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Theoretical treatments of resistive anomalies at magnetic critical points have been based on the quasielastic

approximation according to which the scattering system of localized spins is essentially static on the relevant

time scale. This approximation is justified by thermodynamic slowing down of spin fluctuations near the
critical point. In the case of ferromagnets, for example, this view is most obviously valid for long-wavelength

spin fluctuations. These, however, are irrelevant for the resistivity. In this paper, we give an exact evaluation

of the lowest-order corrections to the resistivity due to inelastic scattering for both ferromagnets and

antiferromagnets. These corrections are numerically significant only for very low spin (e.g., —30%%uo for S = 1/2)
and vary as 1/S{S+1). Their temperature dependence reflects directly that of the internal energy of the spin

system so that static critical properties will continue to be a useful guide in interpreting resistive anomalies.

I. INTRODUCTION

The study of electronic-transport properties
(such as the electrical resistivity) at magnetic
phase transitions has proven to be quite instruc-
tive. If we assume that the contribution p, (T) to
the resistivity due to electrons being weakly scat-
tering from essentially localized spine (Sa} lo-
cated at lattice sites (R}, can be extracted from
the total resistivity by some means such as Mat-
thiessen's rule, then a study of the temperature
dependence of p, (T) can yield fundamental infor-
mation concerning the temperature dependence of
correlations between spin fluctuations in the criti-
cal temperature regime.

Considerable progress has already been made
in interpreting the wide variety of resistive
"anomalies" observed in both ferromagnets and
antiferromagnets (including binary alloys at
their order-disorder transition). ' " For the
most part, this work has been based on the simple
model indicated above in which itinerant electrons
are weakly coupled (by s-f exchange) to an array
of localized spins and the scattering is treated in
the first Born approximation. ' Among the various
approximations made (see also the following sec-
tion) is the assumption that the electron-spin
scattering is quasielastic. That is, the time
scale of spin fluctuations is sufficiently long (rela-
tive to other relevant time scales} that correlation
functions such as (S~(0) ' S-„(t)),which enter the
scattering cross section, may be regarded as
stationary in time and replaced by (Sg(0) Sa(t = 0)).
This approximation is, of course, related to the
thermodynamic slowing down of spin fluctuations
near the critical point and its validity is most
obvious in the case of long-wavelength spin fluc-
tuations (this applies to ferromagnets, but analo-

gous considerations hold in the case of antiferro-
magnets). However, the dominant contributions
to the resistivity involve scattering with large
momentum transfers' (i.e. , q-2k'} and it may
not be obvious that the corresponding wavelengths
are sufficiently small to invoke thermodynamic
slowing down. Since the quasielastic approxima-
tion has played a central role in relating the tem-
perature dependence of p,(T) to static critical
properties of the spin system, '~ "it is necessary
to investigate more closely its validity and it is
this question which is addressed in the present
work. The outline of the paper is as follows.

In Sec. II, we formulate an expression for p, (T)
in which all inelastic effects are included and some
previous work on the problem is discussed. In
Sec. III, an exact result is given for the lowest-
order inelastic correction and its temperature
dependence is analyzed. Section IV consists of a
summary of the conclusions.

II. SPIN-FLUCTUATION RESISTIVITY INCLUDING
INELASTIC EFFECTS

In order to focus attention directly on the role of
inelasticity, we shall make a number of simplify-
ing assumptions [these assumptions are also
made in most treatments of the quasielastic ap-
proximation to p, (T)] and shall restrict attention
to the paramagnetic state (T~ T,). (i) The cur-
rent carriers are described by a single isotropic
band; the corresponding energies (eg=h'k'/2m*)
and velocities (vi=8k/m*) are spin independent.
(ii} The coupling between itinerant and localized
electrons is of very short range so that matrix
elements for scattering are independent of wave
number; i.e., j, z(k, k') = const. (iii) Matthies-
sen's rule is assumed to be valid and the effects
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of the finite-electron mean free path will not be
explicitly included. (iv) The scattering is de-
scribed by a Boltzmann equation and an adequate
approximation to the spin resistivity in the ith
crystallographic direction is assumed to be given
by the corresponding variational principle" (the

subscript s indicating the spin contribution will
be dropped in the following for notational con-
venience)

p'(T) p—'[0'],
where

(2)

in which the most elementary trial function is used, i.e. , Q„-'= ()&. In Eq. (2), p = I/ke T, f-„ is the Fermi
occupation function and

q 0 2s J' Z e ((% I')'R at e((Ilats)t/ ()S)(0) ~ S (t))
2n I

0 R
R mOO

where Qo is the volume per ionand SI((t) is the spin
operator at site R in the Heisenberg picture. To
illustrate the desired points, it will be sufficient
to consider only systems having a Bravais lattice
and cubic symmetry (the index i denoting crystal-
lographic direction can then be dropped).

