to have v = 0 solitons, that
is there is an energy gap E(D). The gap can be
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FIG. 9. Cos8(x) for different anisotropy parameters.

easily calculated from Eqs. (5.5)-(5.7).
In Fig. 11 we show two anisotropic cases, and

it is evident that for large anisotropy there are
two branches of the curves. The linearized sta-
bility equations showed no indication of any insta-
bility for any of these situations, but we have not
done the other numerical tests that were per-
formed for the isotropic solitons. We have no ex-
planation for the two branches of the curves. We
did not examine the end point of the y = —1 curve
to see if it also has two branches, although the
second branch is very short if it exists.
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cos(P)

I
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FIG. 11. Energy momentum spectrum.

VI. DISCUSSION

W'e studied in some detail soliton solutions in the
continuum Heisenberg chain. Unfortunately we
were unable to find analytic solutions for multiple
soliton solutions. Because of certain similarities
of the quantum version of the discrete chain and
the nonlinear Schrodinger equation we expect that
analytic solutions do exist. The remarkable sta-
bility of the solitons in a collision lends some sup-
port to this conjecture. We also could not solve
analytically the discrete chain, although using as
initial conditions those for the continuum case
leads to an apparently stable soliton. The numeri-
cal simulation leads to different amplitudes and
velocities for the discrete chain, but the behavior
was qualitatively the same as the continuum chain.
Because of the exactly soluble nature of the quan-
tum version for s = &, it is of some interest to
have an exact solution for the discrete classical
chain.

The anisotropic chain has some interesting fea-
tures such as the existence of an energy gap (v=0
solitons) for one sign of the anisotropy and no gap
but a peculiar energy momentum relationship for
the other sign.

-I.O -0.5 0
cos (P)

0.5 I.O

FIG. 10. Energy momentum spectrum. For the case
of positive anisotropy, an energy gap appears. In the
figure E(0) has been subtracted.
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