In the high-temperature limit [(Tc«T«Tr),
where T~ and T~ are the Curie and Fermi tern-
peratures, respectively], Eq. (2) simplifies very
considerably and it is convenient to normalize
p(T) to the corresponding spin disorder resisti-
vity p0 where

structure of the static (equal time) spin correla-
tion function to be reasonably well known, pro-
vided that we are willing to transcribe results of
model calculations" ' to more complex systems
of present interest where indirect exchange cou-
pling may play a role (see Sec. III).

On the other hand, the structure of A„(q, T) is
extremely complex and involves both "local" dy-
namics" as well as large scale critical effects.
To isolate (partially) the various energy scales,
it is convenient to write"

p, =3rs( S+1)A, ~j /~'/e'Ifvr2. (4) A„(q, T) = ~„„4(q, T), (9)

To evaluate Eq. (2) more generally, introduce
a~, c-„, and q=k-k' as variables of integration.
It is straightforward to obtain"

P(T) 12/(2k+ ) "r, aQ q
po S(S+ 1) o 4w

where

(6)

with

A„(q, T) = 2e"'" at e("'(st/sl(t)).
R IS)((0

The factor of PK&o/(I - e~"") in Eq. (6) arises
from taking into account the energy transfer 8+
in scattering events and the result is valid for

~

)I(d~ «ar. If this factor is neglected, Eq. (6)
reduces to an equal time correlation function and
Eq. (5) becomes the usual quasielastic approxima-
tion

=
2~ ~ f &ee'J ~, &((,7'), (8)

whe~e I'(q, T) is the Fourier (lattice) transform
of I'(8, T) =(S5' 8"„)/S(s+ 1). We may consider the

where 4„(q,T)=4 „(q,T) is the Fourier trans-
form of

B

4,(q, T) = — ah(s;-(o)s'. (t+ te )).
0

a (10)

At this point, two avenues are suggested. One
might introduce an approximation for the "relaxa-
tion function" 4)„(q, T) based on a specific model
and then attempt to evaluate p(T)/p, numerically
or otherwise. For example, this was the approach
of Mannari' in his early considerations of the
effect of inelasticity on p(T). Mannari concluded
that the inelasticity was rather important and
that, when taken into account, p'(T) = 8p(T)/ST
= Ct ' with C & 0 and /(=-,' for t = (T —T,)/T, & 10 '
whereas the quasielastic approximation was
thought to lead to an upward cusp in p(T) at T = T,
[so that pox(T)&0 for T& T,]. Without wishing to
detract from the value of Mannari's work, this
conclusion is not completely correct and omis-
sions can be traced to an inadequate treatment of
certain aspects of C „(q,T) which, we emphasize,
is a very delicate quantity.

As an alternative to adopting approximations for
4)„(q, T), we shall follow a second rather trans-
parent procedure. " We assume initially that in-
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elastic effects are small relative to the quasi-
elastic contribution and calculate the lowest order
inelastic correction exactly. The nature of the
expansion parameter is then quite clear and some
comments can also be made concerning higher-
order inelastic corrections. This is done in Sec.
III.

III. LOWESTARDER INELASTIC CORRECTIONS TO
RESISTIVITY

to be given by

T} t=o(qs T) + 1
QE & 8 12I

(K~)'4 „(q,T)+ ~ ~ .
a+

The first inelastic correction is thus

«(q, T) G(q, T) - Gqs(q, T)

= --'. P (ig)'~, .(q, T),

(14}

From the derivation of pzz(T) [see Eq. (8)], it is
clear that inelastic corrections involve an expan-
sion in powers of frequency or, more precisely,
an expansion in powers of the ratio [energy scale
of 4„g,T)] to ksT To .obtain a consistent expan-
sion, combine Eqs. (6} and (9) in

pl'v Iso
G(q, T) = „„,„„C„(q,T) (11)

eOO

and use

P (kur)' 1-—,', (Pif~)'+ ' ' '

(I s~"~)(e'"" I) P

to obtain

since the integral in Eq. (12) or (14) is given by
the second time derivative, at t = 0, of @t(q, T},
The required derivative may, however, be easily
evaluated. Using Eq. (10) and a Kubo identity, "
we find

4,(q, T) = (1/i')([S*-(t),S-]),
so that

(16)

+, (q, T}=[I/(&}'N]([[S'~] Sg} (17)

As suggested in Sec. II, we assume that the static
critical properties of the spin system may be
described by an effective Heisenberg Hamiltonian
(having a contribution due to indirect exchange}
of the form"

G(q, T)= '-;C, ,(q, T) i "
d&o

H= -Z J(R —R')S2' Sg. ,M' (18)

Similarly expanding

K&o 1 —~rpk~+ —,', (pg&o)'+
Dhtd 1 p

shows

geo k(d
T) -=

(12)
with J(R -R'}=0 for R=R'. The commutators in
Eq. (17}are then easily evaluated to give

&G (q, T) = ——.p Z J(R)(SII Sg) (1 —cos q 'R) .
R

The first inelastic correction to Eq. (8) is thus

pr(T)
dq q ——

p ~ J(R)I'(R, T)(1 —cosq'R) (20)

It should be noted that this result is exact [subject,
of course, to the use of the effective Hamiltonian,
Eq. (18)] and applies to both ferromagnets and
antiferromagnets.

Several points are apparent from Eq. (20). At
high temperature, a perturbation expansion for
I'(R, T) is appropriate and it is easy to see that
p, (T)/pa is of order (T,/T)' and negative. Our
present interest lies, of course, in the critical
temperature range. For T near T„ the tempera-
ture dependence of I'(R, T) dominates pI(T)/p, and
it is instructive to rewrite Eq. (20) as

where, with c'. = 2kzR,

4 2k' QQ

(2k ) dqq
4 (1 —cosq'R)

4 2 2=1 ——,—cos ~ —s'oo ——(1 —cos ))Q Q ~2

(22)
is non-negative and bounded. The similarity of
this result to the 'internal energy per spin [see
Eq. (18)],

= —g J(R)r(R, T)-,'pf(ft), (21)
U(T) = —~ J(R)I'(R, T)S(S+ 1), (28)
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makes it evident that the temperature dependence
of p, (T)/p, reflects that of the internal energy.

To gain some feeling for the magnitude of the
inelastic corrections, several approaches are
available. For example, consider initially the
extreme case of nearest-neighbor interactions on
a simple cubic lattice [i.e. , J(R)=J if ~R~ =a and

zero otherwise]. Then

pi(T)/po=
',pf (a)—U(T)/NS(S+ 1). (24}

Estimates of the relevant quantities [p U(T)/N
= i for T = T„i7' ii f (a) = ~ for 2k+a =v] show that

pz(T, )/p, = —1/4S(SW 1) which corresponds to a
correction to the quasielastic result of about 2%%uo

for S = —, (as is appropriate for the rare-earth-
metal ferromagnet gadolinium} or of some 30% for
S = ~." For the rare-earth antiferromagnets, one
finds pz(T„)/p, = —1/4l(J+ 1), where the total ionic
angular momentum is J= L+ S.

It is also of interest to determine the contribu-
tion of inelastic corrections to the slope of the
resistivity. As indicated above, it is to be ex-
pected that the critical temperature dependence
of spi(T)/sT reflects that of the heat capacity
C(T)=SU(T)/ST. Within the simple-cubic nearest-
neighbor-interaction model, it follows from Eq.
(24) that, apart from regular terms,

ks T[Pz(T)/P, ]/[C(T)/N] = 3f (a)/S(S+ 1)

= [2S(S+ 1)] '.
The corresponding ratio for the quasielastic con-
tribution, estimated on the basis of a generaliza-
tion of the Ornstein-Zernike form for F(R, T), is
,Tc/Tc„whe—re Tc, is the mean-field estimate
of the transition temperature, and differs signifi-
cantly from the above only in that the [S(S+1})'
factor is absent. ' The fact that the relevant expan-
sion parameter describing inelastic corrections
is [S(S+ 1)] ' is not surprising. It should also be
emphasized that this conclusion holds for any
reasonable effective spin-spin interaction, J(R),
and is not restricted to nearest-neighbor models.

For example, we have explicitly verified, by a
more lengthy analysis, that all of the above fea-
tures, including the semiquantitative numerical
estimates, remain valid if J(R) is taken to be of
Ruderman-Kittel-Kasuya- Yosida indirect-exchange
origin.

IV. SUMMARY AND DISCUSSION

In Sec. III, it was seen that corrections to the
spin-fluctuation resistivity due to inelastic scat-
tering are of order [S(S+ 1)] ' relative to the cor-
responding inelastic values near the critical point
and that the corrections are numerically signifi-
cant only for low-spin systems. Also, the tem-
perature dependence of pi(T) reflects that of the
internal energy of the spin system just as in the
case of the quasielastic contribution to the resis-
tivity. "These conclusions are fairly general
and apply to both ferromagnets and antiferromag-
nets subject, of course, to their being adequately
described by an effective Heisenberg Hamiltonian
such as that given by Eq. (18). Note, in particu-
lar, that inelastic corrections to the resistivity
of a binary alloy at its order-disorder temperature
(the static properties of a binaryalloyareformal-
ly equivalent to those of a S = & Ising antiferro-
magnet) are not given by the above although they
are expected to be minor.

It is particularly important that the temperature
dependence of the singular part of p'(T) reflects
that of the singular part of the specific heat.
Physically, this is due to the fact that relatively
short-range (on a microscopic scale) spin fluc-
tuations are being sampled, even in the critical
temperature range, and that local "energetics"
are involved. Tn view of the above conclusions,
we feel that static critical properties will con-
tinue to be a useful guide when attempting to
interpret the detailed temperature dependence of
resistive anomalies in simple magnetic systems
and that, where necessary, corrections can be
made with some confidence.
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